Lemon Juice: A Versatile Reusable Biocatalyst for the Synthesis of Bioactive Organic Compounds as well as Numerous Nanoparticles Based Catalytic System

Page: [1194 - 1223] Pages: 30

  • * (Excluding Mailing and Handling)

Abstract

Green chemistry is an essential part of the organic synthesis chemistry and plays a principal role in saving the environment from harmful and toxic catalysts. Fruit juice catalyzed chemistry is a vital part of green chemistry in which lemon juice plays a potential role in various organic transformations. This review article summarizes (from 2011-2020) the application and importance of lemon juice in synthetic organic transformation as well as synthesis of various type of nanoparticles and catalysts. This review article can help the researchers to develop the route for the synthesis of various scaffolds, small molecules, nanoparticles and catalysts under economical and environment friendly condition.

Keywords: Lemon juice, organic transformation, nanoparticles, biocatalyst, recyclable, lead compound.

Graphical Abstract

[1]
Simon, M.O.; Li, C-J. Green chemistry oriented organic synthesis in water. Chem. Soc. Rev., 2012, 41(4), 1415-1427.
[http://dx.doi.org/10.1039/C1CS15222J] [PMID: 22048162]
[2]
Anastas, P.; Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[3]
Li, C.J.; Trost, B.M. Green chemistry for chemical synthesis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13197-13202.
[http://dx.doi.org/10.1073/pnas.0804348105] [PMID: 18768813]
[4]
Suman, A.; Suprita, S.; Gulati, S.; Singh, R. Green and environmentally benign organic synthesis by using fruit juice as biocatalyst: a review. Int. Res. J. Pure Appl. Chem., 2018, 16(1), 1-15.
[http://dx.doi.org/10.9734/IRJPAC/2018/40536]
[5]
Gulati, S.; Singh, R.; Sindhu, J.; Sangwan, S. Eco-friendly preparations of heterocycles using fruit juices as catalysts: a review. Org. Prep. Proced. Int., 2020, 52(5), 381-395.
[http://dx.doi.org/10.1080/00304948.2020.1773158]
[6]
Pal, R. Fruit juice: a natural, green and biocatalyst system in organic synthesis. OJOC, 2013, 1(4), 47-56.
[http://dx.doi.org/10.12966/ojoc.10.02.2013]
[7]
Petronijević, J.; Bugarčić, Z.; Bogdanović, G.A.; Stefanović, S.; Janković, N. An enolate ion as a synthon in biocatalytic synthesis of 3, 4-dihydro-2(1H)-quinoxalinones and 3,4-dihydro-1,4-benzoxazin-2-ones: lemon juice as an alternative to hazardous solvents and catalysts. Green Chem., 2017, 19(3), 707-715.
[http://dx.doi.org/10.1039/C6GC02893D]
[8]
Deshmukh, M.B.; Patil, S.S.; Jadhav, S.D.; Pawar, P.B. Green approach for knoevenagel condensation of aromatic aldehydes with active methylene group. Synth. Commun., 2012, 42(8), 1177-1183.
[http://dx.doi.org/10.1080/00397911.2010.537423]
[9]
Bhosale, H.D.; Shisodia, S.U.; Ingle, R.D.; Kendrekar, P.S.; Shisodia, A.U.; Kótai, L.; Pawar, R.P. An expeditious and green approach for the synthesis of 2-Amino-4H-chromenes using a catalyst of natural origin. Eur. Chem. Bull., 2018, 7(3), 120-122.
[http://dx.doi.org/10.17628/ecb.2018.7.120-122]
[10]
Ayoubi, M.; Foroughifar, N.; Khajeh-Amiri, A.; Foroughifar, N. Synthesis, characterization and study the biological evaluation of some Schiff base derivatives in the presence of lemon juice catalyst. Biointerface Res. Appl. Chem., 2019, 9(4), 4187-4192.
[http://dx.doi.org/10.33263/BRIAC94.187192]
[11]
Alia, N.H.S.O.; Hamida, M.H.S.A.; Putra, N.A.A.M.A.; Adola, H.A.; Mirzaa, A.H.; Usmana, A.; Siddiqueeb, T.A.; Hoqb, M.R.; Karim, M.R. Efficient eco-friendly syntheses of dithiocarbazates and thiosemicarbazones. Green Chem. Lett. Rev., 2020, 13(2), 129-140.
[http://dx.doi.org/10.1080/17518253.2020.1737252]
[12]
Jadhao, P.S.; Patil, A.B. Natural acid catalysed synthesis of Schiff’s bases from 1-(1-phenylethylidene) semicarbazide. Int. J. Pharma Sci., 2016, 7(10), 4125-4129.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(10).4125-29 ]
[13]
Patil, S.; Jadhav, S.D.; Patil, U.P. Natural acid catalyzed synthesis of Schiff base under solvent-free condition: as a green approach. Arch. Appl. Sci. Res., 2012, 4(2), 1074-1078.
[http://dx.doi.org/10.4236/ijoc.2012.22025 ]
[14]
Bakht, M.A. Lemon juice catalyzed ultrasound assisted synthesis of Schiff’s base: a total green approach. Bull. Env. Pharmacol. Life Sci., 2015, 4(10), 79-85.
[15]
Sachdeva, H.; Saroj, R.; Khaturia, S.; Dwivedi, D.; Chauhan, O.P. Green route for efficient synthesis of novel amino acid Schiff bases as potent antibacterial and antifungal agents and evaluation of cytotoxic effects. J. Chem., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/848543]
[16]
Yadav, G.; Mani, J.V. Green synthesis of schiff bases by using natural acid catalysts. Int. J. Sci. Res. (Ahmedabad), 2015, 4(2), 121-127.
[17]
Ishak, E.A. Microwave-assisted green synthesis of 1, 3-thiazines as potential antifungal agents using lemon juice. J. Mater. Environ. Sci., 2019, 10(1), 54-59.
[18]
Ishak, E.A.; Dehbi, O.; Sabuni, I.; Abdelzaher, H.M.A.; Riadi, Y. An efficient synthesis and antimicrobial and antifungal activities of disubstituted 3,4-dihydro-2H-1,3-thiazin-4-ones using lemon juice: a natural approach. JMES, 2017, 8(10), 3524-3528.
[19]
Ishak, E.A.; Malah, T.E.; Abdelzaher, H.M.A. Green chemistry: an efficient synthesis and antimicrobial activity of disubstituted 3,4-dihydro2h-1,3- thiazin-4-ones. IJGHC., 2017, 6(1), 038-044.
[20]
Lole, B.A.; Piste, P.B.C. Limon catalyzed heterocyclisation: microwave assisted rapid one step synthesis of substituted 2-aryl benzoxazoles. Int. J. Pharm. Sci. Rev. Res., 2018, 49(1), 17-21h.
[21]
Patil, M.A.; Ubale, P.A.; Karhale, S.S.; Helavi, V.B. Lemon juice: an environmentally benign catalyst for synthesis of benzothiazoles and benzoxazole derivatives in aqueous medium. Der Chemica Sinica, 2017, 8(1), 198-205.
[22]
Dutta, A.; Ali, A.A.; Sarma, D. Versatile catalysis of “natural extract”: oxidation of sulfides and alcohols and ipso-hydroxylation of arylboronic acids. J. Iran. Chem. Soc., 2019, 16, 2379-2388.
[http://dx.doi.org/10.1007/s13738-019-01707-1]
[23]
Cheng-peng, S.; Wei-ping, G.; Bao-zhong, Z.; Le-qin, C. Optimization for preparation of lemon-catalyzed ginsenoside rg3 by response surface method. Chin. Herb. Med., 2013, 5(3), 217-223.
[24]
Vekariya, R.H.; Patel, K.D.; Patel, H.D. Fruit juice of citrus limon as a biodegradable and reusable catalyst for facile, eco-friendly and green synthesis of 3,4-disubstituted isoxazol-5(4H)-ones and dihydropyrano[2,3-c]-pyrazole derivatives. Res. Chem. Intermed., 2016, 42(10), 7559-7579.
[http://dx.doi.org/10.1007/s11164-016-2553-4]
[25]
El-Saghier, A.M.; Mohamed, M.A.; Abd-Allah, O.A.; Kadry, A.M.; Ibrahim, T.M.; Bekhit, A.A. Green synthesis antileishmanial activity evaluation, and in silico studies of new amino acid-coupled 1,2,4-triazoles. Med. Chem. Res., 2018, 28, 169-181.
[http://dx.doi.org/10.1007/s00044-018-2274-x]
[26]
El‐Saghier, A.M.; Abd El‐Halim, H.F.; Abdel‐Rahman, L.H.; Kadry, A. Green synthesis of new trizole based heterocyclic amino acids ligands and their transition metal complexes. Characterization, kinetics, antimicrobial and docking studies. Appl. Organomet. Chem., 2018, 33(1), 4641.
[http://dx.doi.org/10.1002/aoc.4641]
[27]
Pal, R.; Khannobis, S.; Sarkar, T. First application of fruit juice of citrus limon for facial and green synthesis of bis- and tris (indolyl) methane in water. Chem. J., 2013, 3(1), 7-12.
[28]
Pal, R. Microwave-assisted eco-friendly synthesis of bis-, tris (indolyl) methanes and synthesis of di-bis (indolyl) methanes catalyzed by fruit juice of citrus limon under solvent-free conditions. IOSR-JAC, 2013, 3(4), 1-8.
[29]
Pal, R. New greener alternative for biocondensation of aldehydes and indoles using lemon juice: formation of bis-, tris-, and tetraindoles. Int. J. Org. Chem. (Irvine), 2013, 3, 136-142.
[http://dx.doi.org/10.4236/ijoc.2013.32015]
[30]
Chavhan, D.M.; Patil, S.S.; Khandekar, S.R. Lemon juice: as a natural, environmentally begnin and efficient catalyst for acetylation of amines and salicylic acid. Int. Res. J. Sci. Eng., 2016, 4(3-4), 85-89.
[31]
Prasanna, G.L.; Rao, B.V.D.; Reddy, A.G.; Rao, M.V.B.; Pal, M. Lemon juice mediated reaction under ultrasound irradiation: synthesis of indolofuroquinoxalines as potential anticancer agents. Mini Rev. Med. Chem., 2019, 19(8), 671-678.
[http://dx.doi.org/10.2174/1389557518666181029100044] [PMID: 30370847]
[32]
Prasad, M.G.; Lakshmi, C.V.; Katari, N.K.; Jonnalagadda, S.B.; Pal, M. Lemon juice mediated synthesis of 3-substituted quinazolin-4(3H)-ones and their pharmacological evaluation. Anticancer. Agents Med. Chem., 2019, 19(16), 2001-2009.
[http://dx.doi.org/10.2174/1871520619666190723151909] [PMID: 31340741]
[33]
Prasad, M.G.; Lakshmi, C.V.; Katari, N.K.; Anand, K.; Pal, M.; Jonnalagadda, S.B. Synthesis of 2-substituted 4-arylidene-5(4H)-oxazolones as a potential cytotoxic agent in the presence of lemon juice as a biocatalyst. Comb. Chem. High Throughput Screen., 2019, 22(9), 625-634.
[http://dx.doi.org/10.2174/1386207322666191024105150] [PMID: 31696809]
[34]
Prasad, M.G.; Lakshmi, C.V.; Katari, N.K.; Pal, M. Lemon juice as a biocatalyst under ultrasound irradiation: synthesis and pharmacological evaluation of 2-amino 1,3,4-thiadiazoles. Anticancer. Agents Med. Chem., 2020, 20(11), 1379-1386.
[http://dx.doi.org/10.2174/1871520620666200409143513] [PMID: 32271700]
[35]
Morbale, S.T.; Jadhav, S.D.; Deshmukh, M.B.; Patil, S.S. Bronsted acid-type biosurfactant for heterocyclisation: a green protocol for benzopyron synthesis. RSC Advances, 2015, 5, 84610-84620.
[http://dx.doi.org/10.1039/C5RA13652K]
[36]
Sachdeva, H.; Saroj, R.; Khaturia, S.; Dwivedi, D. Environ-economic synthesis and characterization of some new 1,2,4-triazole derivatives as organic fluorescent materials and potent fungicidal agents. Org. Chem. Int., 2013, 2013, 1-19.
[http://dx.doi.org/10.1155/2013/659107]
[37]
Khan, M.M.; Khan, S. Saigal, Sahoo, S.C. Efficient and eco-friendly one-pot synthesis of functionalized furan-2-one, pyrrol-2-one, and tetrahydropyridine using lemon juice as a biodegradable catalyst. Chem. Select, 2018, 3, 1371-1380.
[http://dx.doi.org/10.1002/slct.201702933]
[38]
Dabholkar, V.V.; Mustaqeem, M.A.; Shinde, N.B.; Yadav, O.G. Green synthesis of biginelli products of meldrum acid. Der Pharma. Chem., 2014, 6(5), 101-104.
[39]
Kumari, S.; Singh, S.; Srivastava, V. Lemon juice catalyzed C-C bond formation via C-H activation of methylarene: a sustainable synthesis of chromenopyrimidines. Mol. Divers., 2020, 24(3), 717-725.
[http://dx.doi.org/10.1007/s11030-019-09980-1] [PMID: 31376065]
[40]
Patil, S.; Jadhava, S.D.; Deshmukh, M.B. Natural acid catalyzed multi-component reactions as a green approach. Arch. Appl. Sci. Res., 2011, 3(1), 203-208.
[41]
Saha, A.; Jana, A.; Choudhury, L.H. Lemon juice mediated multicomponent reactions for the synthesis of fused imidazoles. New J. Chem., 2018, 42, 17909-17922.
[http://dx.doi.org/10.1039/C8NJ03480J]
[42]
Mahadevaswamy, L.D.; Kariyappa, A.K. An environmentally benign lemon juice mediated synthesis of novel furan conjugated pyrazole derivatives and their biological evaluation. Pharm. Chem. J., 2017, 51, 8.
[http://dx.doi.org/10.1007/s11094-017-1672-6]
[43]
Diwan, F.; Shaikh, M.; Farooqui, M. Lemon juice catalyzed efficient one-pot synthesis, antioxidant and antimicrobial evaluation of bispyrazolylmethanes. Chem.-Bio. Interf., 2018, 8(5), 255-268.
[44]
Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett., 2016, 57, 4795-4798.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.023]
[45]
Niralwad, K.S.; Ghorade, I.B. Natural acid catalyzed synthesis of octahydroquinazolinone derivatives: a green approach. World J. Pharm. Pharm. Sci., 2015, 4(12), 704-710.
[46]
Milovanovic, V.; Petrovic, Z.D.; Novakovic, S.; Bogdanovic, G.A.; Simijonovic, D.; Petrovic, V.P. Structural characterization of benzoyl-1H-pyrazole derivatives obtained in lemon juice medium: experimental and theoretical approach. J. Mol. Struct., 2019, 1195, 85-94.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.095]
[47]
Sujitha, M. V.; Kannan, S. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. SpectrochimScta A Mol and BiomolSpectros, 2013, 102, 15-23.
[http://dx.doi.org/10.1016/j.saa.2012.09.042]
[48]
Shafi, P.M.; Joseph, N.; Thirumurugan, A.; Bose, A.C. Enhanced electrochemical performances of agglomeration-free LaMnO3 perovskite nanoparticles and achieving high energy and power densities with symmetric supercapacitor design. Chem. Eng. J., 2018, 338, 147-156.
[http://dx.doi.org/10.1016/j.cej.2018.01.022]
[49]
He, M.; Zhang, J.; Wang, H.; Kong, Y.; Xiao, Y.; Xu, W. Material and optical properties of fluorescent carbon quantum dots fabricated from lemon juice via hydrothermal reaction. Nanoscale Res. Lett., 2018, 13(1), 175.
[http://dx.doi.org/10.1186/s11671-018-2581-7] [PMID: 29882047]
[50]
Asiabani, N.; Nabiyouni, G.; Khaghani, S.; Ghanbari, D. Green synthesis of magnetic and photo-catalyst PbFe12O19 - PbSnanocomposites by lemon extract: nano-sphere PbFe12O19 and star-like PbS. J. Mater. Sci. Mater. Electron., 2016, 28(1), 1101-1114.
[http://dx.doi.org/10.1007/s10854-016-5635-6]
[51]
Patra, S.; Roy, E.; Madhuri, R.; Sharma, P.K. Nanocomposite of bimetallic nanodendrite and reduced graphene oxide as a novel platform for molecular imprinting technology. Anal. Chim. Acta, 2016, 918, 77-88.
[http://dx.doi.org/10.1016/j.aca.2016.02.046] [PMID: 27046213]
[52]
Hungund, B.S.; Dhulappanavar, G.R.; Ayachit, N.H. Comparative evaluation of antibacterial activity of silver nanoparticles biosynthesized using fruit juices. J. Nanomed. Nanotechnol., 2015, 6(2), 1000271.
[http://dx.doi.org/10.4172/2157-7439.1000271]
[53]
Medina Cruz, D.; Tien-Street, W.; Zhang, B.; Huang, X.; Vernet Crua, A.; Nieto-Argüello, A.; Cholula-Díaz, J.L.; Martínez, L.; Huttel, Y.; Ujué, G.M.; García-Martín, J.M.; Webster, T.J. Citric juice-mediated synthesis of tellurium nanoparticles with antimicrobial and anticancer properties. Green Chem., 2019, 21(8), 1982-1988.
[http://dx.doi.org/10.1039/C9GC00131J] [PMID: 31156349]
[54]
Karahroudi, Z.H.; Hedayati, K.; Goodarzi, M. Green synthesis and characterization of hexaferrite strontium-perovskite strontium photo catalyst nanocomposites. Main Group Met. Chem., 2020, 43(1), 26-42.
[http://dx.doi.org/10.1515/mgmc-2020-0004]
[55]
Oruç, Z.; Ergüt, M.; Uzunoğlu, D.; Özer, A. Green synthesis of biomass-derived activated carbon/Fe-Zn bimetallic nanoparticles from lemon (Citrus Limon (L.) Burm. f.) wastes for heterogeneous Fenton-like decolorization of Reactive Red 2. J. Environ. Chem. Eng., 2019, 7, 103231.
[http://dx.doi.org/10.1016/j.jece.2019.103231]
[56]
Raiza, A.J.; Pandian, K.; Kumar, R.G. Biosynthesis of copper nanoparticles supported on zeolite Y and its application in catalytic C-N cross coupling reactions between amines and aryl halides. Chem.Sele., 2019, 4, 1964-1970.
[http://dx.doi.org/10.1002/slct.201804003]
[57]
Begum, H.; Ahmed, M.S.; Cho, S.; Jeon, S. Simultaneous reduction and nitrogen functionalization of graphene oxide using lemon for metal-free oxygen reduction reaction. J. Power Sources, 2017, 372, 116-124.
[http://dx.doi.org/10.1016/j.jpowsour.2017.10.035]
[58]
Fazlinia, A.; Sheikh, S. Preparation of 2-Arylbenzimidazole derivatives using CuO nanoparticles/H2O2 system. Inorg. Nano-Met. Chem, 2017, 48(2), 126-130.
[http://dx.doi.org/10.1080/24701556.2017.1358182]
[59]
Ahmadian-Fard-Fini, S.; Ghanbari, D.; Amiri, O.; Salavati-Niasari, M. Electro-spinning of cellulose acetate nanofibers/Fe/carbon dot as photoluminescence sensor for mercury (II) and lead (II) ions. Carbohydr. Polym., 2020, 229, 115428.
[http://dx.doi.org/10.1016/j.carbpol.2019.115428] [PMID: 31826498]
[60]
Prasad, A.R.; Rugmini, A.P.; Joseph, A. Effective photocatalytic removal of different dye stuffs using green synthesized zinc oxide nanogranules. Mater. Res. Bull., 2018, 102, 116-121.
[http://dx.doi.org/10.1016/j.materresbull.2018.02.022]