Role of Brain Imaging in Drug Development for Psychiatry

Page: [46 - 71] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

Background: Over the last decades, many brain imaging studies have contributed to new insights in the pathogenesis of psychiatric disease. However, in spite of these developments, progress in the development of novel therapeutic drugs for prevalent psychiatric health conditions has been limited.

Objective: In this review, we discuss translational, diagnostic and methodological issues that have hampered drug development in CNS disorders with a particular focus on psychiatry. The role of preclinical models is critically reviewed and opportunities for brain imaging in early stages of drug development using PET and fMRI are discussed. The role of PET and fMRI in drug development is reviewed emphasizing the need to engage in collaborations between industry, academia and phase I units.

Results: Brain imaging technology has revolutionized the study of psychiatric illnesses, and during the last decade, neuroimaging has provided valuable insights at different levels of analysis and brain organization, such as effective connectivity (anatomical), functional connectivity patterns and neurochemical information that may support both preclinical and clinical drug development.

Conclusion: Since there is no unifying pathophysiological theory of individual psychiatric syndromes and since many symptoms cut across diagnostic boundaries, a new theoretical framework has been proposed that may help in defining new targets for treatment and thus enhance drug development in CNS diseases. In addition, it is argued that new proposals for data-mining and mathematical modelling as well as freely available databanks for neural network and neurochemical models of rodents combined with revised psychiatric classification will lead to new validated targets for drug development.

Keywords: Brain imaging, psychiatry, CNS drug development, fMRI, PET, drug targets.

Graphical Abstract

[1]
Bjornsson T. Progression of modern therapeutics. Therapeutics Research Institute Saint Davids, Pennsylvania 2015. http://tri-insti tute.org/wp-content/uploads/2014/04/Progression-of-Modern-Therapeutics-2015.pdf
[2]
Pammolli F, Magazzini L, Riccaboni M. The productivity crisis in pharmaceutical R&D. Nat Rev Drug Discov 2011; 10(6): 428-38.
[http://dx.doi.org/10.1038/nrd3405] [PMID: 21629293]
[3]
Cressey D. Psychopharmacology in crisis. Nature 2011.
[http://dx.doi.org/10.1038/news.2011.367]
[4]
Gribkoff VK, Kaczmarek LK. The need for new approaches in CNS drug discovery: Why drugs have failed, and what can be done to improve outcomes. Neuropharmacology 2017; 120(1): 11-9.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.021] [PMID: 26979921]
[5]
Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov 2012; 11(3): 191-200.
[http://dx.doi.org/10.1038/nrd3681] [PMID: 22378269]
[6]
Butlen-Ducuing F, Pétavy F, Guizzaro L, et al. Regulatory watch: Challenges in drug development for central nervous system disorders: a European Medicines Agency perspective. Nat Rev Drug Discov 2016; 15(12): 813-4.
[http://dx.doi.org/10.1038/nrd.2016.237] [PMID: 27895328]
[7]
Rashid B, Calhoun V. Towards a brain-based predictome of mental illness. Hum Brain Mapp 2020; 41(12): 3468-535.
[http://dx.doi.org/10.1002/hbm.25013] [PMID: 32374075]
[8]
van der Doef TF, Zaragoza Domingo S, Jacobs GE, et al. New approaches in psychiatric drug development. Eur Neuropsychopharmacol 2018; 28(9): 983-93.
[http://dx.doi.org/10.1016/j.euroneuro.2018.06.006] [PMID: 30056086]
[9]
Borsook D, Becerra L, Fava M. Use of functional imaging across clinical phases in CNS drug development. Transl Psychiatry 2013; 3: e282.
[http://dx.doi.org/10.1038/tp.2013.43] [PMID: 23860483]
[10]
Kendler KS. Toward a philosophical structure for psychiatry. Am J Psychiatry 2005; 162(3): 433-40.
[http://dx.doi.org/10.1176/appi.ajp.162.3.433] [PMID: 15741457]
[11]
Den Boer JA, Glas G, Reinders AAT. On looking inward; revisiting the role of introspection in neuroscientific and psychiatric research. Theory Psychol 2008; 18: 380-403.
[http://dx.doi.org/10.1177/0959354308089791]
[12]
Jentsch MC, Van Buel EM, Bosker FJ, et al. Biomarker approaches in major depressive disorder evaluated in the context of current hypotheses. Biomarkers Med 2015; 9(3): 277-97.
[http://dx.doi.org/10.2217/bmm.14.114] [PMID: 25731213]
[13]
van Buel EM, Meddens MJM, Arnoldussen EA, et al. Major depressive disorder is associated with changes in a cluster of serum and urine biomarkers. J Psychosom Res 2019; 125: 109796.
[http://dx.doi.org/10.1016/j.jpsychores.2019.109796] [PMID: 31470255]
[14]
Hampel H, O’Bryant SE, Molinuevo JL, et al. Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat Rev Neurol 2018; 14(11): 639-52.
[http://dx.doi.org/10.1038/s41582-018-0079-7] [PMID: 30297701]
[16]
Griebel G, Holmes A. 50 years of hurdles and hope in anxiolytic drug discovery. Nat Rev Drug Discov 2013; 12(9): 667-87.
[http://dx.doi.org/10.1038/nrd4075] [PMID: 23989795]
[17]
Borsook D, Hargreaves R, Becerra L. Can functional magnetic resonance imaging improve success rates in CNS drug discovery? Expert Opin Drug Discov 2011; 6(6): 597-617.
[http://dx.doi.org/10.1517/17460441.2011.584529] [PMID: 21765857]
[18]
Bleicher KH, Böhm HJ, Müller K, Alanine AI. Hit and lead generation: Beyond high-throughput screening. Nat Rev Drug Discov 2003; 2(5): 369-78.
[http://dx.doi.org/10.1038/nrd1086] [PMID: 12750740]
[19]
Llovera G, Liesz A. The next step in translational research: Lessons learned from the first preclinical randomized controlled trial. J Neurochem 2016; 139(Suppl. 2): 271-9.
[http://dx.doi.org/10.1111/jnc.13516] [PMID: 26968835]
[20]
Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018; 290: 56-74.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.009] [PMID: 30312718]
[21]
Bensch F, van der Veen EL, Lub-de Hooge MN, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 2018; 24(12): 1852-8.
[http://dx.doi.org/10.1038/s41591-018-0255-8] [PMID: 30478423]
[22]
de Vries EGE, Kist de Ruijter L, Lub-de Hooge MN, Dierckx RA, Elias SG, Oosting SF. Integrating molecular nuclear imaging in clinical research to improve anticancer therapy. Nat Rev Clin Oncol 2019; 16(4): 241-55.
[http://dx.doi.org/10.1038/s41571-018-0123-y] [PMID: 30479378]
[23]
Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures Alzheimers Res Ther 2014 Jul; 6(4): 37.
[http://dx.doi.org/10.1186/alzrt269.]
[24]
Mullane K, Williams M. Preclinical models of Alzheimer’s disease; relevance and translational validity. Curr Protocols Pharmacol 2019; 84(1): e57.
[http://dx.doi.org/10.1002/cpph.57] [PMID: 30802363]
[25]
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement (N Y) 2019; 5: 272-93.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]
[26]
Kaitin KI, Milne CP. A dearth of new meds. Sci Am 2011; 305(2): 16.
[http://dx.doi.org/10.1038/scientificamerican0811-16] [PMID: 21827111]
[27]
Cortese R, Collorone S, Ciccarelli O, Toosy AT. Advances in brain imaging in multiple sclerosis. Ther Adv Neurol Disorder 2019; 12: 1756286419859722.
[http://dx.doi.org/10.1177/1756286419859722] [PMID: 31275430]
[28]
Ziemssen T, Akgün K, Brück W. Molecular biomarkers in multiple sclerosis. J Neuroinflammation 2019; 16(1): 272.
[http://dx.doi.org/10.1186/s12974-019-1674-2] [PMID: 31870389]
[29]
Hampel H, O’Bryant SE, Castrillo JI, et al. Precision medicine - The golden gate for detection, treatment and prevention of Alzheimer’s disease. J Prev Alzheimers Dis 2016; 3(4): 243-59.
[PMID: 28344933]
[30]
Hampel H, Vergallo A, Perry G, Lista S. The Alzheimer precision medicine initiative. J Alzheimers Dis 2019; 68(1): 1-24.
[http://dx.doi.org/10.3233/JAD-181121] [PMID: 30814352]
[31]
Niculescu AB, Le-Niculescu H, Levey DF, et al. Towards precision medicine for pain: Diagnostic biomarkers and repurposed drugs. Mol Psychiatry 2019; 24(4): 501-22.
[http://dx.doi.org/10.1038/s41380-018-0345-5] [PMID: 30755720]
[32]
Kas MJ, Serretti A, Marston H. Quantitative neurosymptomatics: Linking quantitative biology to neuropsychiatry. Neurosci Biobehav Rev 2019; 97: 1-2. a
[http://dx.doi.org/10.1016/j.neubiorev.2018.11.013] [PMID: 30476505]
[33]
Kas MJ, Penninx B, Sommer B, Serretti A, Arango C, Marston H. A quantitative approach to neuropsychiatry: The why and the how. Neurosci Biobehav Rev 2019; 97: 3-9. b
[http://dx.doi.org/10.1016/j.neubiorev.2017.12.008] [PMID: 29246661]
[34]
Tome MB, Isaac MT. A regulatory view on novel methodologies and context of use of biomarkers. Neurosci Biobehav Rev 2019; 97: 94-5.
[http://dx.doi.org/10.1016/j.neubiorev.2018.09.015] [PMID: 30261197]
[35]
Porcelli S, Van Der Wee N, van der Werff S, et al. Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev 2019; 97: 10-33.
[http://dx.doi.org/10.1016/j.neubiorev.2018.09.012] [PMID: 30244163]
[36]
Peleh T, Ike KGO, Wams EJ, Lebois EP, Hengerer B. The reverse translation of a quantitative neuropsychiatric framework into preclinical studies: Focus on social interaction and behavior. Neurosci Biobehav Rev 2019; 97: 96-111.
[http://dx.doi.org/10.1016/j.neubiorev.2018.07.018] [PMID: 30660427]
[37]
Egerton A. The potential of 1H-MRS in CNS drug development. Psychopharmacology (Berl) 2019; pp. 1-4.
[http://dx.doi.org/10.1007/s00213-019-05344-7] [PMID: 31486875]
[38]
Friston KJ. Functional and effective connectivity: A review. Brain Connect 2011; 1(1): 13-36.
[http://dx.doi.org/10.1089/brain.2011.0008] [PMID: 22432952]
[39]
Jenkins BG. Pharmacologic magnetic resonance imaging (phMRI): Imaging drug action in the brain. Neuroimage 2012 Aug; 62(2): 1072-1085..
[40]
Detre JA, Rao H, Wang DJJ, Chen YF, Wang Z. Applications of arterial spin labeled MRI in the brain. J Magn Reson Imaging 2012; 35(5): 1026-37.
[http://dx.doi.org/10.1002/jmri.23581] [PMID: 22246782]
[41]
Chai WY2, Chu PC, Tsai CH, et al. Image-guided focused-ultrasound cns molecular delivery: an implementation via dynamic contrast-enhanced magnetic-resonance imaging. Sci Rep 2018; 8(1): 4151.
[http://dx.doi.org/10.1038/s41598-018-22571-8.]
[42]
Emblem KE, Mouridsen K, Bjornerud A, et al. Vessel architectural imaging identifies cancer patient responders to anti-angiogenic therapy. Nat Med 2013; 19(9): 1178-83.
[http://dx.doi.org/10.1038/nm.3289] [PMID: 23955713]
[43]
Hansen MB, Tietze A, Kalpathy-Cramer J, et al. Reliable estimation of microvascular flow patterns in patients with disrupted blood-brain barrier using dynamic susceptibility contrast MRI. J Magn Reson Imaging 2017; 46(2): 537-49.
[http://dx.doi.org/10.1002/jmri.25549] [PMID: 27902858]
[44]
do Amaral LLF, Fragoso DC, Nunes RH, Littig IA, da Rocha AJ. Gadolinium-enhanced susceptibility-weighted imaging in multiple sclerosis: Optimizing the recognition of active plaques for different MR imaging sequences. AJNR Am J Neuroradiol 2019; 40(4): 614-9.
[http://dx.doi.org/10.3174/ajnr.A5997] [PMID: 30846435]
[45]
Waschkies CF, Bruns A, Müller S, et al. Neuropharmacological and neurobiological relevance of in vivo ¹H-MRS of GABA and glutamate for preclinical drug discovery in mental disorders. Neuropsychopharmacology 2014; 39(10): 2331-9.
[http://dx.doi.org/10.1038/npp.2014.79] [PMID: 24694923]
[46]
Hnilicová P, Považan M, Strasser B, et al. Spatial variability and reproducibility of GABA-edited MEGA-LASER 3D-MRSI in the brain at 3 T. NMR Biomed 2016; 29(11): 1656-65.
[http://dx.doi.org/10.1002/nbm.3613] [PMID: 27717093]
[47]
Abdallah CG, De Feyter HM, Averill LA, et al. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 2018; 43(10): 2154-60.
[http://dx.doi.org/10.1038/s41386-018-0136-3] [PMID: 29977074]
[48]
van der Vos CS, Koopman D, Rijnsdorp S, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging 2017; 44(Suppl. 1): 4-16.
[http://dx.doi.org/10.1007/s00259-017-3727-z] [PMID: 28687866]
[49]
Sander CY, Hooker JM, Catana C, et al. Neurovascular coupling to D2/D3 dopamine receptor occupancy using simultaneous PET/functional MRI. Proc Natl Acad Sci USA 2013; 110(27): 11169-74.
[http://dx.doi.org/10.1073/pnas.1220512110] [PMID: 23723346]
[50]
Waerzeggers Y, Monfared P, Ullrich R, Viel T, Jacobs AH. Multimodal imaging: Overview of imaging techniques (CT, MRI, Optical imaging) and impact of multimodality on drug development.Trends on the role of PET in drug development. Springer Verlag 2012; pp. 319-82.
[51]
Rossi M, Massai L, Diamanti D, et al. Multimodal molecular imaging system for pathway-specific reporter gene expression. Eur J Pharm Sci 2016; 86(86): 136-42.
[http://dx.doi.org/10.1016/j.ejps.2016.03.006] [PMID: 26987608]
[52]
Willmann JK, van Bruggen N, Dinkelborg LM, Gambhir SS. Molecular imaging in drug development. Nat Rev Drug Discov 2008; 7(7): 591-607.
[http://dx.doi.org/10.1038/nrd2290] [PMID: 18591980]
[53]
First M, Botteron K, Carter C, et al. Consensus Report of the APA Work Group on Neuroimaging Markers of Psychiatric Disorders Resource Document. Working Group on Neuroimaging Markers of Psychiatric Disorders American Psychiatric Association 2012. Available from: https://www.researchgate.net/publication/261507750_Consensus_Report_of_the_APA_Work_Group_on_Neuroimaging_Markers_of_Psychiatric_Disorders
[54]
Borsook D, Becerra L, Hargreaves R. A role for fMRI in optimizing CNS drug development. Nat Rev Drug Discov 2006; 5(5): 411-24.
[http://dx.doi.org/10.1038/nrd2027] [PMID: 16604100]
[55]
Wandschneider B, Koepp MJ. Pharmaco fMRI: Determining the functional anatomy of the effects of medication. Neuroimage Clin 2016; 12: 691-7.
[http://dx.doi.org/10.1016/j.nicl.2016.10.002] [PMID: 27766202]
[56]
Nathan PJ, Phan KL, Harmer CJ, Mehta MA, Bullmore ET. Increasing pharmacological knowledge about human neurological and psychiatric disorders through functional neuroimaging and its application in drug discovery. Curr Opin Pharmacol 2014; 14: 54-61.
[http://dx.doi.org/10.1016/j.coph.2013.11.009] [PMID: 24565013]
[57]
Borsook D, Pendse G, Aiello-Lammens M, et al. CNS Response to a thermal stressor in human volunteers and rats may predict the clinical utility of analgesics. Drug Dev Res 2007; 68(1): 23-41.
[http://dx.doi.org/10.1002/ddr.20163]
[58]
Upadhyay J, Geber C, Hargreaves R, Birklein F, Borsook D. A critical evaluation of validity and utility of translational imaging in pain and analgesia: Utilizing functional imaging to enhance the process. Neurosci Biobehav Rev 2018; 84: 407-23.
[http://dx.doi.org/10.1016/j.neubiorev.2017.08.004] [PMID: 28807753]
[59]
Wanigasekera V, Wartolowska K, Huggins JP, et al. Disambiguating pharmacological mechanisms from placebo in neuropathic pain using functional neuroimaging. Br J Anaesth 2018; 120(2): 299-307.
[http://dx.doi.org/10.1016/j.bja.2017.11.064] [PMID: 29406179]
[60]
Rosenberg MD, Finn ES, Scheinost D, et al. A neuromarker of sustained attention from whole-brain functional connectivity. Nat Neurosci 2016; 19(1): 165-71.
[http://dx.doi.org/10.1038/nn.4179] [PMID: 26595653]
[61]
Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An fMRI-based neurologic signature of physical pain. N Engl J Med 2013; 368(15): 1388-97.
[http://dx.doi.org/10.1056/NEJMoa1204471] [PMID: 23574118]
[62]
Bräscher AK, Becker S, Hoeppli ME, Schweinhardt P. Different brain circuitries mediating controllable and uncontrollable pain. J Neurosci 2016; 36(18): 5013-25.
[http://dx.doi.org/10.1523/JNEUROSCI.1954-15.2016] [PMID: 27147654]
[63]
Ma Y, Wang C, Luo S, et al. Serotonin transporter polymorphism alters citalopram effects on human pain responses to physical pain. Neuroimage 2016; 135: 186-96.
[http://dx.doi.org/10.1016/j.neuroimage.2016.04.064] [PMID: 27132044]
[64]
López-Solà M, Woo CW, Pujol J, et al. Towards a neurophysiological signature for fibromyalgia. Pain 2017; 158(1): 34-47.
[http://dx.doi.org/10.1097/j.pain.0000000000000707] [PMID: 27583567]
[65]
Duff EP, Vennart W, Wise RG, et al. Learning to identify CNS drug action and efficacy using multistudy fMRI data. Sci Transl Med 2015; 7(274): 274ra16.
[http://dx.doi.org/10.1126/scitranslmed.3008438]
[66]
Owen DG, Clarke CF, Ganapathy S, Prato FS, St Lawrence KS. Using perfusion MRI to measure the dynamic changes in neural activation associated with tonic muscular pain. Pain 2010; 148(3): 375-86.
[http://dx.doi.org/10.1016/j.pain.2009.10.003] [PMID: 19914778]
[67]
Tracey I. “Seeing” how our drugs work brings translational added value. Anesthesiology 2013; 119(6): 1247-8.
[http://dx.doi.org/10.1097/ALN.0000000000000018] [PMID: 24343284]
[68]
Harris RE, Napadow V, Huggins JP, et al. Pregabalin rectifies aberrant brain chemistry, connectivity, and functional response in chronic pain patients. Anesthesiology 2013; 119(6): 1453-64.
[http://dx.doi.org/10.1097/ALN.0000000000000017] [PMID: 24343290]
[69]
Biomarkers Definitions Working Group, Atkinson Jr AJ, Colburn WA, DeGruttola VG, DeMets DL, Downing GJ, Hoth DF, Oates JA, Peck CC, Schooley RT, Spilker BA. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69(3): 89-95.
[http://dx.doi.org/10.1067/mcp.2001.113989] [PMID: 11240971]
[70]
FDA-NIH Biomarker Working GroupBEST (Biomarkers, EndpointS, and other Tools) Resource Silver Spring (MD): Food and Drug Administration (US); Bethesda (MD). US: National Institutes of Health 2016.
[71]
Tregellas JR. Neuroimaging biomarkers for early drug development in schizophrenia. Biol Psychiatry 2014; 76(2): 111-9.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.025] [PMID: 24094513]
[72]
Buckner RL, Andrews-Hanna JR, Schacter DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 2008; 1124: 1-38.
[http://dx.doi.org/10.1196/annals.1440.011] [PMID: 18400922]
[73]
Dawson N, Morris BJ, Pratt JA. Functional brain connectivity phenotypes for schizophrenia drug discovery. J Psychopharmacol 2015; 29(2): 169-77.
[http://dx.doi.org/10.1177/0269881114563635] [PMID: 25567554]
[74]
Smucny J, Wylie KP, Tregellas JR. Functional magnetic resonance imaging of intrinsic brain networks for translational drug discovery. Trends Pharmacol Sci 2014; 35(8): 397-403.
[http://dx.doi.org/10.1016/j.tips.2014.05.001] [PMID: 24906509]
[75]
Tregellas JR, Olincy A, Johnson L, et al. Functional magnetic resonance imaging of effects of a nicotinic agonist in schizophrenia. Neuropsychopharmacology 2010; 35(4): 938-42.
[http://dx.doi.org/10.1038/npp.2009.196] [PMID: 19956085]
[76]
Wylie KP, Smucny J, Legget KT, Tregellas JR. Targeting functional biomarkers in schizophrenia with neuroimaging. Curr Pharm Des 2016; 22(14): 2117-23.
[http://dx.doi.org/10.2174/1381612822666160127113912] [PMID: 26818860]
[77]
Sambataro F, Blasi G, Fazio L, et al. Treatment with olanzapine is associated with modulation of the default mode network in patients with Schizophrenia. Neuropsychopharmacology 2010; 35(4): 904-12.
[http://dx.doi.org/10.1038/npp.2009.192] [PMID: 19956088]
[78]
Tregellas JR, Tanabe J, Rojas DC, et al. Effects of an alpha 7-nicotinic agonist on default network activity in schizophrenia. Biol Psychiatry 2011; 69(1): 7-11.
[http://dx.doi.org/10.1016/j.biopsych.2010.07.004] [PMID: 20728875]
[79]
Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. Rat brains also have a default mode network. Proc Natl Acad Sci USA 2012; 109(10): 3979-84.
[http://dx.doi.org/10.1073/pnas.1200506109] [PMID: 22355129]
[80]
Glasser MF, Smith SM, Marcus DS, et al. The Human Connectome Project’s neuroimaging approach. Nat Neurosci 2016; 19(9): 1175-87.
[http://dx.doi.org/10.1038/nn.4361] [PMID: 27571196]
[81]
Pan WJ, Billings JCW, Grooms JK, Shakil S, Keilholz SD. Considerations for resting state functional MRI and functional connectivity studies in rodents. Front Neurosci 2015; 9: 269.
[http://dx.doi.org/10.3389/fnins.2015.00269] [PMID: 26300718]
[82]
Pan WJ, Billings J, Nezafati M, Abbas A, Keilholz S. Resting State fMRI in Rodents. Curr Protoc Neurosci 2018; 83(1): e45.
[http://dx.doi.org/10.1002/cpns.45] [PMID: 30040200]
[83]
Fu CHY, Costafreda SG, Sankar A, et al. Multimodal functional and structural neuroimaging investigation of major depressive disorder following treatment with duloxetine. BMC Psychiatry 2015; 15: 82.
[http://dx.doi.org/10.1186/s12888-015-0457-2] [PMID: 25880400]
[84]
Bukhari Q, Schroeter A, Cole DM, Rudin M. Resting state fMRI in mice reveals anesthesia specific signatures of brain functional networks and their interactions. Front Neural Circuits 2017; 11: 5.
[http://dx.doi.org/10.3389/fncir.2017.00005] [PMID: 28217085]
[85]
Gass N, Schwarz AJ, Sartorius A, et al. Haloperidol modulates midbrain-prefrontal functional connectivity in the rat brain. Eur Neuropsychopharmacol 2013; 23(10): 1310-9.
[http://dx.doi.org/10.1016/j.euroneuro.2012.10.013] [PMID: 23165219]
[86]
Coppieters I, Meeus M, Kregel J, et al. Relations between brain alterations and clinical pain measures in chronic musculoskeletal pain: A systematic review. J Pain 2016; 17(9): 949-62.
[http://dx.doi.org/10.1016/j.jpain.2016.04.005] [PMID: 27263992]
[87]
Kregel J, Meeus M, Malfliet A, et al. Structural and functional brain abnormalities in chronic low back pain: A systematic review. Semin Arthritis Rheum 2015; 45(2): 229-37.
[http://dx.doi.org/10.1016/j.semarthrit.2015.05.002] [PMID: 26092329]
[88]
Russell MD, Barrick TR, Howe FA, Sofat N. Reduced anterior cingulate grey matter volume in painful hand osteoarthritis. Rheumatol Int 2018; 38(8): 1429-35.
[http://dx.doi.org/10.1007/s00296-018-4085-2] [PMID: 29936571]
[89]
Lee YC, Jahng GH, Ryu CW, Byun JY. Change in gray matter volume and cerebral blood flow in patients with burning mouth syndrome. J Oral Pathol Med 2019; 48(4): 335-42.
[http://dx.doi.org/10.1111/jop.12838] [PMID: 30735586]
[90]
Liao X, Mao C, Wang Y, et al. Brain gray matter alterations in Chinese patients with chronic knee osteoarthritis pain based on voxel-based morphometry. Medicine (Baltimore) 2018; 97(12): e0145.
[http://dx.doi.org/10.1097/MD.0000000000010145] [PMID: 29561420]
[91]
Seminowicz DA, Laferriere AL, Millecamps M, Yu JS, Coderre TJ, Bushnell MC. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 2009; 47(3): 1007-14.
[http://dx.doi.org/10.1016/j.neuroimage.2009.05.068] [PMID: 19497372]
[92]
Kang D, McAuley JH, Kassem MS, Gatt JM, Gustin SM. What does the grey matter decrease in the medial prefrontal cortex reflect in people with chronic pain? Eur J Pain 2019; 23(2): 203-19.
[http://dx.doi.org/10.1002/ejp.1304] [PMID: 30101509]
[93]
Bench CJ, Lammertsma AA, Dolan RJ, et al. Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88,059-01: a study using positron emission tomography and 11C-raclopride. Psychopharmacology (Berl) 1993; 112(2-3): 308-14.
[http://dx.doi.org/10.1007/BF02244926] [PMID: 7871035]
[94]
Lammertsma AA, Bench CJ, Hume SP, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996; 16(1): 42-52.
[http://dx.doi.org/10.1097/00004647-199601000-00005] [PMID: 8530554]
[95]
Bench CJ, Lammertsma AA, Grasby PM, et al. The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88,059-01) determined by positron emission tomography. Psychopharmacology (Berl) 1996; 124(1-2): 141-7.
[http://dx.doi.org/10.1007/BF02245614] [PMID: 8935809]
[96]
Lundkvist C, Halldin C, Ginovart N, et al. [11C]MDL 100907, a radioligland for selective imaging of 5-HT(2A) receptors with positron emission tomography. Life Sci 1996; 58(10): 187-92.
[http://dx.doi.org/10.1016/0024-3205(96)00013-6] [PMID: 8602111]
[97]
Talvik-Lotfi M, Nyberg S, Nordström AL, et al. High 5HT2A receptor occupancy in M100907-treated schizophrenic patients. Psychopharmacology (Berl) 2000; 148(4): 400-3.
[http://dx.doi.org/10.1007/s002130050069] [PMID: 10928313]
[98]
de Vries EFJ, Doorduin J, Dierckx RA, van Waarde A. Evaluation of [(11)C]rofecoxib as PET tracer for cyclooxygenase 2 overexpression in rat models of inflammation. Nucl Med Biol 2008; 35(1): 35-42.
[http://dx.doi.org/10.1016/j.nucmedbio.2007.07.015] [PMID: 18158941]
[99]
Comley RA, Passchier J, Willemsen A, et al. Uptake and regional distribution of [11C]rofecoxib in human brain. NeuroImage 2010; 52(Suppl. 1): S135-S136..
[100]
Vosjan MJWD, Perk LR, Visser GWM, et al. Conjugation and radiolabeling of monoclonal antibodies with zirconium-89 for PET imaging using the bifunctional chelate p-isothiocyanatobenzyl-desferrioxamine. Nat Protoc 2010; 5(4): 739-43.
[http://dx.doi.org/10.1038/nprot.2010.13] [PMID: 20360768]
[101]
Dijkers EC, Oude Munnink TH, Kosterink JG, et al. Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 2010; 87(5): 586-92.
[http://dx.doi.org/10.1038/clpt.2010.12] [PMID: 20357763]
[102]
Vernaleken I, Siessmeier T, Buchholz HG, et al. High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia. Int J Neuropsychopharmacol 2004; 7(4): 421-30.
[http://dx.doi.org/10.1017/S1461145704004353] [PMID: 15683553]
[103]
Reeves S, McLachlan E, Bertrand J, et al. Therapeutic window of dopamine D2/3 receptor occupancy to treat psychosis in Alzheimer's disease. Brain 2017; 140(4): 1117-27.
[104]
Roostalu U, Salinas CBG, Thorbek DD, et al. Quantitative whole-brain 3D imaging of tyrosine hydroxylase-labeled neuron architecture in the mouse MPTP model of Parkinson’s disease. Dis Model Mech 2019; 12(11): dmm042200.
[http://dx.doi.org/10.1242/dmm.042200] [PMID: 31704726]
[105]
Piel M, Vernaleken I, Rösch F. Positron emission tomography in CNS drug discovery and drug monitoring. J Med Chem 2014; 57(22): 9232-58.
[http://dx.doi.org/10.1021/jm5001858] [PMID: 25144329]
[106]
Thentu JB, Nirogi R, Bhyrapuneni G, Ajjala DR, Aleti RR, Palacharla RC. Simultaneous in-vivo receptor occupancy assays for serotonin 1A, 2A, and dopamine 2 receptors with the use of non-radiolabelled tracers: Proposed method in screening antipsychotics. J Pharmacol Toxicol Methods 2017; 85: 22-8.
[http://dx.doi.org/10.1016/j.vascn.2017.01.001] [PMID: 28063918]
[107]
Alstrup AK. Small animal imaging for accelerating drug development, and comparison to other techniques.Trends on the role of PET in drug development. World Scientific 2012; pp. 219-39.
[http://dx.doi.org/10.1142/9789814317740_0009]
[108]
Zhang X, Paule MG, Wang C, Slikker W Jr. Application of microPET imaging approaches in the study of pediatric anesthetic-induced neuronal toxicity. J Appl Toxicol 2013; 33(9): 861-8.
[http://dx.doi.org/10.1002/jat.2857] [PMID: 23400798]
[109]
Woodward TJ, Timic Stamenic T, Todorovic SM. Neonatal general anesthesia causes lasting alterations in excitatory and inhibitory synaptic transmission in the ventrobasal thalamus of adolescent female rats. Neurobiol Dis 2019; 127: 472-81.
[http://dx.doi.org/10.1016/j.nbd.2019.01.016] [PMID: 30825640]
[110]
Vállez García D, Doorduin J, de Paula Faria D, Dierckx RAJO, de Vries EFJ. Effect of preventive and curative fingolimod treatment regimens on neuroinflammation and disease progression in a rat model of multiple sclerosis. J Neuroimmun pharmacol 2017; 12(3): 521-30.
[111]
Sucksdorff M, Rissanen E, Tuisku J, et al. Evaluation of the effect of fingolimod treatment on microglial activation using serial pet imaging in multiple sclerosis. J Nucl Med 2017; 58(10): 1646-51.
[http://dx.doi.org/10.2967/jnumed.116.183020] [PMID: 28336784]
[112]
Suridjan I, Comley RA, Rabiner EA. The application of Positron Emission Tomography (PET) imaging in CNS drug development. Brain Imaging Behav 2019; 13(2): 354-65.
[http://dx.doi.org/10.1007/s11682-018-9967-0] [PMID: 30259405]
[113]
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158(4): 543-59.
[http://dx.doi.org/10.1097/j.pain.0000000000000831] [PMID: 28301400]
[114]
Edvinsson L. The CGRP pathway in migraine as a viable target for therapies. Headache 2018; 58: 33-47.
[http://dx.doi.org/10.1111/head.13305]
[115]
Edvinsson L. Role of CGRP in Migraine. Handb Exp Pharmacol 2019; 255: 121-30.
[http://dx.doi.org/10.1007/164_2018_201] [PMID: 30725283]
[116]
van der Hart MGC, de Biurrun G, Czéh B, Rupniak NM, den Boer JA, Fuchs E. Chronic psychosocial stress in tree shrews: Effect of the substance P (NK1 receptor) antagonist L-760735 and clomipramine on endocrine and behavioral parameters. Psychopharmacology (Berl) 2005; 181(2): 207-16.
[http://dx.doi.org/10.1007/s00213-005-2260-0] [PMID: 15875166]
[117]
Barrett JS, Spitsin S, Moorthy G, et al. Pharmacologic rationale for the NK1R antagonist, aprepitant as adjunctive therapy in HIV. J Transl Med 2016; 14(1): 148.
[http://dx.doi.org/10.1186/s12967-016-0904-y] [PMID: 27230663]
[118]
Wolfensberger SP, van Berckel BN, Airaksinen AJ, et al. First evaluation of [11C]R116301 as an in vivo tracer of NK1 receptors in man. Mol Imaging Biol 2009; 11(4): 241-5.
[http://dx.doi.org/10.1007/s11307-009-0204-5] [PMID: 19333655]
[119]
Wolfensberger SP, Maruyama K, van Berckel BN, et al. Quantification of the neurokinin 1 receptor ligand [¹¹C]R116301. Nucl Med Commun 2011; 32(10): 896-902.
[http://dx.doi.org/10.1097/MNM.0b013e328347e96f] [PMID: 21876400]
[120]
Kramer MS, Winokur A, Kelsey J, et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology 2004; 29(2): 385-92.
[http://dx.doi.org/10.1038/sj.npp.1300260] [PMID: 14666114]
[121]
Bergström M, Hargreaves RJ, Burns HD, et al. Human positron emission tomography studies of brain neurokinin 1 receptor occupancy by aprepitant. Biol Psychiatry 2004 May; 55(10): 1007-12.
[http://dx.doi.org/10.1016/j.biopsych.2004.02.007]
[122]
Okumura M, Arakawa R, Ito H, et al. Quantitative analysis of NK1 receptor in the human brain using PET with 18F-FE-SPA-RQ. J Nucl Med 2008; 49(11): 1749-55.
[http://dx.doi.org/10.2967/jnumed.108.054353] [PMID: 18927336]
[123]
Rupniak NMJ, Kramer MS. NK1 receptor antagonists for depression: Why a validated concept was abandoned. J Affect Disord 2017; 223: 121-5.
[http://dx.doi.org/10.1016/j.jad.2017.07.042] [PMID: 28753469]
[124]
Frick A, Ahs F, Linnman C, et al. Increased neurokinin-1 receptor availability in the amygdala in social anxiety disorder: A positron emission tomography study with [11C]GR205171. Transl Psychiatry 2015; 5: e597.
[http://dx.doi.org/10.1038/tp.2015.92] [PMID: 26151925]
[125]
Nyman M, Eskola O, Kajander J, et al. Brain neurokinin-1 receptor availability in never-medicated patients with major depression - A pilot study. J Affect Disord 2019; 242: 188-94.
[http://dx.doi.org/10.1016/j.jad.2018.08.084] [PMID: 30193189]
[126]
Hume SP, Opacka-Juffry J, Myers R, et al. Effect of L-dopa and 6-hydroxydopamine lesioning on [11C]raclopride binding in rat striatum, quantified using PET. Synapse 1995; 21(1): 45-53.
[http://dx.doi.org/10.1002/syn.890210107] [PMID: 8525461]
[127]
Grimwood S, Hartig PR. Target site occupancy: Emerging generalizations from clinical and preclinical studies. Pharmacol Ther 2009; 122(3): 281-301.
[http://dx.doi.org/10.1016/j.pharmthera.2009.03.002] [PMID: 19306894]
[128]
Farde L, Nordström AL. PET examination of central D2 dopamine receptor occupancy in relation to extrapyramidal syndromes in patients being treated with neuroleptic drugs. Psychopharmacol Ser 1993; 10: 94-100.
[http://dx.doi.org/10.1007/978-3-642-78010-3_9] [PMID: 8103229]
[129]
Nord M, Farde L. Antipsychotic occupancy of dopamine receptors in schizophrenia. CNS Neurosci Ther 2011; 17(2): 97-103.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00222.x] [PMID: 21143431]
[130]
Bishara D, Olofinjana O, Sparshatt A, Kapur S, Taylor D, Patel MX. Olanzapine: A systematic review and meta-regression of the relationships between dose, plasma concentration, receptor occupancy, and response. J Clin Psychopharmacol 2013; 33(3): 329-35.
[http://dx.doi.org/10.1097/JCP.0b013e31828b28d5] [PMID: 23609380]
[131]
Seeman P. Atypical antipsychotics: Mechanism of action. Can J Psychiatry 2002; 47(1): 27-38.
[http://dx.doi.org/10.1177/070674370204700106] [PMID: 11873706]
[132]
Nyberg S, Olsson H, Nilsson U, Maehlum E, Halldin C, Farde L. Low striatal and extra-striatal D2 receptor occupancy during treatment with the atypical antipsychotic sertindole. Psychopharmacology (Berl) 2002; 162(1): 37-41.
[http://dx.doi.org/10.1007/s00213-002-1083-5] [PMID: 12107615]
[133]
Lako IM, van den Heuvel ER, Knegtering H, Bruggeman R, Taxis K. Estimating dopamine D2 receptor occupancy for doses of 8 antipsychotics: A meta-analysis. J Clin Psychopharmacol 2013; 33(5): 675-81.
[http://dx.doi.org/10.1097/JCP.0b013e3182983ffa] [PMID: 23948784]
[134]
Seeman P. Clozapine, a fast-off-D2 antipsychotic. ACS Chem Neurosci 2014; 5(1): 24-9.
[http://dx.doi.org/10.1021/cn400189s] [PMID: 24219174]
[135]
Goyer PF, Berridge MS, Morris ED, et al. PET measurement of neuroreceptor occupancy by typical and atypical neuroleptics. J Nucl Med 1996; 37(7): 1122-7.
[PMID: 8965181]
[136]
Jones HM, Travis MJ, Mulligan R, et al. In vivo 5-HT2A receptor blockade by quetiapine: an R91150 single photon emission tomography study. Psychopharmacology (Berl) 2001; 157(1): 60-6.
[http://dx.doi.org/10.1007/s002130100761] [PMID: 11512044]
[137]
Frampton JE. Brexpiprazole: A review in Schizophrenia. Drugs 2019; 79(2): 189-200.
[http://dx.doi.org/10.1007/s40265-019-1052-5] [PMID: 30671869]
[138]
Citrome L. Cariprazine: chemistry, pharmacodynamics, pharmacokinetics, and metabolism, clinical efficacy, safety, and tolerability. Expert Opin Drug Metab Toxicol 2013; 9(2): 193-206.
[http://dx.doi.org/10.1517/17425255.2013.759211] [PMID: 23320989]
[139]
Gallezot JD, Beaver JD, Gunn RN, et al. Affinity and selectivity of [¹¹C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo. Synapse 2012; 66(6): 489-500.
[http://dx.doi.org/10.1002/syn.21535] [PMID: 22213512]
[140]
Girgis RR, Slifstein M, D’Souza D, et al. Preferential binding to dopamine D3 over D2 receptors by cariprazine in patients with schizophrenia using PET with the D3/D2 receptor ligand [(11)C]-(+)-PHNO. Psychopharmacology (Berl) 2016; 233(19-20): 3503-12.
[http://dx.doi.org/10.1007/s00213-016-4382-y] [PMID: 27525990]
[141]
Vanover KE, Weiner DM, Makhay M, et al. Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine(2A) receptor inverse agonist. J Pharmacol Exp Ther 2006; 317(2): 910-8.
[http://dx.doi.org/10.1124/jpet.105.097006] [PMID: 16469866]
[142]
Nasrallah HA, Fedora R, Morton R. Successful treatment of clozapine-nonresponsive refractory hallucinations and delusions with pimavanserin, a serotonin 5HT-2A receptor inverse agonist. Schizophr Res 2019; 208: 217-20.
[http://dx.doi.org/10.1016/j.schres.2019.02.018] [PMID: 30837203]
[143]
Yokoi F, Gründer G, Biziere K, et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): A study using positron emission tomography and [11C]raclopride. Neuropsychopharmacology 2002; 27(2): 248-59.
[http://dx.doi.org/10.1016/S0893-133X(02)00304-4] [PMID: 12093598]
[144]
Ito H, Takano H, Arakawa R, et al. Effects of dopamine D2 receptor partial agonist antipsychotic aripiprazole on dopamine synthesis in human brain measured by PET with L-[β-11C]DOPA. PLoS One 2012; 7(9): e46488.
[http://dx.doi.org/10.1371/journal.pone.0046488] [PMID: 23029533]
[145]
de Bartolomeis A, Tomasetti C, Iasevoli F. Update on the mechanism of action of aripiprazole: Translational insights into antipsychotic strategies beyond dopamine receptor antagonism. CNS Drugs 2015; 29(9): 773-99.
[http://dx.doi.org/10.1007/s40263-015-0278-3] [PMID: 26346901]
[146]
Casey AB, Canal CE. Classics in chemical neuroscience: Aripiprazole. ACS Chem Neurosci 2017; 8(6): 1135-46.
[http://dx.doi.org/10.1021/acschemneuro.7b00087] [PMID: 28368577]
[147]
Serretti A, De Ronchi D, Lorenzi C, Berardi D. New antipsychotics and schizophrenia: A review on efficacy and side effects. Curr Med Chem 2004; 11(3): 343-58.
[http://dx.doi.org/10.2174/0929867043456043] [PMID: 14965236]
[148]
Poels EM, Kegeles LS, Kantrowitz JT, et al. Imaging glutamate in schizophrenia: Review of findings and implications for drug discovery. Mol Psychiatry 2014; 19(1): 20-9.
[http://dx.doi.org/10.1038/mp.2013.136] [PMID: 24166406]
[149]
Yang AC, Tsai SJ. New targets for Schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 2017; 18(8): 1689.
[http://dx.doi.org/10.3390/ijms18081689] [PMID: 28771182]
[150]
Silvestri S, Seeman MV, Negrete JC, et al. Increased dopamine D2 receptor binding after long-term treatment with antipsychotics in humans: A clinical PET study. Psychopharmacology (Berl) 2000; 152(2): 174-80.
[http://dx.doi.org/10.1007/s002130000532] [PMID: 11057521]
[151]
Kim E, Howes OD, Kim BH, et al. The use of healthy volunteers instead of patients to inform drug dosing studies: A [11C]raclopride PET study. Psychopharmacol 2011; 17(4): 515-23.
[http://dx.doi.org/10.1007/s00213-011-2306-4]
[152]
Iyo M, Tadokoro S, Kanahara N, et al. Optimal extent of dopamine D2 receptor occupancy by antipsychotics for treatment of dopamine supersensitivity psychosis and late-onset psychosis. J Clin Psychopharmacol 2013; 33(3): 398-404.
[http://dx.doi.org/10.1097/JCP.0b013e31828ea95c] [PMID: 23609386]
[153]
Elsinga PH, Hatano K, Ishiwata K. PET tracers for imaging of the dopaminergic system. Curr Med Chem 2006; 13(18): 2139-53.
[http://dx.doi.org/10.2174/092986706777935258] [PMID: 16918344]
[154]
Appel L, Jonasson M, Danfors T, et al. Use of 11C-PE2I PET in differential diagnosis of parkinsonian disorders. J Nucl Med 2015; 56(2): 234-42.
[http://dx.doi.org/10.2967/jnumed.114.148619] [PMID: 25593112]
[155]
Hong CM, Ryu HS, Ahn BC. Early perfusion and dopamine transporter imaging using 18F-FP-CIT PET/CT in patients with parkinsonism. Am J Nucl Med Mol Imaging 2018; 8(6): 360-72.
[156]
Ruhé HG, Booij J, v Weert HC, et al. Evidence why paroxetine dose escalation is not effective in major depressive disorder: A randomized controlled trial with assessment of serotonin transporter occupancy. Neuropsychopharmacology 2009; 34(4): 999-1010.
[http://dx.doi.org/10.1038/npp.2008.148] [PMID: 18830236]
[157]
Ruhé HG, Ooteman W, Booij J, et al. Serotonin transporter gene promoter polymorphisms modify the association between paroxetine serotonin transporter occupancy and clinical response in major depressive disorder. Pharmacogenet Genomics 2009; 19(1): 67-76.
[http://dx.doi.org/10.1097/FPC.0b013e32831a6a3a] [PMID: 18987562]
[158]
Vernaleken I, Fellows C, Janouschek H, et al. Striatal and extrastriatal D2/D3-receptor-binding properties of ziprasidone: A positron emission tomography study with [18F]Fallypride and [11C]raclopride (D2/D3-receptor occupancy of ziprasidone). J Clin Psychopharmacol 2008; 28(6): 608-17.
[http://dx.doi.org/10.1097/JCP.0b013e31818ba2f6] [PMID: 19011428]
[159]
Mamo D, Graff A, Mizrahi R, Shammi CM, Romeyer F, Kapur S. Differential effects of aripiprazole on D(2), 5-HT(2), and 5-HT(1A) receptor occupancy in patients with schizophrenia: a triple tracer PET study. Am J Psychiatry 2007; 164(9): 1411-7.
[http://dx.doi.org/10.1176/appi.ajp.2007.06091479] [PMID: 17728427]
[160]
Wong DF, Tauscher J, Gründer G. The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacology 2009; 34(1): 187-203.
[http://dx.doi.org/10.1038/npp.2008.166] [PMID: 18843264]
[161]
Abanades S, van der Aart J, Barletta JAR, et al. Prediction of repeat-dose occupancy from single-dose data: Characterisation of the relationship between plasma pharmacokinetics and brain target occupancy. J Cereb Blood Flow Metab 2011; 31(3): 944-52.
[http://dx.doi.org/10.1038/jcbfm.2010.175] [PMID: 20940733]
[162]
Ridler K, Gunn RN, Searle GE, et al. Characterising the plasma-target occupancy relationship of the neurokinin antagonist GSK1144814 with PET. J Psychopharmacol 2014; 28(3): 244-53.
[http://dx.doi.org/10.1177/0269881113517953] [PMID: 24429221]
[163]
Cummings JL, Cohen S, van Dyck CH, et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease 2018 May;
[http://dx.doi.org/10.1212/WNL.0000000000005550]
[164]
Salloway S, Honigberg LA, Cho W, et al. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE). Alzheimers Res Ther 2018; 10(1): 96.
[http://dx.doi.org/10.1186/s13195-018-0424-5] [PMID: 30231896]
[165]
Mehta D, Jackson R, Paul G, Shi J, Sabbagh M. Why do trials for Alzheimer’s disease drugs keep failing? A discontinued drug perspective for 2010-2015. Expert Opin Investig Drugs 2017; 26(6): 735-9.
[http://dx.doi.org/10.1080/13543784.2017.1323868] [PMID: 28460541]
[166]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[167]
Chiao P, Bedell BJ, Avants B, et al. Impact of reference and target region selection on amyloid PET SUV ratios in the phase 1b PRIME study of Aducanumab. J Nucl Med 2019; 60(1): 100-6.
[http://dx.doi.org/10.2967/jnumed.118.209130] [PMID: 29777003]
[168]
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[169]
Miller JB, Cummings J, Nance C, Ritter A. Neuroscience learning from longitudinal cohort studies of Alzheimer’s disease: Lessons for disease-modifying drug programs and an introduction to the Center for Neurodegeneration and Translational Neuroscience. Dement (N Y) 2018; 11(4): 350-6.
[170]
Panza F, Solfrizzi V, Imbimbo BP, Logroscino G. Amyloid-directed monoclonal antibodies for the treatment of Alzheimer’s disease: The point of no return? Expert Opin Biol Ther 2014; 14(10): 1465-76.
[http://dx.doi.org/10.1517/14712598.2014.935332] [PMID: 24981190]
[171]
Romero K, Conrado D, Burton J, et al. Molecular neuroimaging of the dopamine transporter as a patient enrichment biomarker for clinical trials for early Parkinson’s Disease. Clin Transl Sci 2019; 12(3): 240-6.
[http://dx.doi.org/10.1111/cts.12619] [PMID: 30706986]
[172]
Noori HR, Spanagel R, Hansson AC. Neurocircuitry for modeling drug effects. Addict Biol 2012; 17(5): 827-64.
[http://dx.doi.org/10.1111/j.1369-1600.2012.00485.x] [PMID: 22978651]
[173]
van den Heuvel MP, Scholtens LH, de Reus MA. Topological organization of connectivity strength in the rat connectome. Brain Struct Funct 2016; 221(3): 1719-36.
[http://dx.doi.org/10.1007/s00429-015-0999-6] [PMID: 25697666]
[174]
Noori HR, Schöttler J, Ercsey-Ravasz M, et al. A multiscale cerebral neurochemical connectome of the rat brain. PLoS Biol 2017; 15(7): e2002612.
[http://dx.doi.org/10.1371/journal.pbio.2002612] [PMID: 28671956]
[175]
Suhara T, Chaki S, Kimura H, et al. Strategies for utilizing neuroimaging biomarkers in CNS drug discovery and development: CINP/JSNP working group report. Int J Neuropsychopharmacol 2017; 20(4): 285-94.
[PMID: 28031269]
[176]
Nielsen AN, Barch DM, Petersen SE, Schlaggar BL, Greene DJ. Machine learning with neuroimaging: Evaluating its applications in psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging 2020; 5(8): 791-8.
[PMID: 31982357]
[177]
Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: Brain models in translational neuroimaging. Nat Neurosci 2017; 20(3): 365-77.
[http://dx.doi.org/10.1038/nn.4478] [PMID: 28230847]
[178]
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 2019; 40(8): 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[179]
Deco G, Kringelbach ML. Great expectations: Using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 2014; 84(5): 892-905.
[http://dx.doi.org/10.1016/j.neuron.2014.08.034] [PMID: 25475184]
[180]
Tai AMY, Albuquerque A, Carmona NE, et al. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry. Artif Intell Med 2019; 99: 101704.
[http://dx.doi.org/10.1016/j.artmed.2019.101704] [PMID: 31606109]
[181]
Fan J, Fang L, Wu J, Guo Y, Dai Q. From brain science to artificial intelligence. engineering 2020; 6(3): 248-52.
[http://dx.doi.org/10.1016/j.eng.2019.11.012]
[182]
Walter M, Alizadeh S, Jamalabadi H, et al. Translational machine learning for psychiatric neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry 2019; 91: 113-21.
[http://dx.doi.org/10.1016/j.pnpbp.2018.09.014] [PMID: 30290208]
[183]
Lin X, Duan X, Jacobs C, et al. High-throughput brain activity mapping and machine learning as a foundation for systems neuropharmacology. Nat Commun 2018; 9(1): 5142.
[http://dx.doi.org/10.1038/s41467-018-07289-5] [PMID: 30510233]
[184]
Robbins TW. Cross-species studies of cognition relevant to drug discovery: A translational approach. Br J Pharmacol 2017; 174(19): 3191-9.
[http://dx.doi.org/10.1111/bph.13826] [PMID: 28432778]