Personalized Nanotools for the Treatment of Metabolic Disorders

Page: [3 - 13] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Advances in personalized medicine are useful in improving the treatment of metabolic diseases and patient care. The current innovations in integrating nanotechnology and nanobiotechnology tools in pharmaceutical formulation development have proven the effectiveness of xenobiotics in diagnosing, treating, and curing various metabolic diseases. The implementation of nanomedicines for the treatment of metabolic diseases has served the advantage of overcoming the limitation of bioavailability, selectivity and specificity, biological barriers, and toxicity. Simultaneously, the hybridization of drug molecules and nanomaterials builds promising effective tools for the same. While on the other hand, the development in omics sciences has further supported the detection, diagnosis, and treatment of various metabolic disease conditions. Therapy and analysis of metabolic diseases in asymptomatic patients can be facilitated whereas, harsh complications in diagnosis and disease progression can be avoided by the use of molecular metabolic and genetic biomarkers, biosensor miniatures, and transducers. Therefore, a combination of personalized medicine and nanotechnology gives rise and serves the ultimate goal of predicting, preventing, and treating metabolic diseases. The current article reviews the interdisciplinary nature of personalized medicine, nanotechnology, and nanobiotechnology to employ a safe, efficient, stable, cost-effective futuristic approach for the individualized treatment strategies and challenges in the application of personalized medicines for metabolic diseases.

Keywords: Personalized medicines, nanomedicines, nanotools, metabolic disease therapy, biomarkers, biosensors.

Graphical Abstract

[1]
Heindel JJ, Blumberg B, Cave M, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol 2017; 68: 3-33.
[http://dx.doi.org/10.1016/j.reprotox.2016.10.001] [PMID: 27760374]
[2]
Piero MN. Diabetes mellitus – a devastating metabol-ic disorder. Asian J Biomed Pharma Sci 2015; 4(40): 1-7.
[http://dx.doi.org/10.15272/ajbps.v4i40.645]
[3]
Panza F, Frisardi V, Capurso C, et al. Late-life de-pression, mild cognitive impairment, and dementia: possible continuum? Am J Geriatr Psychiatry 2010; 18(2): 98-116.
[http://dx.doi.org/10.1097/JGP.0b013e3181b0fa13] [PMID: 20104067]
[4]
Kodl CT, Seaquist ER. Cognitive dysfunction and diabetes mellitus. Endocr Rev 2008; 29(4): 494-511.
[http://dx.doi.org/10.1210/er.2007-0034] [PMID: 18436709]
[5]
Onat A, Can G, Kaya H, Hergenç G. “Atherogenic index of plasma” (log10 triglyceride/high-density lip-oprotein-cholesterol) predicts high blood pressure, di-abetes, and vascular events. J Clin Lipidol 2010; 4(2): 89-98.
[http://dx.doi.org/10.1016/j.jacl.2010.02.005] [PMID: 21122635]
[6]
Diabetes DOF, Diabetes DOF. Diagnosis and classifi-cation of diabetes mellitus. Diabetes Care 2009; 32(1)
[7]
Chaturvedi S, Singh AK, Keshari AK, Maity S, Sarkar S, Saha S. Human metabolic enzymes deficiency: A Genetic Mutation Based Approach Scientifica (Cairo) 2016; 2016(c): 9828672
[http://dx.doi.org/10.1155/2016/9828672] [PMID: 27051561]
[8]
Arnold A, Kim HG, Gaz RD, et al. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid ade-noma. J Clin Invest 1989; 83(6): 2034-40.
[http://dx.doi.org/10.1172/JCI114114] [PMID: 2723071]
[9]
Savoia C, Volpe M, Grassi G, Borghi C, Agabiti Rosei E, Touyz RM. Personalized medicine-a modern ap-proach for the diagnosis and management of hyper-tension. Clin Sci (Lond) 2017; 131(22): 2671-85.
[http://dx.doi.org/10.1042/CS20160407] [PMID: 29109301]
[10]
Ravariu C, Ionescu-Tirgoviste C, Ravariu F. Glucose biofuels properties in the bloodstream, in conjunction with the beta cell electro-physiology. 2009 Interna-tional Conference on Clean Electrical Power, ICCEP 2009. 124-7.
[http://dx.doi.org/10.1109/ICCEP.2009.5212071]
[11]
Radhakrishnan A, Kuppusamy G, Ponnusankar S, Shanmukhan NK. Pharmacogenomic phase transi-tion from personalized medicine to patient-centric customized delivery. Pharmacogenomics J 2020; 20(1): 1-18.
[http://dx.doi.org/10.1038/s41397-019-0135-8] [PMID: 31819163]
[12]
Lamberti MJ, Wilkinson M, Peña Y, Getz K, Beltre C. Preparing for precision medicine. Contract Pharma 2018; 2018(1-2): 489-91.
[13]
Rehm HL. Evolving health care through personal genomics. Nat Rev Genet 2017; 18(4): 259-67.
[http://dx.doi.org/10.1038/nrg.2016.162] [PMID: 28138143]
[14]
Jensen DM. HHS Public Access. Physiol Behav 2018; 176(1): 1570-3.
[15]
Zhu Z, Cuozzo J. Review article: high-throughput affinity-based technologies for small-molecule drug discovery. J Biomol Screen 2009; 14(10): 1157-64.
[http://dx.doi.org/10.1177/1087057109350114] [PMID: 19822881]
[16]
Nomura DK, Dix MM, Cravatt BF. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat Rev Cancer 2010; 10(9): 630-8.
[http://dx.doi.org/10.1038/nrc2901] [PMID: 20703252]
[17]
Jain KK. Nanobiotechnology and personalized medi-cineProgress in molecular biology and translational science elsevier Inc 2011; 104: pp 325-54
[18]
Lee JR, Haddon DJ, Gupta N, et al. High-resolution analysis of antibodies to post-translational modifica-tions using peptide nanosensor microarrays. ACS Nano 2016; 10(12): 10652-60.
[http://dx.doi.org/10.1021/acsnano.6b03786] [PMID: 27636738]
[19]
Krop I, Winer EP. Trastuzumab emtansine: A novel antibody-drug conjugate for HER2-positive breast cancer. Clin Cancer Res 2014; 20(1): 15-20.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0541] [PMID: 24135146]
[20]
Nune SK, Gunda P, Thallapally PK, Lin YY, Forrest ML, Berkland CJ. Nanoparticles for biomedical imag-ing. Expert Opin Drug Deliv 2009; 6(11): 1175-94.
[http://dx.doi.org/10.1517/17425240903229031] [PMID: 19743894]
[21]
Mura S, Couvreur P. Nanotheranostics for personal-ized medicine. Adv Drug Deliv Rev 2012; 64(13): 1394-416.
[http://dx.doi.org/10.1016/j.addr.2012.06.006] [PMID: 22728642]
[22]
Sharma M, Dube T, Chibh S, Kour A, Mishra J, Pan-da JJ. Nanotheranostics, a future remedy of neurolog-ical disorders. Expert Opin Drug Deliv 2019; 16(2): 113-28.
[http://dx.doi.org/10.1080/17425247.2019.1562443] [PMID: 30572726]
[23]
de Melo-Diogo D, Pais-Silva C, Dias DR, Moreira AF, Correia IJ. Strategies to improve cancer photothermal therapy mediated by nanomaterials. adv healthc mater 2017; 6; (10):
[http://dx.doi.org/10.1002/adhm.201700073] [PMID: 28322514]
[24]
Khlebtsov NG, Dykman LA. Plasmonic nanoparticles: fabrication, optical properties, and biomedicalapplications. Handbook of photonics for biomedical science.Boca Raton, FL: CRC Press. 2010; 18: pp. 37-82.
[http://dx.doi.org/10.1201/9781439806296-c2]
[25]
Zou L, Wang H, He B, et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics 2016; 6(6): 762-72.
[http://dx.doi.org/10.7150/thno.14988] [PMID: 27162548]
[26]
Shirata C, Kaneko J, Inagaki Y, et al. Near-infrared photothermal/photodynamic therapy with indocya-nine green induces apoptosis of hepatocellular carci-noma cells through oxidative stress. Sci Rep 2017; 7(1): 13958.
[http://dx.doi.org/10.1038/s41598-017-14401-0] [PMID: 29066756]
[27]
Lukianova-Hleb EY, Hanna EY, Hafner JH, Lapotko DO. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 2010; 21(8): 85102.
[http://dx.doi.org/10.1088/0957-4484/21/8/085102] [PMID: 20097970]
[28]
Wanunu M. Nanopores: A journey towards DNA sequencing. Phys Life Rev 2012; 9(2): 125-58.
[http://dx.doi.org/10.1016/j.plrev.2012.05.010]
[29]
Chalmeau J, Monina N, Shin J, Vieu C, Noireaux V. α-Hemolysin pore formation into a supported phospholipid bilayer using cell-free expression. Biochim Biophys Acta 2011; 1808(1): 271-8.
[http://dx.doi.org/10.1016/j.bbamem.2010.07.027] [PMID: 20692229]
[30]
Cau JC, Lalo H, Séverac C, Peyrade JP, Trévisiol E, Leberre V, et al. Molecular analysis for medicine: A new technological platform based on nanopatterning and label-free optical detection. Oncologie 2009; 11(1)
[http://dx.doi.org/10.1007/s10269-009-1825-7]
[31]
Balogh LP. Nanomedicine in cancer2017 pp 1-814
[32]
Penet MF, Krishnamachary B, Chen Z, Jin J, Bhu-jwalla ZM. Molecular imaging of the tumor microenvironment for precision medicine and theranostic.Advances in Cancer Research. Elsevier Inc 2014; 124: pp. 235-56.
[33]
Zhang S, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis of nanoparticles. Adv Mater 2009; 21(4): 419-24.
[http://dx.doi.org/10.1002/adma.200801393] [PMID: 19606281]
[34]
Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are ef-fective for oral insulin delivery. Pharm Res 2007; 24(12): 2198-206.
[http://dx.doi.org/10.1007/s11095-007-9367-4] [PMID: 17577641]
[35]
Roy I, Ohulchanskyy TY, Pudavar HE, et al. Ceram-ic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy. J Am Chem Soc 2003; 125(26): 7860-5.
[http://dx.doi.org/10.1021/ja0343095] [PMID: 12823004]
[36]
Kingsley JD, Dou H, Morehead J, Rabinow B, Gen-delman HE, Destache CJ. Nanotechnology: a focus on nanoparticles as a drug delivery system. J Neuroimmune Pharmacol 2006; 1(3): 340-50.
[http://dx.doi.org/10.1007/s11481-006-9032-4] [PMID: 18040810]
[37]
Yoon SO, Park SJ, Yun CH, Chung AS. Roles of ma-trix metalloproteinases in tumor metastasis and angi-ogenesis. J Biochem Mol Biol 2003; 36(1): 128-37.
[PMID: 12542983]
[38]
Baptista P, Fernandes A, Figueiredo S, Vinhas R, Cordeiro M, Carlos F, et al. Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial. Nanobiosensors in Disease Di-agnosis 2015; p. 11.
[39]
Rajora AK, Ravishankar D, Osborn HMI, Greco F. Impact of the enhanced permeability and retention (EPR) effect and cathepsins levels on the activity of polymer-drug conjugates. Polymers (Basel) 2014; 6(8): 2186-220.
[http://dx.doi.org/10.3390/polym6082186]
[40]
Raza A, Rasheed T, Nabeel F, Hayat U, Bilal M, Iq-bal HMN. Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules 2019; 24(6): 1-21.
[http://dx.doi.org/10.3390/molecules24061117] [PMID: 30901827]
[41]
Aitkin M. Breastfeeding in public places--perceptions of fear. Pract Midwife 2013; 16(3): 13-14, 16.
[PMID: 23590081]
[42]
Fernandez-Piñeiro I, Badiola I, Sanchez A. Nanocar-riers for microRNA delivery in cancer medicine. Biotechnol Adv 2017; 35(3): 350-60.
[http://dx.doi.org/10.1016/j.biotechadv.2017.03.002] [PMID: 28286148]
[43]
Cooper AF, Thakur R. The group of twenty (G20). 2013; 1-194.
[44]
Eskiizmir G, Ermertcan AT, Yapici K. Nanomaterials: Promising structures for the management of oral cance. Nanostructures for Oral Medicine 511- 44.2017;
[45]
Hu M, Yang C, Luo Y, et al. A hypoxia-specific and mitochondria-targeted anticancer theranostic agent with high selectivity for cancer cells. J Mater Chem B Mater Biol Med 2018; 6(16): 2413-6.
[http://dx.doi.org/10.1039/C8TB00546J] [PMID: 32254457]
[46]
Wang J, Tao W, Chen X, Farokhzad OC, Liu G. Emerging advances in nanotheranostics with intelli-gent bioresponsive systems. Theranostics 2017; 7(16): 3915-9.
[http://dx.doi.org/10.7150/thno.21317] [PMID: 29109787]
[47]
Zhang X, Han L, Liu M, et al. Recent progress and advances in redox-responsive polymers as controlled delivery nanoplatforms. Mater Chem Front 2017; 1: 807-22.
[http://dx.doi.org/10.1039/C6QM00135A]
[48]
Iamsaard S, Seidi F, Dararatana N, Crespy D. Redox-responsive polymer with self-immolative linkers for the release of payloads. Macromol Rapid Commun 2018; 39(12): e1800071.
[http://dx.doi.org/10.1002/marc.201800071] [PMID: 29748982]
[49]
Huo M, Yuan J, Tao L, Wei Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym Chem 2014; 5: 1519-28.
[http://dx.doi.org/10.1039/C3PY01192E]
[50]
Andresen TL, Thompson DH, Kaasgaard T. Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol Membr Biol 2010; 27(7): 353-63.
[http://dx.doi.org/10.3109/09687688.2010.515950] [PMID: 20939771]
[51]
Scott KF, Sajinovic M, Hein J, et al. Emerging roles for phospholipase A2 enzymes in cancer. Biochimie 2010; 92(6): 601-10.
[http://dx.doi.org/10.1016/j.biochi.2010.03.019] [PMID: 20362028]
[52]
Hu Q, Katti PS, Gu Z. Enzyme-responsive nano-materials for controlled drug delivery. Nanoscale 2014; 6(21): 12273-86.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[53]
Xia Y, Zhang R, Wang Z, Tian J, Chen X. Recent ad-vances in high-performance fluorescent and biolumi-nescent RNA imaging probes. Chem Soc Rev 2017; 46(10): 2824-43.
[http://dx.doi.org/10.1039/C6CS00675B] [PMID: 28345687]
[54]
Lin LS, Cong ZX, Cao JB, et al. Multifunctional Fe₃O₄@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014; 8(4): 3876-83.
[http://dx.doi.org/10.1021/nn500722y] [PMID: 24654734]
[55]
Mo R, Jiang T, DiSanto R, Tai W, Gu Z. ATP-triggered anticancer drug delivery. Nat Commun 2014; 5: 3364.
[http://dx.doi.org/10.1038/ncomms4364] [PMID: 24618921]
[56]
Kim D, Lee N, Park YI, Hyeon T. Recent advances in inorganic nanoparticle-based NIR luminescence im-aging: Semiconductor nanoparticles and lanthanide nanoparticles. Bioconjug Chem 2017; 28(1): 115-23.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00654] [PMID: 27982578]