Research Progress on Microreactor Technology in Oxidation Reactions

Page: [1235 - 1245] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

In recent years, the development of the chemical industry has been moving in a green, safe and efficient direction. Oxidation reactions are one of the most important types of reactions and have key applications in food, medicine, cosmetics, and petrochemicals. However, the occurrence of the oxidation reaction is accompanied by a strong exothermic phenomenon, and improper control can easily lead to safety problems and even explosions. The realization of an environmentally friendly oxidation reaction is a key industrial milestone. The unique structural characteristics of microreactors result in good mass and heat transfer performance, precise control of the reaction temperature, reduced risk of explosion, improved safety production and selectivity of products. These unique advantages of the microreactor determine its significant application value in oxidation reactions. In this paper, the research progress of several typical oxidation reactions, including alkane oxidation, alcohol oxidation, aldosterone oxidation, aromatics oxidation and olefin oxidation combined with microreactors, is reviewed systematically.

Keywords: Microreactor, oxidation, safety, mass transfer, heat transfer, green production.

Graphical Abstract

[1]
Frost, C.G.; Mutton, L. Heterogeneous catalytic synthesis using microreactor technology. Green Chem., 2010, 12(10), 1687-1703.
[http://dx.doi.org/10.1039/c0gc00133c]
[2]
Liang, C.; Wang, B.; Chen, J.; Huang, Y.; Fang, T.; Wang, Y.; Liao, B. The effect of acrylamides copolymers on the stability and rheological properties of yellow iron oxide dispersion. Colloids Surf. A Physicochem. Eng. Asp., 2016, 2017(513), 136-145.
[http://dx.doi.org/10.1016/j.colsurfa.2016.10.020]]
[3]
Dencic, I.; Meuldijk, J.; de Croon, M.; Hessel, V. From a review of noble metal versus enzyme catalysts for glucose oxidation under conventional conditions towards a process design analysis for continuous-flow operation. J. Flow Chem., 2012, 1(1), 13-23.
[http://dx.doi.org/10.1556/jfchem.2011.00005]
[4]
Nagaki, A.; Ichinari, D.; Yoshida, J. Three-component coupling based on flash chemistry. Carbolithiation of benzyne with functionalized aryllithiums followed by reactions with electrophiles. J. Am. Chem. Soc., 2014, 136(35), 12245-12248.
[http://dx.doi.org/10.1021/ja5071762] [PMID: 25153763]
[5]
Liu, Q.; Qiu, W.; Wu, P.; Yue, H.; Liu, C.; Jiang, W. Low-temperature ammonia oxidation in a microchannel reactor with wall-loaded X(X = Pt, Pd, Rh, PtPdRh)/TiO2 nanotube catalysts. Ind. Eng. Chem. Res., 2019, 58(23), 9819-9828.
[http://dx.doi.org/10.1021/acs.iecr.9b01135]
[6]
Nagaki, A. Recent topics of functionalized organolithiums using flow microreactor chemistry. Tetrahedron Lett., 2019, 60(32)150923
[http://dx.doi.org/10.1016/j.tetlet.2019.07.014]
[7]
Mohan, B.; Puqing, J.; Sasmito, A.P.; Kurnia, J.C.; Jangam, S.V.; Mujumdar, A.S. Energy-efficient novel heterogeneous gaseous t-junction microreactor design utilizing inlet flow pulsation. Ind. Eng. Chem. Res., 2014, 53(49), 18699-18710.
[http://dx.doi.org/10.1021/ie500797f]
[8]
He, Y.; Guo, S.; Khan, M.I.; Chen, K.; Li, S.; Zhang, L.; Yin, S. Liquid-liquid extraction of yttrium(III) using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl (EHEHPA) in a microreactor: a comparative study. ACS Sustain. Chem.& Eng., 2019, 7(1), 1616-1621.
[http://dx.doi.org/10.1021/acssuschemeng.8b05334]
[9]
Wei, C.; Zhou, Y.; Zhuang, W.; Li, G.; Jiang, M.; Zhang, H. Improving the performance of immobilized β-glucosidase using a microreactor. J. Biosci. Bioeng., 2018, 125(4), 377-384.
[http://dx.doi.org/10.1016/j.jbiosc.2017.09.011] [PMID: 29102385]
[10]
Qiao, Z.; Wang, Z.; Zhang, C.; Yuan, S.; Zhu, Y.; Wang, J. PVAm-PIP/PS composite membrane with high performance for CO2/N2 separation. AIChE J., 2012, 59(4), 215-228.
[http://dx.doi.org/10.1002/aic.13781]]
[11]
Chen, X.; Zeng, H.; Wang, H.; Zhang, D. Modeling, simulation and optimized design of a microreactor for a two-step reaction. Chem. Eng. Technol., 2013, 36(4), 591-595.
[http://dx.doi.org/10.1002/ceat.201200058]
[12]
Ducry, L.; Roberge, D.M. Controlled autocatalytic nitration of phenol in a microreactor. Angew. Chem. Int. Ed. Engl., 2005, 44(48), 7972-7975.
[http://dx.doi.org/10.1002/anie.200502387] [PMID: 16281314]
[13]
Anuar, S.T.; Mugo, S.M.; Curtis, J.M. A Flow-through enzymatic microreactor for the rapid conversion of triacylglycerols into fatty acid ethyl ester and fatty acid methyl ester derivatives for GC analysis. Anal. Methods, 2015, 7(14), 5898-5906.
[http://dx.doi.org/10.1039/C5AY00800J]
[14]
Takizawa, E.; Nagaki, A.; Yoshida, J.I. Flow microreactor synthesis of tricyclic sulfonamides via N-Tosylaziridinyllithiums. Tetrahedron Lett., 2012, 53(11), 1397-1400.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.019]
[15]
Amii, H.; Nagaki, A.; Yoshida, J. Flow microreactor synthesis in organo-fluorine chemistry. Beilstein J. Org. Chem., 2013, 9, 2793-2802.
[http://dx.doi.org/10.3762/bjoc.9.314] [PMID: 24367443]
[16]
Rachedi, F.; Guilet, R.; Cognet, P.; Tasselli, J.; Marty, A.; Dubreuil, P. Microreactor for acetone deep oxidation over platinum. Chem. Eng. Technol., 2009, 32(11), 1766-1773.
[http://dx.doi.org/10.1002/ceat.200900378]
[17]
Wen, D.; Yuan, M.; Ying, L.; Sensen, S.; Guosong, L.; Guangwen, C.; Shuang, G. Development of a continuous-flow microreactor for asymmetric epoxidation of electron-deficient olefins. Synthesis, 2016, 48(16), 2653-2658.
[http://dx.doi.org/10.1055/s-0035-1561955]]
[18]
Yang, L.; Zhang, M.; Lan, Y.; Zhang, W. Hollow shell-corona microspheres with a mesoporous shell as potential microreactors for au-catalyzed aerobic oxidation of alcohols. New J. Chem., 2010, 34(7), 1355-1364.
[http://dx.doi.org/10.1039/b9nj00802k]
[19]
Willms, T.; Kryk, H.; Hampel, U. Microreactor studies for efficient organic oxidation processes. Catal. Today, 2019, 2020(346), 3-9.
[http://dx.doi.org/10.1016/j.cattod.2019.05.008]]
[20]
Fei, Y.; Sun, B.; Zhang, F.; Xu, W.; Shi, N.; Jiang, J. Inherently safer reactors and procedures to prevent reaction runaway. Chin. J. Chem. Eng., 2018, 26(6), 1252-1263.
[http://dx.doi.org/10.1016/j.cjche.2018.03.017]
[21]
Willms, T.; Kryk, H.; Wiezorek, M.; Hampel, U. Development of a modular microreactor for the partial hydrocarbon oxidation. Chem. Eng. Commun., 2018, 205(3), 269-280.
[http://dx.doi.org/10.1080/00986445.2017.1384728]
[22]
Vanoye, L.; Hamami, Z.E.; Wang, J.; de Bellefon, C.; Fongarland, P.; Favre-Réguillon, A. Epoxidation of methyl oleate with molecular oxygen: implementation of mukaiyama reaction in flow. Eur. J. Lipid Sci. Technol., 2017, 119(5), 1-7.
[http://dx.doi.org/10.1002/ejlt.201600281]
[23]
Bay, S.; Baumeister, T.; Hashmi, A.S.K.; Röder, T. Safe and fast flow synthesis of functionalized oxazoles with molecular oxygen in a microstructured reactor. Org. Process Res. Dev., 2016, 20(7), 1297-1304.
[http://dx.doi.org/10.1021/acs.oprd.6b00118]
[24]
Vanoye, L.; Wang, J.; Pablos, M.; Philippe, R.; De Bellefon, C.; Favre-Réguillon, A. Continuous, fast, and safe aerobic oxidation of 2-ethylhexanal: pushing the limits of the simple tube reactor for a gas/liquid reaction. Org. Process Res. Dev., 2016, 20(1), 90-94.
[http://dx.doi.org/10.1021/acs.oprd.5b00359]
[25]
Song, W.; Shi, D.; Tao, S.; Li, Z.; Wang, Y.; Yu, Y.; Qiu, J.; Ji, M.; Wang, X. Bio-inspired immobilization of metal oxides on monolithic microreactor for continuous Knoevenagel reaction. J. Colloid Interface Sci., 2016, 481, 100-106.
[http://dx.doi.org/10.1016/j.jcis.2016.07.052] [PMID: 27459172]
[26]
Chen, G.; Zhu, X.; Chen, R.; Liao, Q.; Ye, D.; Feng, H.; Liu, J.; Liu, M. Gas-liquid-solid monolithic microreactor with pd nanocatalyst coated on polydopamine modified nickel foam for nitrobenzene hydrogenation. Chem. Eng. J., 2017, 2018(334), 1897-1904.
[http://dx.doi.org/10.1016/j.cej.2017.11.126]]
[27]
Li, M.; Shen, J. Selective oxidation of propylene to acetone over supported vanadia catalysts. React. Kinet. Catal. Lett., 2001, 72(2), 263-267.
[http://dx.doi.org/10.1023/A:1010586727662]
[28]
Bawornruttanaboonya, K.; Laosiripojana, N.; Mujumdar, A.S.; Devahastin, S. Catalytic partial oxidation of CH4 over bimetallic Ni-Re/Al2O3: Kinetic determination for application in microreactor. AIChE J., 2018, 64(5), 1691-1701.
[http://dx.doi.org/10.1002/aic.16037]
[29]
Šalić, A.; Pindrić, K.; Zelić, B. Bioproduction of food additives hexanal and hexanoic acid in a microreactor. Appl. Biochem. Biotechnol., 2013, 171(8), 2273-2284.
[http://dx.doi.org/10.1007/s12010-013-0495-5] [PMID: 24043452]
[30]
Vorontsov, V.A.; Gribovskiy, A.G.; Makarshin, L.L.; Andreev, D.V. ScienceDirect influence of a reaction mixture streamline on partial oxidation of methane in an asymmetric microchannel reactor. Int. J. Hydrogen Energy, 2013, 39(1), 325-330.
[http://dx.doi.org/10.1016/j.ijhydene.2013.10.040]
[31]
Wiles, C.; Watts, P. Continuous flow reactors: A perspective. Green Chem., 2012, 14(1), 38-54.
[http://dx.doi.org/10.1039/C1GC16022B]
[32]
Shang, M.; Noël, T.; Wang, Q.; Hessel, V. Packed-bed microreactor for continuous-flow adipic acid synthesis from cyclohexene and hydrogen peroxide. Chem. Eng. Technol., 2013, 36(6), 1001-1009.
[http://dx.doi.org/10.1002/ceat.201200703]
[33]
Willms, T.; Kryk, H.; Hampel, U. Partial isobutane oxidation to tert-butyl hydroperoxide in a micro reactor - comparison of DTBP and aqueous TBHP as initiator. Chemieingenieurtechnik (Weinh.), 2018, 90(5), 731-735.
[http://dx.doi.org/10.1002/cite.201700149]
[34]
Zotova, N.; Hellgardt, K.; Kelsall, G.H.; Jessiman, A.S.; Hii, K.K.M. Catalysis in flow: The practical and selective aerobic oxidation of alcohols to aldehydes and ketones. Green Chem., 2010, 12(12), 2157-2163.
[http://dx.doi.org/10.1039/c0gc00493f]
[35]
Matsushita, Y.; Iwasawa, M.; Suzuki, T.; Ichimura, T. Multiphase photocatalytic oxidation in a microreactor. Chem. Lett., 2009, 38(8), 846-847.
[http://dx.doi.org/10.1246/cl.2009.846]
[36]
Andreev, D.V.; Sergeev, E.E.; Gribovskii, A.G.; Makarshin, L.L.; Prikhod’ko, S.A.; Adonin, N.Y.; Pai, Z.P.; Parmon, V.N. Iminodiacetic acid synthesis over Cu/ZrO2 catalyst in a microchannel flow reactor. Chem. Eng. J., 2017, 330, 899-905.
[http://dx.doi.org/10.1016/j.cej.2017.08.028]
[37]
Truter, L.A.; Ordomsky, V.; Schouten, J.C.; Nijhuis, T.A. The application of palladium and zeolite incorporated chip-based microreactors. Appl. Catal. A Gen., 2016, 515, 72-82.
[http://dx.doi.org/10.1016/j.apcata.2016.01.039]
[38]
Schmidt, S.A.; Vajglova, Z.; Eränen, K.; Murzin, D.Y.; Salmi, T. Microreactor technology for on-site production of methyl chloride. Green Process. Synth., 2014, 3(5), 345-352.
[http://dx.doi.org/10.1515/gps-2014-0039]]
[39]
Pommella, A.; Tomaiuolo, G.; Chartoire, A.; Caserta, S.; Toscano, G.; Nolan, S.P.; Guido, S. Palladium-N-Heterocyclic Carbene (NHC) catalyzed C-N bond formation in a continuous flow microreactor. Effect of process parameters and comparison with batch operation. Chem. Eng. J., 2013, 223, 578-583.
[http://dx.doi.org/10.1016/j.cej.2013.03.070]
[40]
Nagaki, A.; Takizawa, E.; Yoshida, J. Generation and reactions of oxiranyllithiums by use of a flow microreactor system. Chemistry, 2010, 16(47), 14149-14158.
[http://dx.doi.org/10.1002/chem.201000815] [PMID: 21031363]
[41]
Kataoka, S.; Endo, A.; Harada, A.; Inagi, Y.; Ohmori, T. Characterization of mesoporous catalyst supports on microreactor walls. Appl. Catal. A Gen., 2008, 342(1-2), 107-112.
[http://dx.doi.org/10.1016/j.apcata.2008.03.011]
[42]
Park, C.P.; Kim, D.P. Dual-channel microreactor for gas-liquid syntheses. J. Am. Chem. Soc., 2010, 132(29), 10102-10106.
[http://dx.doi.org/10.1021/ja102666y] [PMID: 20593807]
[43]
Qu, Y.; Tsuneishi, C.; Tateno, H.; Matsumura, Y.; Atobe, M. Green synthesis of α-Amino acids by electrochemical carboxylation of imines in a flow microreactor. React. Chem. Eng., 2017, 2(6), 871-875.
[http://dx.doi.org/10.1039/C7RE00149E]
[44]
Waldvogel, S.R.; Möhle, S. Versatile Electrochemical C-H amination via zincke intermediates. Angew. Chem. Int. Ed. Engl., 2015, 54(22), 6398-6399.
[http://dx.doi.org/10.1002/anie.201502638] [PMID: 25967883]
[45]
Yoshida, J.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev., 2008, 108(7), 2265-2299.
[http://dx.doi.org/10.1021/cr0680843] [PMID: 18564879]
[46]
Yang, W.; Yang, H.; Ding, W.; Zhang, B.; Zhang, L.; Wang, L.; Yu, M.; Zhang, Q. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method. Ultrason. Sonochem., 2016, 33, 106-117.
[http://dx.doi.org/10.1016/j.ultsonch.2016.04.020] [PMID: 27245962]
[47]
Feng, S.; Ye, M.; Jiang, X.; Jin, W.; Zou, H. Coupling the immobilized trypsin microreactor of monolithic capillary with muRPLC-MS/MS for shotgun proteome analysis. J. Proteome Res., 2006, 5(2), 422-428.
[http://dx.doi.org/10.1021/pr0502727] [PMID: 16457609]
[48]
Li, G.; Shang, M.; Song, Y.; Su, Y. Characterization of liquid-liquid mass transfer performance in a capillary microreactor system. AIChE J., 2018, 64(3), 1106-1116.
[http://dx.doi.org/10.1002/aic.15973]
[49]
Lan, Y.; Yang, L.; Zhang, M.; Zhang, W.; Wang, S. Microreactor of Pd nanoparticles immobilized hollow microspheres for catalytic hydrodechlorination of chlorophenols in water. ACS Appl. Mater. Interfaces, 2010, 2(1), 127-133.
[http://dx.doi.org/10.1021/am900622p] [PMID: 20356229]
[50]
Feng, H.; Zhu, X.; Chen, R.; Liao, Q.; Liu, J.; Li, L. High-performance gas-liquid-solid microreactor with polydopamine functionalized surface coated by Pd nanocatalyst for nitrobenzene hydrogenation. Chem. Eng. J., 2016, 306, 1017-1025.
[http://dx.doi.org/10.1016/j.cej.2016.08.011]
[51]
Mei, D.; Liang, L.; Qian, M.; Feng, Y. A Performance study of methanol steam reforming in an a-type microchannel reactor. Int. J. Hydrogen Energy, 2014, 39(31), 17690-17701.
[http://dx.doi.org/10.1016/j.ijhydene.2014.08.114]
[52]
Yuan, C.; Emelianov, D.A.; Varfolomeev, M.A.; Abaas, M. Comparison of oxidation behavior of linear and branched alkanes. Fuel Process. Technol., 2019, 188, 203-211.
[http://dx.doi.org/10.1016/j.fuproc.2019.02.025]
[53]
Garcia-Bosch, I.; Siegler, M.A. Copper-catalyzed oxidation of alkanes with H2O2 under a fenton-like regime. Angew. Chem. Int. Ed. Engl., 2016, 55(41), 12873-12876.
[http://dx.doi.org/10.1002/anie.201607216] [PMID: 27610603]
[54]
Xu, J.; Wang, J.; Wang, C.; Li, L.; Zhang, S. Effective oxidation of crude oil in soils by consuming less hydroxyl radical with target iron. Chem. Eng. J., 2019, 2020(380), 1-10.
[55]
Marwah, P.; Marwah, A.; Lardy, H.A. An economical and green approach for the oxidation of olefins to enones. Green Chem., 2004, 6(11), 570-577.
[http://dx.doi.org/10.1039/b408974j]
[56]
Lv, X.M.; Kong, L.J.; Lin, Q.; Liu, X.F.; Zhou, Y.M.; Jia, Y. Clean and efficient benzylic C-H oxidation using a microflow system. Synth. Commun., 2011, 41(21), 3215-3222.
[http://dx.doi.org/10.1080/00397911.2010.517611]
[57]
Fischer, N.; Hubach, P.; Woll, C. Incorporation of microreactor measurements into a pilot-scale phthalic anhydride reactor. Chemieingenieurtechnik (Weinh.), 2015, 87(1-2), 159-162.
[http://dx.doi.org/10.1002/cite.201400002]
[58]
Hofmann, S.; Turek, T. Process intensification of N-Butane oxidation to maleic anhydride in a millistructured reactor. Chem. Eng. Technol., 2017, 40(11), 2008-2015.
[http://dx.doi.org/10.1002/ceat.201700093]
[59]
Siddiquee, M.N.; De Klerk, A.; Nazemifard, N. Application of microfluidics to control product selectivity during non-catalytic oxidation of naphthenic-aromatic hydrocarbons. React. Chem. Eng., 2016, 1(4), 418-435.
[http://dx.doi.org/10.1039/C6RE00010J]
[60]
Chumachenko, V.A.; Ovchinnikova, E.V.; Gribovskii, A.G.; Makarshin, L.L. Oxidation of methanol to formaldehyde in microchannel reactors: prospects and limitations. Catal. Ind., 2016, 8(3), 199-204.
[http://dx.doi.org/10.1134/S2070050416030028]
[61]
Ishigaki, Y.; Suzuki, T.; Nishida, J.I.; Nagaki, A.; Takabayashi, N.; Kawai, H.; Fujiwara, K.; Yoshida, J.I. Hysteretic tricolor electrochromic systems based on the dynamic redox properties of unsymmetrically substituted dihydrophenanthrenes and biphenyl-2,2¢-diyl dications: Efficient precursor synthesis by a flow microreactor method. Materials (Basel), 2011, 4(11), 1906-1926.
[http://dx.doi.org/10.3390/ma4111906] [PMID: 28824114]
[62]
Nagaki, A.; Tsuchihashi, Y.; Haraki, S.; Yoshida, J. Benzyllithiums bearing aldehyde carbonyl groups. A flash chemistry approach. Org. Biomol. Chem., 2015, 13(26), 7140-7145.
[http://dx.doi.org/10.1039/C5OB00958H] [PMID: 26055984]
[63]
Ambreen, N.; Kumar, R.; Wirth, T. Hypervalent iodine/TEMPO-mediated oxidation in flow systems: a fast and efficient protocol for alcohol oxidation. Beilstein J. Org. Chem., 2013, 9, 1437-1442.
[http://dx.doi.org/10.3762/bjoc.9.162] [PMID: 23946840]
[64]
Nieuwland, P.J.; Koch, K.; van Harskamp, N.; Wehrens, R.; van Hest, J.C.M.; Rutjes, F.P.J.T. Flash chemistry extensively optimized: high-temperature Swern-Moffatt oxidation in an automated microreactor platform. Chem. Asian J., 2010, 5(4), 799-805.
[http://dx.doi.org/10.1002/asia.200900705] [PMID: 20166118]
[65]
Wu, J.; Liu, Y.; Ma, X.; Liu, P.; Gu, C.; Dai, B. Highly selective copper-catalyzed oxidation of benzyl alcohols to aromatic aldehydes in water at room temperature. Appl. Organomet. Chem., 2016, 30(7), 577-580.
[http://dx.doi.org/10.1002/aoc.3473]
[66]
Sousa, S.C.A.; Bernardo, J.R.; Fernandes, A.C. Highly efficient oxidation of benzyl alcohols using the catalytic system sulfoxide/oxo-complexes. Tetrahedron Lett., 2012, 53(46), 6205-6208.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.145]
[67]
Zhu, L.; Xu, X.; Zheng, F. Synthesis of benzaldehyde by swern oxidation of benzyl alcohol in a continuous flow microreactor system. Turk. J. Chem., 2018, 42(1), 75-85.
[http://dx.doi.org/10.3906/kim-1704-42]
[68]
Zou, Y.; Zhang, T.; Wang, G.; Zhou, M.; Xiong, Y.; Huang, S.; Li, H.; Liu, X. Microfluidic continuous flow synthesis of 1,5-ditosyl-1,5-diazocane-3,7-dione using response surface methodology. J. Ind. Eng. Chem., 2020, 82, 113-121.
[http://dx.doi.org/10.1016/j.jiec.2019.10.002]
[69]
Van Der Linden, J.J.M.; Hilberink, P.W.; Kronenburg, C.M.P.; Kemperman, G.J. Investigation of the moffatt#swern oxidation in a continuous flow microreactor system. Org. Process Res. Dev., 2008, 12(5), 911-920.
[http://dx.doi.org/10.1021/op700228e]
[70]
Vanoye, L.; Pablos, M.; De Bellefon, C.; Favre-Réguillon, A. Gas-liquid segmented flow microfluidics for screening copper/tempo-catalyzed aerobic oxidation of primary alcohols. Adv. Synth. Catal., 2015, 357(4), 739-746.
[http://dx.doi.org/10.1002/adsc.201400925]
[71]
Vanoye, L.; Yehouenou, L.; Philippe, R.; De Bellefon, C.; Fongarland, P.; Favre-Réguillon, A. Continuous flow oxidation of benzylic and aliphatic Alcohols using bleach: Process improvement by precise PH adjustment in flow with CO2. React. Chem. Eng., 2018, 3(2), 188-194.
[http://dx.doi.org/10.1039/C7RE00155J]
[72]
Bogdan, A.; McQuade, D.T. A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor. Beilstein J. Org. Chem., 2009, 5, 17.
[http://dx.doi.org/10.3762/bjoc.5.17] [PMID: 19478910]
[73]
Wu, G.; Cao, E.; Ellis, P.; Constantinou, A.; Kuhn, S.; Gavriilidis, A. Continuous flow aerobic oxidation of benzyl alcohol on Ru/Al2O3 catalyst in a flat membrane microchannel reactor: an experimental and modelling study. Chem. Eng. Sci., 2019, 201, 386-396.
[http://dx.doi.org/10.1016/j.ces.2019.02.015]
[74]
Yao, S.; Yang, F.O.; Shimumora, S.; Sakurai, H.; Tabata, K.; Suzuki, E. A Kinetic study of methanol oxidation over SiO2. Appl. Catal. A Gen., 2000, 198(1-2), 43-50.
[http://dx.doi.org/10.1016/S0926-860X(99)00505-0]
[75]
Jose, M. Synthesis of methanol from methane: Challenges and advances on the multi-step (Syngas) and one-step routes (DMTM). Fuel Process. Technol., 2016, 145, 42-61.
[http://dx.doi.org/10.1016/j.fuproc.2016.01.023]
[76]
Sedelmeier, J.; Ley, S.V.; Baxendale, I.R.; Baumann, M. KMnO(4)-Mediated oxidation as a continuous flow process. Org. Lett., 2010, 12(16), 3618-3621.
[http://dx.doi.org/10.1021/ol101345z] [PMID: 20704404]
[77]
Khan, Y.; Marin, M.; Viinikainen, T.; Lehtonen, J.; Puurunen, R.L.; Karinen, R. Structured microreactor with gold and palladium on titania: active, regenerable and durable catalyst coatings for the gas-phase partial oxidation of 1-butanol. Appl. Catal. A Gen., 2018, 562, 173-183.
[http://dx.doi.org/10.1016/j.apcata.2018.06.010]
[78]
Šali, A.; Tušek, A.; Kurtanjek, Ž.; Zelić, B. Biotransformation in a microreactor: New method for production of hexanal. Biotechnol. Bioprocess Eng.; BBE, 2011, 16(3), 495-504.
[http://dx.doi.org/10.1007/s12257-010-0381-8]
[79]
Šalić, A.; Zelić, B. ADH-catalysed hexanol oxidation with fully integrated NADH regeneration performed in microreactors connected in series. RSC Advances, 2014, 4(79), 41714-41721.
[80]
Illner, S.; Hofmann, C.; Löb, P.; Kragl, U. A falling-film microreactor for enzymatic oxidation of glucose. ChemCatChem, 2014, 6(6), 1748-1754.
[http://dx.doi.org/10.1002/cctc.201400028]
[81]
Vanoye, L.; Pablos, M.; Smith, N.; De Bellefon, C.; Favre-Réguillon, A. Aerobic oxidation of aldehydes: Selectivity improvement using sequential pulse experimentation in continuous flow microreactor. RSC Advances, 2014, 4(100), 57159-57163.
[http://dx.doi.org/10.1039/C4RA12067A]]
[82]
Li, G.; Liu, S.; Dou, X.; Wei, H.; Shang, M.; Luo, Z.H.; Su, Y. Synthesis of adipic acid through oxidation of K/A oil and its kinetic study in a microreactor system. AIChE J., 2020, 66(9), 1-12.
[http://dx.doi.org/10.1002/aic.16289]
[83]
Wang, Y.F.; Gao, Y.R.; Mao, S.; Zhang, Y.L.; Guo, D.D.; Yan, Z.L.; Guo, S.H.; Wang, Y.Q. Wacker-type oxidation and dehydrogenation of terminal olefins using molecular oxygen as the sole oxidant without adding ligand. Org. Lett., 2014, 16(6), 1610-1613.
[http://dx.doi.org/10.1021/ol500218p] [PMID: 24606159]
[84]
Zhang, B.; Zhu, S.; Zhou, Q. Copper-catalyzed enantioselective allylic oxidation of acyclic olefins. Tetrahedron Lett., 2013, 54(21), 2665-2668.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.046]
[85]
Damm, M.; Gutmann, B.; Kappe, C.O. Continuous-flow synthesis of adipic acid from cyclohexene using hydrogen peroxide in high-temperature explosive regimes. ChemSusChem, 2013, 6(6), 978-982.
[http://dx.doi.org/10.1002/cssc.201300197] [PMID: 23592635]
[86]
Truter, L.A.; Ferrandez, D.M.P.; Schouten, J.C.; Nijhuis, T.A. TS-1 coated microreactor for selective oxidations. Appl. Catal. A Gen., 2015, 490, 139-145.
[http://dx.doi.org/10.1016/j.apcata.2014.11.019]
[87]
Zhao, C.; Wachs, I.E. Selective oxidation of propylene over model supported V2O5 Catalysts: Influence of surface vanadia coverage and oxide support. J. Catal., 2008, 257(1), 181-189.
[http://dx.doi.org/10.1016/j.jcat.2008.04.022]
[88]
Song, W.; Perez Ferrandez, D.M.; Van Haandel, L.; Liu, P.; Nijhuis, T.A.; Hensen, E.J.M. Selective propylene oxidation to acrolein by gold dispersed on MgCuCr2O4 Spinel. ACS Catal., 2015, 5(2), 1100-1111.
[http://dx.doi.org/10.1021/cs5017062]
[89]
Russo, V.; Kilpiö, T.; Hernandez Carucci, J.; Di Serio, M.; Salmi, T.O. Modeling of microreactors for ethylene epoxidation and total oxidation. Chem. Eng. Sci., 2015, 134, 563-571.
[http://dx.doi.org/10.1016/j.ces.2015.05.019]
[90]
Boll, M.; Fuchs, G.; Heider, J. Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr. Opin. Chem. Biol., 2002, 6(5), 604-611.
[http://dx.doi.org/10.1016/S1367-5931(02)00375-7] [PMID: 12413544]
[91]
Okawa, A.; Yoshida, R.; Isozaki, T.; Shigesato, Y.; Matsushita, Y.; Suzuki, T. Photocatalytic oxidation of benzene in a microreactor with immobilized TiO2 thin films deposited by sputtering. Catal. Commun., 2017, 100(June), 1-4.
[http://dx.doi.org/10.1016/j.catcom.2017.06.011]
[92]
Tanaka, K.; Yoshizawa, H.; Atobe, M. A flow microreactor approach to a highly efficient diels - alder reaction with an electrogenerated o -quinone. Synlett, 2019, 30(10), 1194-1198.
[http://dx.doi.org/10.1055/s-0037-1611725]
[93]
Xu, F.; Qian, X.Y.; Li, Y.J.; Xu, H.C. Synthesis of 4H-1,3-benzoxazines via metal- and oxidizing reagent-free aromatic c-h oxygenation. Org. Lett., 2017, 19(23), 6332-6335.
[http://dx.doi.org/10.1021/acs.orglett.7b03152] [PMID: 29154547]
[94]
Tušek, A.J.; Šalić, A.; Zelić, B. Catechol removal from aqueous media using laccase immobilized in different macro- and microreactor systems. Appl. Biochem. Biotechnol., 2017, 182(4), 1575-1590.
[http://dx.doi.org/10.1007/s12010-017-2419-2] [PMID: 28116574]
[95]
Kumaran, E.; Leong, W.K. Gold(0) Catalyzed dehydrogenation of N-heterocycles. Tetrahedron Lett., 2018, 59(44), 3958-3960.
[http://dx.doi.org/10.1016/j.tetlet.2018.09.050]
[96]
Hirao, T. Synthetic Strategy: Palladium-catalyzed dehydrogenation of carbonyl compounds. J. Org. Chem., 2019, 84(4), 1687-1692.
[http://dx.doi.org/10.1021/acs.joc.8b03117] [PMID: 30668104]
[97]
Budweg, S.; Junge, K.; Beller, M. Catalytic oxidations by dehydrogenation of alkanes, alcohols and amines with defined (Non)-noble metal pincer complexes. Catal. Sci. Technol., 2020, 10(12), 3825-3842.
[http://dx.doi.org/10.1039/D0CY00699H]
[98]
Zhou, C.; Shen, C.; Ji, K.; Yin, J.; Du, L. Efficient production of 5-hydroxymethylfurfural enhanced by liquid-liquid extraction in a membrane dispersion microreactor. ACS Sustain. Chem.& Eng., 2018, 6(3), 3992-3999.
[http://dx.doi.org/10.1021/acssuschemeng.7b04368]
[99]
Gemoets, H.P.L.; Hessel, V.; Noël, T. Aerobic C-H olefination of indoles via a cross-dehydrogenative coupling in continuous flow. Org. Lett., 2014, 16(21), 5800-5803.
[http://dx.doi.org/10.1021/ol502910e] [PMID: 25341623]
[100]
Riaño, Z.J.S.; Zea, R.H.R. Modeling of a microreactor for propylene production by the catalytic dehydrogenation of propane. Comput. Chem. Eng., 2014, 67, 26-32.
[http://dx.doi.org/10.1016/j.compchemeng.2014.03.023]
[101]
Zhou, F.; Zhang, B.; Liu, H.; Wen, Z.; Wang, K.; Chen, G. Facile preparation of N -Alkyl-2-pyrrolidones in a continuous-flow microreactor. Org. Process Res. Dev., 2018, 22(4), 504-511.
[http://dx.doi.org/10.1021/acs.oprd.7b00392]
[102]
Liu, X.; Klavs, F.J. Multistep synthesis of amides from alcohols and amines in continuous flow microreactor systems using oxygen and urea hydrogen peroxide as oxidants. Green Chem., 2013, 6(15), 1538.
[http://dx.doi.org/10.1039/c3gc40407b]