Rapid Arc-SBRT: Non-Invasive Immune Adjuvant for Advanced Stage Non-Small Cell Lung Carcinoma

Page: [202 - 205] Pages: 4

  • * (Excluding Mailing and Handling)

Abstract

Abstract: In conjunction with radio-chemotherapy, pulmonary resection is recommended for early-stage nonsmall- cell lung carcinoma but not for advanced-stage NSCLC patients having high-grade metastatic lesions. In these cases, the rapid Arc-Stereotactic body radiotherapy (Ra-SBRT) technique offers a therapeutic advantage by delivering focal irradiation to metastatic lung lesions and reduces the bystander toxicity to normal tissues. We have previously demonstrated that Ra-SBRT ablates metastatic lesions and induces tumor immune rejection of metastatic tumors by promoting in situ programming of M2 TAM towards M1-TAM and infiltration of Siglec-8+ Eosinophils. Most interestingly, Ra SBRT has very low abscopal impact and spares normal tissues, which are the significant limitations with conventional radiotherapy. In view of this and the immune adjuvant potential of Ra SBRT, it promotes normalization of aberrant vasculature and inhibits the metastatic potential of NSCLC lesions. In view of this, we here propose that Ra-SBRT indeed represents an immunogenic approach for the effective management of advanced-stage NSCLC.

Keywords: SBRT, macrophage polarization, immune adjuvant, lung cancer, tumor therapy.

Graphical Abstract

[1]
Timmerman, R.; Paulus, R.; Galvin, J.; Michalski, J.; Straube, W.; Bradley, J.; Fakiris, A.; Bezjak, A.; Videtic, G.; Johnstone, D.; Fowler, J.; Gore, E.; Choy, H. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA, 2010, 303(11), 1070-1076.
[http://dx.doi.org/10.1001/jama.2010.261] [PMID: 20233825]
[2]
Timmerman, R.; McGarry, R.; Yiannoutsos, C.; Papiez, L.; Tudor, K.; DeLuca, J.; Ewing, M.; Abdulrahman, R.; DesRosiers, C.; Williams, M.; Fletcher, J. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J. Clin. Oncol., 2006, 24(30), 4833-4839.
[http://dx.doi.org/10.1200/JCO.2006.07.5937] [PMID: 17050868]
[3]
Hurkmans, C.W.; Cuijpers, J.P.; Lagerwaard, F.J.; Widder, J.; van der Heide, U.A.; Schuring, D.; Senan, S. Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the Quality Assurance Working Party of the randomised phase III ROSEL study. Radiat. Oncol., 2009, 4, 1.
[http://dx.doi.org/10.1186/1748-717X-4-1] [PMID: 19138400]
[4]
Chairmadurai, A.; Goel, H.C.; Jain, S.K.; Kumar, P. Radiobiological analysis of stereotactic body radiation therapy for an evidence-based planning target volume of the lung using multiphase CT images obtained with a pneumatic abdominal compression apparatus: a case study. Radiological Phys. Technol., 2017, 10(4), 525-534.
[http://dx.doi.org/10.1007/s12194-017-0431-4] [PMID: 29128934]
[5]
Golden, E.B.; Formenti, S.C. Is tumor (R) ejection by the immune system the “5th R” of radiobiology? OncoImmunology, 2014, 3(1)e28133
[http://dx.doi.org/10.4161/onci.28133] [PMID: 24800177]
[6]
Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin. Cancer Res., 2009, 15(17), 5379-5388.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0265] [PMID: 19706802]
[7]
Guckenberger, M.; Wulf, J.; Mueller, G.; Krieger, T.; Baier, K.; Gabor, M.; Richter, A.; Wilbert, J.; Flentje, M. Dose-response relationship for image-guided stereotactic body radiotherapy of pulmonary tumors: relevance of 4D dose calculation. Int. J. Radiat. Oncol. Biol. Phys., 2009, 74(1), 47-54.
[http://dx.doi.org/10.1016/j.ijrobp.2008.06.1939] [PMID: 18977095]
[8]
Senan, S.; Haasbeek, N.J.; Smit, E.F.; Lagerwaard, F.J. Stereotactic radiotherapy for centrally located early-stage lung tumors. J. Clin. Oncol., 2007, 25(4), 464.
[http://dx.doi.org/10.1200/JCO.2006.09.8178] [PMID: 17264351]
[9]
Ko, E.C.; Formenti, S.C. Radiation therapy to enhance tumor immunotherapy: a novel application for an established modality. Int. J. Radiat. Biol., 2019, 95(7), 936-939.
[http://dx.doi.org/10.1080/09553002.2019.1623429] [PMID: 31120369]
[10]
Jarosz-Biej, M.; Smolarczyk, R.; Cichoń, T.; Kułach, N. Tumor Microenvironment as A “Game Changer” in Cancer Radiotherapy. Int. J. Mol. Sci., 2019, 20(13)E3212
[http://dx.doi.org/10.3390/ijms20133212] [PMID: 31261963]
[11]
Wang, Y.; Liu, Z.G.; Yuan, H.; Deng, W.; Li, J.; Huang, Y.; Kim, B.Y.S.; Story, M.D.; Jiang, W. The reciprocity between radiotherapy and cancer immunotherapy. Clin. Cancer Res., 2019, 25(6), 1709-1717.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2581] [PMID: 30413527]
[12]
Asadzadeh, Z.; Safarzadeh, E.; Safaei, S.; Baradaran, A.; Mohammadi, A.; Hajiasgharzadeh, K.; Derakhshani, A.; Argentiero, A.; Silvestris, N.; Baradaran, B. Current approaches for combination therapy of cancer: The role of immunogenic cell death. Cancers (Basel), 2020, 12(4)E1047
[http://dx.doi.org/10.3390/cancers12041047] [PMID: 32340275]
[13]
Zhao, X.; Shao, C. Radiotherapy-mediated immunomodulation and anti-tumor abscopal effect combining immune checkpoint blockade. Cancers (Basel), 2020, 12(10)E2762
[http://dx.doi.org/10.3390/cancers12102762] [PMID: 32992835]
[14]
Liao, Y.; Liu, S.; Fu, S.; Wu, J. HMGB1 in radiotherapy: A two headed signal regulating tumor radiosensitivity and immunity. OncoTargets Ther., 2020, 13, 6859-6871.
[http://dx.doi.org/10.2147/OTT.S253772] [PMID: 32764978]
[15]
Lee, Y.H.; Tai, D.; Yip, C.; Choo, S.P.; Chew, V. Combinational immunotherapy for hepatocellular carcinoma: radiotherapy, immune checkpoint blockade and beyond. Front. Immunol., 2020, 11568759
[http://dx.doi.org/10.3389/fimmu.2020.568759] [PMID: 33117354]
[16]
Li, L.; Yue, H.C.; Han, Y.W.; Liu, W.; Xiong, L.G.; Zhang, J.W. Relationship between the invasion of lymphocytes and cytokines in the tumor microenvironment and the interval after single brachytherapy hypofractionated radiotherapy and conventional fractionation radiotherapy in non-small cell lung Cancer. BMC Cancer, 2020, 20(1), 893.
[http://dx.doi.org/10.1186/s12885-020-07403-1] [PMID: 32942998]
[17]
Barker, H.E.; Paget, J.T.; Khan, A.A.; Harrington, K.J. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat. Rev. Cancer, 2015, 15(7), 409-425.
[http://dx.doi.org/10.1038/nrc3958] [PMID: 26105538]
[18]
Carvalho, H.A.; Villar, R.C. Radiotherapy and immune response: the systemic effects of a local treatment. Clinics (São Paulo), 2018, 73(Suppl. 1)e557s
[http://dx.doi.org/10.6061/clinics/2018/e557s] [PMID: 30540123]
[19]
Kaminski, J.M.; Shinohara, E.; Summers, J.B.; Niermann, K.J.; Morimoto, A.; Brousal, J. The controversial abscopal effect. Cancer Treat. Rev., 2005, 31(3), 159-172.
[http://dx.doi.org/10.1016/j.ctrv.2005.03.004] [PMID: 15923088]
[20]
Derer, A.; Deloch, L.; Rubner, Y.; Fietkau, R.; Frey, B.; Gaipl, U.S. radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses - pre-clinical evidence and ongoing clinical applications. Front. Immunol., 2015, 6, 505.
[http://dx.doi.org/10.3389/fimmu.2015.00505] [PMID: 26500646]
[21]
Formenti, S.C.; Demaria, S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J. Natl. Cancer Inst., 2013, 105(4), 256-265.
[http://dx.doi.org/10.1093/jnci/djs629] [PMID: 23291374]
[22]
Klug, F.; Prakash, H.; Huber, P.E.; Seibel, T.; Bender, N.; Halama, N.; Pfirschke, C.; Voss, R.H.; Timke, C.; Umansky, L.; Klapproth, K.; Schäkel, K.; Garbi, N.; Jäger, D.; Weitz, J.; Schmitz-Winnenthal, H.; Hämmerling, G.J.; Beckhove, P. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell, 2013, 24(5), 589-602.
[http://dx.doi.org/10.1016/j.ccr.2013.09.014] [PMID: 24209604]
[23]
Prakash, H.; Klug, F.; Nadella, V.; Mazumdar, V.; Schmitz-Winnenthal, H.; Umansky, L. Low doses of gamma irradiation potentially modifies immunosuppressive tumor microenvironment by retuning tumor-associated macrophages: lesson from insulinoma. Carcinogenesis, 2016, 37(3), 301-313.
[http://dx.doi.org/10.1093/carcin/bgw007] [PMID: 26785731]
[24]
Demaria, S.; Kawashima, N.; Yang, A.M.; Devitt, M.L.; Babb, J.S.; Allison, J.P.; Formenti, S.C. Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin. Cancer Res., 2005, 11(2 Pt 1), 728-734.
[PMID: 15701862]
[25]
Golden, E.B.; Demaria, S.; Schiff, P.B.; Chachoua, A.; Formenti, S.C. An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol. Res., 2013, 1(6), 365-372.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0115] [PMID: 24563870]
[26]
Arpaci, F.; Dogru, T.; Ozturk, B.; Komurcu, S.; Ozet, A.; Yilmaz, M.I.; Beyzadeoglu, M.; Turan, M.; Sengul, A.; Yalcin, A. Changes in immunological recovery in patients who received post-transplant G-CSF or GM-CSF after autologous peripheral blood stem cell transplantation (PBSCT). Haematologia (Budap.), 2002, 32(3), 253-264.
[http://dx.doi.org/10.1163/15685590260461066] [PMID: 12611485]
[27]
de Gast, G.C.; Vyth-Dreese, F.A.; Nooijen, W.; van den Bogaard, C.J.; Sein, J.; Holtkamp, M.M.; Linthorst, G.A.; Baars, J.W.; Schornagel, J.H.; Rodenhuis, S. Reinfusion of autologous lymphocytes with granulocyte-macrophage colony-stimulating factor induces rapid recovery of CD4+ and CD8+ T cells after high-dose chemotherapy for metastatic breast cancer. J. Clin. Oncol., 2002, 20(1), 58-64.
[http://dx.doi.org/10.1200/JCO.2002.20.1.58] [PMID: 11773154]
[28]
Lachmann, G.; von Haefen, C.; Kurth, J.; Yuerek, F.; Spies, C. Innate immunity recovers earlier than acquired immunity during severe postoperative immunosuppression. Int. J. Med. Sci., 2018, 15(1), 1-9.
[http://dx.doi.org/10.7150/ijms.21433] [PMID: 29333081]
[29]
Khandelwal, A.; Seam, R.K.; Gupta, M.; Rana, M.K.; Prakash, H.; Vasquez, K.M.; Jain, A. Circulating microRNA-590-5p functions as a liquid biopsy marker in non-small cell lung cancer. Cancer Sci., 2020, 111(3), 826-839.
[http://dx.doi.org/10.1111/cas.14199] [PMID: 31520555]
[30]
Malhotra, A.; Sharma, U.; Puhan, S.; Chandra Bandari, N.; Kharb, A.; Arifa, P.P.; Thakur, L.; Prakash, H.; Vasquez, K.M.; Jain, A. Stabilization of miRNAs in esophageal cancer contributes to radioresistance and limits efficacy of therapy. Biochimie, 2019, 156, 148-157.
[http://dx.doi.org/10.1016/j.biochi.2018.10.006] [PMID: 30326253]
[31]
Tian, X.; Wu, Y.; Yang, Y.; Wang, J.; Niu, M.; Gao, S.; Qin, T.; Bao, D. Long noncoding RNA LINC00662 promotes M2 macrophage polarization and hepatocellular carcinoma progression via activating Wnt/β-catenin signaling. Mol. Oncol., 2020, 14(2), 462-483.
[http://dx.doi.org/10.1002/1878-0261.12606] [PMID: 31785055]
[32]
Li, Z.; Feng, C.; Guo, J.; Hu, X.; Xie, D. GNAS-AS1/miR-4319/NECAB3 axis promotes migration and invasion of non-small cell lung cancer cells by altering macrophage polarization. Funct. Integr. Genomics, 2020, 20(1), 17-28.
[http://dx.doi.org/10.1007/s10142-019-00696-x] [PMID: 31267263]