Current Pharmaceutical Biotechnology

Author(s): Ranjit K. Harwansh* and Shiv Bahadur

DOI: 10.2174/1389201022666210322124348

Herbal Medicines to Fight Against COVID-19: New Battle with an Old Weapon

Page: [235 - 260] Pages: 26

  • * (Excluding Mailing and Handling)

Abstract

The world population has suffered as a result of the COVID-19 pandemic. The disease has become life-threatening in a very short time, harming citizens and the economic systems globally. The novel virus SARS-CoV-2 has been known as the causative agent of COVID-19. The SARS-CoV-2 is a single-stranded RNA virus having ~30 kb genomic components, which are 70% identical to SARS-CoV. The main process of the pathophysiology of COVID-19 has been associated with the interaction of a novel coronavirus with host cell receptor, angiotensin-converting enzyme-2 (ACE 2), by fusion. Therapeutic agents having serine protease inhibitors and ACE-2 blockers may be explored for the treatment by inhibiting the viral target such as Mpro, RdRp, PLpro, and helicase. Herbal medicine has a wide array of chemical entities with potential health benefits, including antiviral activity, which may be explored as an alternative treatment for COVID-19. The herbal bioactives like catechins, andrographolide, hesperidin, biorobin, scutellarein, silvestrol, shikonin, tryptanthrin, vitexin quercetin, myricetin, caffeic acid, psoralidin, luteolin, etc. have shown potential inhibitory effect against SARS-CoV-2. Recent research reports indicate that the various plant secondary metabolites have shown potential antiviral activities. The present review article highlights the recent information on the mechanism of actions and applications of herbal medicine in the treatment of COVID-19.

Keywords: COVID-19, SARS-CoV-2, herbal medicine, coronavirus, herbal bioactive, catechin.

Graphical Abstract

[1]
World Health Organization; 2020.Available from:. https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[2]
Ghosh, A.K.; Brindisi, M.; Shahabi, D.; Chapman, M.E.; Mesecar, A.D. Drug development and medicinal chemistry efforts toward SARS-Coronavirus and Covid-19 therapeutics. ChemMedChem, 2020, 15(11), 907-932.
[http://dx.doi.org/10.1002/cmdc.202000223] [PMID: 32324951]
[3]
Li, H.; Zhou, Y.; Zhang, M.; Wang, H.; Zhao, Q.; Liu, J. Updated approaches against SARS-CoV-2. Antimicrob. Agents Chemother., 2020, 64(6), 483-20.
[http://dx.doi.org/10.1128/AAC.00483-20] [PMID: 32205349]
[4]
Zheng, J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int. J. Biol. Sci., 2020, 16(10), 1678-1685.
[http://dx.doi.org/10.7150/ijbs.45053] [PMID: 32226285]
[5]
Ahsan, W.; Javed, S.; Bratty, M.A.; Alhazmi, H.A.; Najmi, A. Treatment of SARS-CoV-2: How far have we reached? Drug Discov. Ther., 2020, 14(2), 67-72.
[http://dx.doi.org/10.5582/ddt.2020.03008] [PMID: 32336723]
[6]
Kim, Y.I.; Kim, S.G.; Kim, S.M.; Kim, E.H.; Park, S.J.; Yu, K.M.; Chang, J.H.; Kim, E.J.; Lee, S.; Casel, M.A.B.; Um, J.; Song, M.S.; Jeong, H.W.; Lai, V.D.; Kim, Y.; Chin, B.S.; Park, J.S.; Chung, K.H.; Foo, S.S.; Poo, H.; Mo, I.P.; Lee, O.J.; Webby, R.J.; Jung, J.U.; Choi, Y.K. Infection and rapid transmission of SARS-CoV-2 in ferrets. Cell Host Microbe, 2020, 27(5), 704-709.
[http://dx.doi.org/10.1016/j.chom.2020.03.023] [PMID: 32259477]
[7]
Ang, L.; Lee, H.W.; Kim, A.; Lee, M.S. Herbal medicine for the management of COVID-19 during the medical observation period: A review of guidelines. Integr. Med. Res., 2020, 9(3)100465
[http://dx.doi.org/10.1016/j.imr.2020.100465] [PMID: 32691000]
[8]
Ludwig, S.; Zarbock, A. Coronaviruses and SARS-CoV-2: A brief overview. Anesth. Analg., 2020, 131(1), 93-96.
[http://dx.doi.org/10.1213/ANE.0000000000004845] [PMID: 32243297]
[9]
Yadav, P.D.; Potdar, V.A.; Choudhary, M.L.; Nyayanit, D.A.; Agrawal, M.; Jadhav, S.M.; Majumdar, T.D.; Shete-Aich, A.; Basu, A.; Abraham, P.; Cherian, S.S. Full-genome sequences of the first two SARS-CoV-2 viruses from India. Indian J. Med. Res., 2020, 151(2 & 3), 200-209.
[PMID: 32242873]
[10]
Decaro, N.; Lorusso, A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet. Microbiol., 2020, 244108693
[http://dx.doi.org/10.1016/j.vetmic.2020.108693] [PMID: 32402329]
[11]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284197989
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[12]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248117477
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[13]
Shah, B.; Modi, P.; Sagar, S.R. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci., 2020, 252117652
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[14]
Andreani, J.; Le Bideau, M.; Duflot, I.; Jardot, P.; Rolland, C.; Boxberger, M.; Wurtz, N.; Rolain, J.M.; Colson, P.; La Scola, B.; Raoult, D. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb. Pathog., 2020, 145104228
[http://dx.doi.org/10.1016/j.micpath.2020.104228] [PMID: 32344177]
[15]
Pindiprolu, S.K.S.S.; Pindiprolu, S.H. Plausible mechanisms of Niclosamide as an antiviral agent against COVID-19. Med. Hypotheses, 2020, 140109765
[http://dx.doi.org/10.1016/j.mehy.2020.109765] [PMID: 32361588]
[16]
Pant, S.; Singh, M.; Ravichandiran, V.; Murty, U.S.N.; Srivastava, H.K. Peptide-like and small-molecule inhibitors against Covid-19. J. Biomol. Struct. Dyn., 2020, 12, 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1757510] [PMID: 32306822]
[17]
Peele, K.A.; Potla Durthi, C.; Srihansa, T.; Krupanidhi, S.; Ayyagari, V.S.; Babu, D.J.; Indira, M.; Reddy, A.R.; Venkateswarulu, T.C. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Inform. Med. Unlocked, 2020, 19100345
[http://dx.doi.org/10.1016/j.imu.2020.100345] [PMID: 32395606]
[18]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4)105944
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[19]
Alakwaa, F.M. Repurposing didanosine as a potential treatment for covid-19 using single-cell RNA sequencing data. mSystems, 2020, 5(2), 5.
[http://dx.doi.org/10.1128/mSystems.00297-20] [PMID: 32291351]
[20]
Liu, S.; Zheng, Q.; Wang, Z. Potential covalent drugs targeting the main protease of the SARS-CoV-2 coronavirus. Bioinformatics, 2020, 36(11), 3295-3298.
[http://dx.doi.org/10.1093/bioinformatics/btaa224] [PMID: 32239142]
[21]
Schlagenhauf, P.; Grobusch, M.P.; Maier, J.D.; Gautret, P. Repurposing antimalarials and other drugs for COVID-19. Travel Med. Infect. Dis., 2020.101658
[22]
Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A review of sars-cov-2 and the ongoing clinical trials. Int. J. Mol. Sci., 2020, 21(7), 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[23]
Chen, Y.W.; Yiu, C.B.; Wong, K.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129.
[http://dx.doi.org/10.12688/f1000research.22457.2] [PMID: 32194944]
[24]
Mukherjee, P.K.; Bahadur, S.; Harwansh, R.K.; Biswas, S.; Banerjee, S. Paradigm shift in natural product research: traditional medicine inspired approaches. Phytochem. Rev., 2017, 16, 803-826.
[http://dx.doi.org/10.1007/s11101-016-9489-6]
[25]
Wyganowska-Swiatkowska, M.; Nohawica, M.; Grocholewicz, K.; Nowak, G. Influence of herbal medicines on HMGB1 release, SARS-CoV-2 viral attachment, acute respiratory failure, and sepsis. A literature review. Int. J. Mol. Sci., 2020, 21(13), 4639.
[http://dx.doi.org/10.3390/ijms21134639] [PMID: 32629817]
[26]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: an in silico approach. J. Biomol. Struct. Dyn., 2020, 1-7.
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
[27]
Liu, Y.T.; Chen, H.W.; Lii, C.K.; Jhuang, J.H.; Huang, C.S.; Li, M.L.; Yao, H.T. A diterpenoid, 14-deoxy-11, 12-didehydroandro-grapholide, in Andrographis paniculata reduces steatohepatitis and liver injury in mice fed a high-fat and high cholesterol diet. Nutrients, 2020, 12(2), 523.
[http://dx.doi.org/10.3390/nu12020523] [PMID: 32085637]
[28]
Suryanarayana, L.; Banavath, D. A review on identification of antiviral potential medicinal plant compounds against with COVID-19. Int. J. Res. Eng. Sci. Manag, 2020, 3, 675-679.
[29]
Joshi, R.S.; Jagdale, S.S.; Bansode, S.B.; Shankar, S.S.; Tellis, M.B.; Pandya, V.K.; Chugh, A.; Giri, A.P.; Kulkarni, M.J. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J. Biomol. Struct. Dyn., 2020, 11, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1760137] [PMID: 32329408]
[30]
Alagu Lakshmi, S.; Shafreen, R.M.B.; Priya, A.; Shunmugiah, K.P. Ethnomedicines of Indian origin for combating COVID-19 infection by hampering the viral replication: using structure-based drug discovery approach. J. Biomol. Struct. Dyn., 2020, 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1778537] [PMID: 32573351]
[31]
Yang, M.; Chen, F.; Zhu, D.; Li, J.Z.; Zhu, J.L.; Zeng, W.; Qu, S.L.; Zhang, Y. Clinical efficacy of matrine and sodium chloride injection in treatment of 40 cases of COVID-19; China J. Chinese Matera. Med, 2020, pp. 1-12.
[32]
Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.H.; Kwon, S. Natural bis-benzylisoquinoline alkaloids-tetrandrine, fangchinoline, and cepharanthine, inhibit human coronavirus OC43 infection of MRC-5 human lung cells. Biomolecules, 2019, 9(11), 696.
[http://dx.doi.org/10.3390/biom9110696] [PMID: 31690059]
[33]
Yan, H.; Ma, L.; Wang, H.; Wu, S.; Huang, H.; Gu, Z.; Jiang, J.; Li, Y. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J. Nat. Med., 2019, 73(3), 487-496.
[http://dx.doi.org/10.1007/s11418-019-01287-7] [PMID: 30758716]
[34]
Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Wang, J. Li, Y.; Chen, X. Traditional Chinese medicine in the treatment of patients infected with 2019-New coronavirus (SARS-CoV-2): A review and perspective. Int. J. Biol. Sci., 2020, 16(10), 1708-1717.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[35]
Vellingiri, B.; Jayaramayya, K.; Iyer, M.; Narayanasamy, A.; Govindasamy, V.; Giridharan, B.; Ganesan, S.; Venugopal, A.; Venkatesan, D.; Ganesan, H.; Rajagopalan, K.; Rahman, P.K.S.M.; Cho, S.G.; Kumar, N.S.; Subramaniam, M.D. COVID-19: A promising cure for the global panic. Sci. Total Environ., 2020, 725138277
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277] [PMID: 32278175]
[36]
Panyod, S.; Ho, C.T.; Sheen, L.Y. Dietary therapy and herbal medicine for COVID-19 prevention: A review and perspective. J. Tradit. Complement. Med., 2020, 10(4), 420-427.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.004] [PMID: 32691006]
[37]
Rabaan, A.A.; Al-Ahmed, S.H.; Haque, S.; Sah, R.; Tiwari, R.; Malik, Y.S.; Dhama, K.; Yatoo, M.I.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez. Med., 2020, 28(2), 174-184.
[PMID: 32275259]
[38]
Malik, Y.A. Properties of coronavirus and SARS-CoV-2. Malays. J. Pathol., 2020, 42(1), 3-11.
[PMID: 32342926]
[39]
Yang, P.; Wang, X. COVID-19: a new challenge for human beings. Cell. Mol. Immunol., 2020, 17(5), 555-557.
[http://dx.doi.org/10.1038/s41423-020-0407-x] [PMID: 32235915]
[40]
Phan, T. Genetic diversity and evolution of SARS-CoV-2. Infect. Genet. Evol., 2020, 81104260
[http://dx.doi.org/10.1016/j.meegid.2020.104260] [PMID: 32092483]
[41]
Huang, F.; Li, Y.; Leung, E.L.; Liu, X.; Liu, K.; Wang, Q.; Lan, Y.; Li, X.; Yu, H.; Cui, L.; Luo, H.; Luo, L. A review of therapeutic agents and Chinese herbal medicines against SARS-COV-2 (COVID-19). Pharmacol. Res., 2020, 158104929
[http://dx.doi.org/10.1016/j.phrs.2020.104929] [PMID: 32442720]
[42]
Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; Wang, Q.; Zhou, H.; Yan, J.; Qi, J. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4), 894-904.e9.
[http://dx.doi.org/10.1016/j.cell.2020.03.045] [PMID: 32275855]
[43]
Khailany, R.A.; Safdar, M.; Ozaslan, M. Genomic characterization of a novel SARS-CoV-2. Gene Rep., 2020, 19100682
[http://dx.doi.org/10.1016/j.genrep.2020.100682] [PMID: 32300673]
[44]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[45]
Shang, J.; Ye, G.; Shi, K.; Wan, Y.; Luo, C.; Aihara, H.; Geng, Q.; Auerbach, A.; Li, F. Structural basis of receptor recognition by SARS-CoV-2. Nature, 2020, 581(7807), 221-224.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[46]
Le Bert, N.; Tan, A.T.; Kunasegaran, K.; Tham, C.Y.L.; Hafezi, M.; Chia, A.; Chng, M.H.Y.; Lin, M.; Tan, N.; Linster, M.; Chia, W.N.; Chen, M.I.; Wang, L.F.; Ooi, E.E.; Kalimuddin, S.; Tambyah, P.A.; Low, J.G.; Tan, Y.J.; Bertoletti, A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 2020, 584(7821), 457-462.
[http://dx.doi.org/10.1038/s41586-020-2550-z] [PMID: 32668444]
[47]
Pillay, T.S. Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. J. Clin. Pathol., 2020, 73(7), 366-369.
[http://dx.doi.org/10.1136/jclinpath-2020-206658] [PMID: 32376714]
[48]
Paces, J.; Strizova, Z.; Smrz, D.; Cerny, J. COVID-19 and the immune system. Physiol. Res., 2020, 69(3), 379-388.
[http://dx.doi.org/10.33549/physiolres.934492] [PMID: 32469225]
[49]
Bahrami, M.; Kamalinejad, M.; Latifi, S.A.; Seif, F.; Dadmehr, M. Cytokine storm in COVID-19 and parthenolide: Preclinical evidence. Phytother. Res., 2020, 34(10), 2429-2430.
[http://dx.doi.org/10.1002/ptr.6776] [PMID: 32472655]
[50]
Azkur, A.K.; Akdis, M.; Azkur, D.; Sokolowska, M.; van de Veen, W.; Brüggen, M.C.; O’Mahony, L.; Gao, Y.; Nadeau, K.; Akdis, C.A. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. Allergy, 2020, 75(7), 1564-1581.
[http://dx.doi.org/10.1111/all.14364] [PMID: 32396996]
[51]
Catanzaro, M.; Fagiani, F.; Racchi, M.; Corsini, E.; Govoni, S.; Lanni, C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct. Target. Ther., 2020, 5(1), 84.
[http://dx.doi.org/10.1038/s41392-020-0191-1] [PMID: 32467561]
[52]
Wei, J.; Zhao, J.; Han, M.; Meng, F.; Zhou, J. SARS-CoV-2 infection in immunocompromised patients: humoral versus cell-mediated immunity. J. Immunother. Cancer, 2020, 8(2)000862
[http://dx.doi.org/10.1136/jitc-2020-000862] [PMID: 32727811]
[53]
Omarjee, L.; Janin, A.; Perrot, F.; Laviolle, B.; Meilhac, O.; Mahe, G. Targeting T-cell senescence and cytokine storm with rapamycin to prevent severe progression in COVID-19. Clin. Immunol., 2020, 216108464
[http://dx.doi.org/10.1016/j.clim.2020.108464] [PMID: 32405269]
[54]
Nguyen, A.A.; Habiballah, S.B.; Platt, C.D.; Geha, R.S.; Chou, J.S.; McDonald, D.R. Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution! Clin. Immunol., 2020, 216108459
[http://dx.doi.org/10.1016/j.clim.2020.108459] [PMID: 32418917]
[55]
Theoharides, T.C. COVID-19, pulmonary mast cells, cytokine storms, and beneficial actions of luteolin. Biofactors, 2020, 46(3), 306-308.
[http://dx.doi.org/10.1002/biof.1633] [PMID: 32339387]
[56]
Rizk, J.G.; Kalantar-Zadeh, K.; Mehra, M.R.; Lavie, C.J.; Rizk, Y.; Forthal, D.N. Pharmaco-immunomodulatory therapy in COVID-19. Drugs, 2020, 80(13), 1267-1292.
[http://dx.doi.org/10.1007/s40265-020-01367-z] [PMID: 32696108]
[57]
Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[58]
Liu, Z.; Xiao, X.; Wei, X.; Li, J.; Yang, J.; Tan, H.; Zhu, J.; Zhang, Q.; Wu, J.; Liu, L. Composition and divergence of coronavirus spike proteins and host ACE2 receptors predict potential intermediate hosts of SARS-CoV-2. J. Med. Virol., 2020, 92(6), 595-601.
[http://dx.doi.org/10.1002/jmv.25726] [PMID: 32100877]
[59]
Saxena, A. Drug targets for COVID-19 therapeutics: Ongoing global efforts. J. Biosci., 2020, 45, 87.
[http://dx.doi.org/10.1007/s12038-020-00067-w] [PMID: 32661214]
[60]
Wang, M.; Li, Q. Parthenolide could become a promising and stable drug with anti-inflammatory effects. Nat. Prod. Res., 2015, 29(12), 1092-1101.
[http://dx.doi.org/10.1080/14786419.2014.981541] [PMID: 25429885]
[61]
Andersson, U.; Ottestad, W.; Tracey, K.J. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Mol. Med., 2020, 26(1), 42.
[http://dx.doi.org/10.1186/s10020-020-00172-4] [PMID: 32380958]
[62]
Fuzimoto, A.D.; Isidoro, C. The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds - Additional weapons in the fight against the COVID-19 pandemic? J. Tradit. Complement. Med., 2020, 10(4), 405-419.
[http://dx.doi.org/10.1016/j.jtcme.2020.05.003] [PMID: 32691005]
[63]
Pandey, A.; Nikam, A.N.; Shreya, A.B.; Mutalik, S.P.; Gopalan, D.; Kulkarni, S.; Padya, B.S.; Fernandes, G.; Mutalik, S.; Prassl, R. Potential therapeutic targets for combating SARS-CoV-2: Drug repurposing, clinical trials and recent advancements. Life Sci., 2020, 256117883
[http://dx.doi.org/10.1016/j.lfs.2020.117883] [PMID: 32497632]
[64]
Xu, J.; Zhang, Y. Traditional Chinese Medicine treatment of COVID-19. Complement. Ther. Clin. Pract., 2020, 39101165
[http://dx.doi.org/10.1016/j.ctcp.2020.101165] [PMID: 32379692]
[65]
Cheong, D.H.J.; Tan, D.W.S.; Wong, F.W.S.; Tran, T.; Tran, T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol. Res., 2020, 158104901
[http://dx.doi.org/10.1016/j.phrs.2020.104901] [PMID: 32405226]
[66]
Menegazzi, M.; Campagnari, R.; Bertoldi, M.; Crupi, R.; Di Paola, R.; Cuzzocrea, S. Protective effect of epigallocatechin-3-Gallate (EGCG) in diseases with uncontrolled immune activation: Could such a scenario be helpful to counteract COVID-19? Int. J. Mol. Sci., 2020, 21(14), 5171.
[http://dx.doi.org/10.3390/ijms21145171] [PMID: 32708322]
[67]
Li, W.; Ashok, M.; Li, J.; Yang, H.; Sama, A.E.; Wang, H. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS One, 2007, 2(11)e1153
[http://dx.doi.org/10.1371/journal.pone.0001153] [PMID: 17987129]
[68]
Yu, B.; Dai, C.Q.; Jiang, Z.Y.; Li, E.Q.; Chen, C.; Wu, X.L.; Chen, J.; Liu, Q.; Zhao, C.L.; He, J.X.; Ju, D.H.; Chen, X.Y. Andrographolide as an anti-H1N1 drug and the mechanism related to retinoic acid-inducible gene-I-like receptors signaling pathway. Chin. J. Integr. Med., 2014, 20(7), 540-545.
[http://dx.doi.org/10.1007/s11655-014-1860-0] [PMID: 24972581]
[69]
Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[70]
Kapepula, P.M.; Kabengele, J.K.; Kingombe, M.; Van Bambeke, F.; Tulkens, P.M.; Sadiki Kishabongo, A.; Decloedt, E.; Zumla, A.; Tiberi, S.; Suleman, F.; Tshilolo, L. Muyembe-TamFum, J.J.; Zumla, A.; Nachega, J.B. Muyembe-TamFum, J.J.; Zumla, A.; Nachega, J.B. Artemisia Spp. derivatives for COVID-19 treatment: Anecdotal use, political hype, treatment potential, challenges, and road map to randomized clinical trials. Am. J. Trop. Med. Hyg., 2020, 103(3), 960-964.
[http://dx.doi.org/10.4269/ajtmh.20-0820] [PMID: 32705976]
[71]
Law, S.; Leung, A.W.; Xu, C. Is the traditional Chinese herb “Artemisia annua” possible to fight against COVID-19? Integr. Med. Res., 2020, 9(3)100474
[http://dx.doi.org/10.1016/j.imr.2020.100474] [PMID: 32742919]
[72]
Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[73]
Haggag, Y.A.; El-Ashmawy, N.E.; Okasha, K.M. Is hesperidin essential for prophylaxis and treatment of COVID-19 Infection? Med. Hypotheses, 2020, 144109957
[http://dx.doi.org/10.1016/j.mehy.2020.109957] [PMID: 32531538]
[74]
Akamatsu, H.; Komura, J.; Asada, Y.; Niwa, Y. Mechanism of anti-inflammatory action of glycyrrhizin: effect on neutrophil functions including reactive oxygen species generation. Planta Med., 1991, 57(2), 119-121.
[http://dx.doi.org/10.1055/s-2006-960045] [PMID: 1891493]
[75]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[76]
Fiore, C.; Eisenhut, M.; Krausse, R.; Ragazzi, E.; Pellati, D.; Armanini, D.; Bielenberg, J. Antiviral effects of Glycyrrhiza species. Phytother. Res., 2008, 22(2), 141-148.
[http://dx.doi.org/10.1002/ptr.2295] [PMID: 17886224]
[77]
Ryu, Y.B.; Park, S.J.; Kim, Y.M.; Lee, J.Y.; Seo, W.D.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg. Med. Chem. Lett., 2010, 20(6), 1873-1876.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.152] [PMID: 20167482]
[78]
Müller, C.; Schulte, F.W.; Lange-Grünweller, K.; Obermann, W.; Madhugiri, R.; Pleschka, S.; Ziebuhr, J.; Hartmann, R.K.; Grünweller, A. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res., 2018, 150, 123-129.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.010] [PMID: 29258862]
[79]
Keyaerts, E.; Vijgen, L.; Pannecouque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.; Van Ranst, M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res., 2007, 75(3), 179-187.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]
[80]
Yang, T.; Jia, M.; Zhou, S.; Pan, F.; Mei, Q. Antivirus and immune enhancement activities of sulfated polysaccharide from Angelica sinensis. Int. J. Biol. Macromol., 2012, 50(3), 768-772.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.11.027] [PMID: 22155400]
[81]
Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-515.
[http://dx.doi.org/10.1080/14756366.2016.1265519] [PMID: 28112000]
[82]
Lung, J.; Lin, Y.S.; Yang, Y.H.; Chou, Y.L.; Shu, L.H.; Cheng, Y.C.; Liu, H.T.; Wu, C.Y. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J. Med. Virol., 2020, 92(6), 693-697.
[http://dx.doi.org/10.1002/jmv.25761] [PMID: 32167173]
[83]
Schwarz, S.; Sauter, D.; Wang, K.; Zhang, R.; Sun, B.; Karioti, A.; Bilia, A.R.; Efferth, T.; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med., 2014, 80(2-3), 177-182.
[http://dx.doi.org/10.1055/s-0033-1360277] [PMID: 24458263]
[84]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J. Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[85]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[86]
Zhang, L.; Yu, J.; Zhou, Y.; Shen, M.; Sun, L. Becoming a faithful defender: Traditional chinese medicine against coronavirus disease 2019 (COVID-19). Am. J. Chin. Med., 2020, 48(4), 763-777.
[http://dx.doi.org/10.1142/S0192415X2050038X] [PMID: 32349517]
[87]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[88]
Lee, W.; Cho, S.H.; Kim, J.E.; Lee, C.; Lee, J.H.; Baek, M.C.; Song, G.Y.; Bae, J.S. Suppressive effects of ginsenoside Rh1 on HMGB1-mediated septic responses. Am. J. Chin. Med., 2019, 47(1), 119-133.
[http://dx.doi.org/10.1142/S0192415X1950006X] [PMID: 30630344]
[89]
Yu, Y.; Zhang, Y.; Wang, S.; Liu, W.; Hao, C.; Wang, W. Inhibition effects of patchouli alcohol against influenza a virus through targeting cellular PI3K/Akt and ERK/MAPK signaling pathways. Virol. J., 2019, 16(1), 163.
[http://dx.doi.org/10.1186/s12985-019-1266-x] [PMID: 31870450]
[90]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[91]
Wu, J. Pathological damage mechanism of free radical molecules and treatment strategy of SARS-CoV pneumonia., 2004.Available from:. http://www.cem.org.cn/default/content/index/id/641
[92]
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[93]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[94]
Weng, J.R.; Lin, C.S.; Lai, H.C.; Lin, Y.P.; Wang, C.Y.; Tsai, Y.C.; Wu, K.C.; Huang, S.H.; Lin, C.W. Antiviral activity of Sambucus FormosanaNakai ethanol extract and related phenolic acid constituents against human coronavirus NL63. Virus Res., 2019, 273197767
[http://dx.doi.org/10.1016/j.virusres.2019.197767] [PMID: 31560964]
[95]
Su, H.; Yao, S.; Zhao, W. Li, m.; Liu, J.; Shang, W.; Xie, H.; Ke, C.; Gao, M.; Yu, K.; Liu, K.; Shen, J.; Tang, W.; Zhang, L.; Zuo, J.; Jiang, H.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y. Discovery of baicalin and baicalein as novel, natural product inhibitors of SARS-CoV-2 3CL protease in vitro. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.13.038687]
[96]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[97]
Tsai, Y.C.; Lee, C.L.; Yen, H.R.; Chang, Y.S.; Lin, Y.P.; Huang, S.H.; Lin, C.W. Antiviral action of tryptanthrin isolated from Strobilanthes cusia leaf against human coronavirus NL63. Biomolecules, 2020, 10(3), 366.
[http://dx.doi.org/10.3390/biom10030366] [PMID: 32120929]
[98]
Magni, P.; Ruscica, M.; Dozio, E.; Rizzi, E.; Beretta, G.; Maffei Facino, R. Parthenolide inhibits the LPS-induced secretion of IL-6 and TNF-α and NF-κB nuclear translocation in BV-2 microglia. Phytother. Res., 2012, 26(9), 1405-1409.
[http://dx.doi.org/10.1002/ptr.3732] [PMID: 22359368]
[99]
Wu, W.; Li, R.; Li, X.; He, J.; Jiang, S.; Liu, S.; Yang, J. Quercetin as an antiviral agent inhibits influenza a virus (IAV) entry. Viruses, 2015, 8(1), 6.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[100]
Nguyen, T.T.; Woo, H.J.; Kang, H.K.; Nguyen, V.D.; Kim, Y.M.; Kim, D.W.; Ahn, S.A.; Xia, Y.; Kim, D. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett., 2012, 34(5), 831-838.
[http://dx.doi.org/10.1007/s10529-011-0845-8] [PMID: 22350287]
[101]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[102]
Liou, C.J.; Cheng, C.Y.; Yeh, K.W.; Wu, Y.H.; Huang, W.C. Protective effects of casticin from Vitex trifolia alleviate eosinophilic airway inflammation and oxidative stress in a murine asthma model. Front. Pharmacol., 2018, 9, 635.
[http://dx.doi.org/10.3389/fphar.2018.00635] [PMID: 29962952]
[103]
Lin, S.C.; Ho, C.T.; Chuo, W.H.; Li, S.; Wang, T.T.; Lin, C.C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[104]
Wang, X.; Xie, P.; Sun, G.; Deng, Z.; Zhao, M.; Bao, S.; Zhou, Y. A systematic review and meta-analysis of the efficacy and safety of western medicine routine treatment combined with Chinese herbal medicine in the treatment of COVID-19. Medicine (Baltimore), 2020, 99(32)e21616
[http://dx.doi.org/10.1097/MD.0000000000021616] [PMID: 32769922]
[105]
Nadeem, M.S.; Zamzami, M.A.; Choudhry, H.; Murtaza, B.N.; Kazmi, I.; Ahmad, H.; Shakoori, A.R. Origin, potential therapeutic targets and treatment for coronavirus disease (COVID-19). Pathogens, 2020, 9(4), 307.
[http://dx.doi.org/10.3390/pathogens9040307] [PMID: 32331255]
[106]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253117592
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[107]
Upadhyay, S.; Tripathi, P.K.; Singh, M.; Raghavendhar, S.; Bhardwaj, M.; Patel, A.K. Evaluation of medicinal herbs as a potential therapeutic option against SARS-CoV-2 targeting its main protease. Phytother. Res., 2020, 34(12), 3411-3419.
[http://dx.doi.org/10.1002/ptr.6802] [PMID: 32748969]
[108]
Khan, M.Y.; Kumar, V. Mechanism & inhibition kinetics of bioassay-guided fractions of Indian medicinal plants and foods as ACE inhibitors. J. Tradit. Complement. Med., 2018, 9(1), 73-84.
[http://dx.doi.org/10.1016/j.jtcme.2018.02.001] [PMID: 30671369]
[109]
Kandeel, M.; Al-Nazawi, M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci., 2020, 251117627
[http://dx.doi.org/10.1016/j.lfs.2020.117627] [PMID: 32251634]
[110]
Gupta, A.K.; Rather, M.A.; Kumar Jha, A.; Shashank, A.; Singhal, S.; Sharma, M.; Pathak, U.; Sharma, D.; Mastinu, A. Artocarpus lakoocha Roxb. and Artocarpus heterophyllus Lam. Flowers: New Sources of Bioactive Compounds. Plants (Basel), 2020, 9(10), 1329.
[http://dx.doi.org/10.3390/plants9101329] [PMID: 33050190]
[111]
Kumar, A.; Memo, M.; Mastinu, A. Plant behaviour: an evolutionary response to the environment? Plant Biol (Stuttg), 2020, 22(6), 961-970.
[http://dx.doi.org/10.1111/plb.13149] [PMID: 32557960]
[112]
Mahdavi, A.; Moradi, P.; Mastinu, A. Variation in terpene profiles of Thymus vulgaris in water deficit stress response. Molecules, 2020, 25(5), 1091.
[http://dx.doi.org/10.3390/molecules25051091] [PMID: 32121165]
[113]
Rad, S.V.; Valadabadi, S.A.R.; Pouryousef, M.; Saifzadeh, S.; Zakrin, H.R.; Mastinu, A. Quantitative and qualitative evaluation of Sorghum bicolor L. under intercropping with legumes and different weed control methods. Horticulturae, 2020, 6, 78.
[http://dx.doi.org/10.3390/horticulturae6040078]
[114]
Yousefi, A.R.; Rashidi, S.; Moradi, P.; Mastinu, A. Germination and seedling growth responses of Zygophyllum fabago, Salsola kali L. and Atriplex canescens to PEG-induced drought stress. Environments, 2020, 7(12), 107.
[http://dx.doi.org/10.3390/environments7120107]
[115]
Li, X.; Qiu, Q.; Li, M.; Lin, H.; Cao, S.; Wang, Q.; Chen, Z.; Jiang, W.; Zhang, W.; Huang, Y.; Luo, H.; Luo, L. Chemical composition and pharmacological mechanism of ephedra-glycyrrhiza drug pair against coronavirus disease 2019 (COVID-19). Aging (Albany NY), 2021, 13.
[http://dx.doi.org/10.18632/aging.202622] [PMID: 33581688]