Current Topics in Medicinal Chemistry

Author(s): Anupam Maurya*, Sweta Mohan and Subash C. Verma

DOI: 10.2174/1568026621666210305102500

Antidiabetic Potential of Naturally Occurring Sesquiterpenes: A Review

Page: [851 - 862] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Diabetes Mellitus (DM) is an endocrine disease, which is the 3rd leading cause of death in humans; additionally, it is one of the major key concerns over the globe. The high levels of glucose in the blood stream are as well characterized by hyperglycaemia leading to serious damage to the heart, blood vessels, kidney, eyes, and nerves. The best treatment of DM is still not available; many scientists worldwide are trying hard to seek out suitable treatment of DM. Though numerous synthetic drugs are developed for the treatment of diabetes but their utility has been hampered because of several side effects and poor efficacy. Among various approaches for the treatment of DM, herbal medicine, enriched extracts, and naturally derived molecules are most effective. Plant based herbal medicines contain many bioactive phytochemicals, such as terpenoids, alkaloids, flavonoids & phenolics, etc. which are used in the treatment of many diseases. The plant-derived molecules and their suitable structure modification have given many leads or drugs to the world like sesquiterpene; artemisinin and their derivatives artemether & artesunate as an antimalarial drugs. Sesquiterpenes are available in the human diet and are largely taken as components of the many folk medicines and dietary supplements. Sesquiterpenes have a wide range of biological activities, such as anti-cancer, anti-inflammatory, anti-nociceptive, immunomodulatory, antidiabetic and antimicrobial, which make them potential targets for the development of new therapeutics and their usage for medical purposes. Natural products have gained the attention of the world due to their large number of biological activities, high safety and fewer side effect. The review mainly focuses on bioactive sesquiterpenes such as β-caryophyllene, dysidine, farnesol & eremanthin, etc., a class of terpenoids that may play an important role in the treatment or prevention of this gruesome disorder like diabetes, with their underlying mechanisms for the blood-glucose-lowering property.

Keywords: Diabetes Mellitus, Natural products, Terpenoids, Sesquiterpene, Hyperglycemia, Antihyperglycemic agents.

Graphical Abstract

[1]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[2]
Verma, S.; Arha, D.; Tamrakar, A.K.; Srivastava, S.K. Glycolipids: isolated from Oplismenus burmannii induce glucose uptake in L6-GLUT4myc myotube cells. Curr. Top. Med. Chem., 2015, 15(11), 1027-1034.
[http://dx.doi.org/10.2174/1568026615666150317223112] [PMID: 25786504]
[3]
Choudhury, H.; Pandey, M.; Hua, C.K.; Mun, C.S.; Jing, J.K.; Kong, L.; Ern, L.Y.; Ashraf, N.A.; Kit, S.W.; Yee, T.S.; Pichika, M.R.; Gorin, B.; Kesharwani, P. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement. Med., 2018, 8, 361-376.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012]
[4]
Natarajan, A.; Sugumar, S.; Bitragunta, S.; Balasubramanyan, N. Molecular docking studies of (4Z, 12Z)-cyclopentadeca-4, 12-dienone from Grewia hirsuta with some targets related to type 2 diabetes. BMC Complement. Altern. Med., 2015, 15, 73.
[http://dx.doi.org/10.1186/s12906-015-0588-5] [PMID: 25885803]
[5]
Abdalla, M.; Abdelatif, M.Y.; Ibhrahim, M.S. Antidiabetic effects of fenugreek (trigonella foenum-graecum) seeds in the domestic rabbit (oryctolagus cuniculus). Res. J. Med. Plant, 2012, 6, 449-455.
[http://dx.doi.org/10.3923/rjmp.2012.449.455]
[6]
Warjeet, S.L. Traditional medicinal plants of Manipur as anti - diabetics. J. Med. Plants Res., 2011, 5, 677-787.
[7]
Gupta, R.; Misra, A. Review: Type-2 diabetes in India: regional disparities. Br. J. Diabetes Vasc. Dis., 2007, 7, 12-16.
[http://dx.doi.org/10.1177/14746514070070010301]
[8]
Grover, J.K.; Yadav, S.; Vats, V. Medicinal plants of India with anti-diabetic potential. J. Ethnopharmacol., 2002, 81(1), 81-100.
[http://dx.doi.org/10.1016/S0378-8741(02)00059-4] [PMID: 12020931]
[9]
Diabetes and Your Eyes, Heart, Nerves, Feet, and Kidneys. Available from: https://www.kidney.org/atoz/content/Diabetes-and-Your-Eyes-Heart-Nerves-Feet-and-Kidneys
[10]
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus: Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 1997, 20(7), 1183-1197.
[http://dx.doi.org/10.2337/diacare.20.7.1183] [PMID: 9203460]
[11]
Carpenter, M.W.; Coustan, D.R. Criteria for screening tests for gestational diabetes. Am. J. Obstet. Gynecol., 1982, 144(7), 768-773.
[http://dx.doi.org/10.1016/0002-9378(82)90349-0] [PMID: 7148898]
[12]
O’Sullivan, J.B.; Mahan, C.M. Criteria for the oral glucose tolerance test in pregnancy. Diabetes, 1964, 13, 278-285.
[PMID: 14166677]
[13]
When Blood Sugar Is Too High. Available from: https://kidshealth.org/en/teens/high-blood-sugar.html [Accessed May 02, 2020
[14]
Diabete long-term effects. Available from: https://www. betterhealth. vic.gov.au/health/ [Accessed May 02, 2020
[15]
Edelman, D.; Olsen, M.K.; Dudley, T.K.; Harris, A.C.; Oddone, E.Z. Utility of hemoglobin A1c in predicting diabetes risk. J. Gen. Intern. Med., 2004, 19(12), 1175-1180.
[http://dx.doi.org/10.1111/j.1525-1497.2004.40178.x] [PMID: 15610327]
[16]
Pradhan, A.D.; Rifai, N.; Buring, J.E.; Ridker, P.M. Hemoglobin A1c predicts diabetes but not cardiovascular disease in nondiabetic women. Am. J. Med., 2007, 120(8), 720-727.
[http://dx.doi.org/10.1016/j.amjmed.2007.03.022] [PMID: 17679132]
[17]
Sato, K.K.; Hayashi, T.; Harita, N.; Yoneda, T.; Nakamura, Y.; Endo, G.; Kambe, H. Combined measurement of fasting plasma glucose and A1C is effective for the prediction of type 2 diabetes: the Kansai Healthcare Study. Diabetes Care, 2009, 32(4), 644-646.
[http://dx.doi.org/10.2337/dc08-1631] [PMID: 19131461]
[18]
Shimazaki, T.; Kadowaki, T.; Ohyama, Y.; Ohe, K.; Kubota, K. Hemoglobin A1c (HbA1c) predicts future drug treatment for diabetes mellitus: a follow-up study using routine clinical data in a Japanese university hospital. Transl. Res., 2007, 149(4), 196-204.
[http://dx.doi.org/10.1016/j.trsl.2006.09.008] [PMID: 17383593]
[19]
Geiss, L.S.; Pan, L.; Cadwell, B.; Gregg, E.W.; Benjamin, S.M.; Engelgau, M.M. Changes in incidence of diabetes in U.S. adults, 1997-2003. Am. J. Prev. Med., 2006, 30(5), 371-377.
[http://dx.doi.org/10.1016/j.amepre.2005.12.009] [PMID: 16627124]
[20]
Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med., 2002, 346(6), 393-403.
[http://dx.doi.org/10.1056/NEJMoa012512] [PMID: 11832527]
[21]
Zhang, X.; Gregg, E.W.; Williamson, D.F.; Barker, L.E.; Thomas, W.; Bullard, K.M.; Imperatore, G.; Williams, D.E.; Albright, A.L. A1C level and future risk of diabetes: a systematic review. Diabetes Care, 2010, 33(7), 1665-1673.
[http://dx.doi.org/10.2337/dc09-1939] [PMID: 20587727]
[22]
Global report on diabetes. Available from: https://apps.who.int/iris/bitstream/handle/10665/204871/9789241565257_eng.pdf [Accessed April 06, 2020
[23]
Medical Management of Type 1 Diabetes, 3rd ed; Skyler J.S.. Ed.; American Diabetes Association: Alexandria, VA, 1998.
[24]
Medical Management of Type 2 Diabetes, 4th ed; Zimmerman B.R,. Ed.; American Diabetes Association: Alexandria, VA, 1998.
[25]
Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 2003, 26(Suppl. 1), S5-S20.
[http://dx.doi.org/10.2337/diacare.26.2007.S5] [PMID: 12502614]
[26]
Tuomilehto, J.; Lindström, J.; Eriksson, J.G.; Valle, T.T.; Hämäläinen, H.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Laakso, M.; Louheranta, A.; Rastas, M.; Salminen, V.; Uusitupa, M. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med., 2001, 344(18), 1343-1350.
[http://dx.doi.org/10.1056/NEJM200105033441801] [PMID: 11333990]
[27]
Pan, X.R.; Li, G.W.; Hu, Y.H.; Wang, J.X.; Yang, W.Y.; An, Z.X.; Hu, Z.X.; Lin, J.; Xiao, J.Z.; Cao, H.B.; Liu, P.A.; Jiang, X.G.; Jiang, Y.Y.; Wang, J.P.; Zheng, H.; Zhang, H.; Bennett, P.H.; Howard, B.V. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 1997, 20(4), 537-544.
[http://dx.doi.org/10.2337/diacare.20.4.537] [PMID: 9096977]
[28]
Chiasson, J.L.; Josse, R.G.; Gomis, R.; Hanefeld, M.; Karasik, A.; Laakso, M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet, 2002, 359(9323), 2072-2077.
[http://dx.doi.org/10.1016/S0140-6736(02)08905-5] [PMID: 12086760]
[29]
Sjostrom, L. XENDOS (Xenical in the prevention of diabetes in obese subjects): a landmark study. International Congress on Obesity (ICO), San Paulo, Brazil, San Paulo, Brazil2002.
[30]
Buchanan, T.A.; Xiang, A.H.; Peters, R.K.; Kjos, S.L.; Marroquin, A.; Goico, J.; Ochoa, C.; Tan, S.; Berkowitz, K.; Hodis, H.N.; Azen, S.P. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes, 2002, 51(9), 2796-2803.
[http://dx.doi.org/10.2337/diabetes.51.9.2796] [PMID: 12196473]
[31]
Engelgau, M.M.; Narayan, K.M.V.; Herman, W.H. Screening for type 2 diabetes. Diabetes Care, 2000, 23(10), 1563-1580.
[http://dx.doi.org/10.2337/diacare.23.10.1563] [PMID: 11023153]
[32]
American Diabetes Association Type 2 diabetes in children and adolescents. Diabetes Care, 2000, 23(3), 381-389.
[http://dx.doi.org/10.2337/diacare.23.3.381] [PMID: 10868870]
[33]
American Diabetes Association Gestational diabetes mellitus (Position Statement). Diabetes Care, 2003(Suppl. 1), S103-S105.
[34]
Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[35]
UK Prospective Diabetes Study (UKPDS) Group: Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 1998, 352(9131), 837-853.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[36]
Diabetes Symptoms, (Type 1 and Type 2). Available from: https://www.medicinenet.com/jardiance_empagliflozin/article.htm[Accessed May 01, 2020
[37]
Zimmet, P.; Alberti, K.G.; Shaw, J. Global and societal implications of the diabetes epidemic. Nature, 2001, 414(6865), 782-787.
[http://dx.doi.org/10.1038/414782a] [PMID: 11742409]
[38]
Ada Standards of Medical Care in Diabetes. Available from: https://d-net.idf.org/en/library/233-ada-standards-of-medical-care-in-diabetes-2016.html [Accessed February 26, 2021
[39]
Orasanu, G.; Plutzky, J. The pathologic continuum of diabetic vascular disease. J. Am. Coll. Cardiol., 2009, 53(5)(Suppl.), S35-S42.
[http://dx.doi.org/10.1016/j.jacc.2008.09.055] [PMID: 19179216]
[40]
International Diabetes Federation. IDF Atlas. Available from: http://www.diabetesatlas.org
[41]
Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; Hamet, P.; Harrap, S.; Heller, S.; Liu, L.; Mancia, G.; Mogensen, C.E.; Pan, C.; Poulter, N.; Rodgers, A.; Williams, B.; Bompoint, S.; de Galan, B.E.; Joshi, R.; Travert, F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med., 2008, 358(24), 2560-2572.
[http://dx.doi.org/10.1056/NEJMoa0802987] [PMID: 18539916]
[42]
Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med., 2008, 359(15), 1577-1589.
[http://dx.doi.org/10.1056/NEJMoa0806470] [PMID: 18784090]
[43]
Charbonnel, B.; Dormandy, J.; Erdmann, E.; Massi-Benedetti, M.; Skene, A. The prospective pioglitazone clinical trial in macrovascular events (PROactive): can pioglitazone reduce cardiovascular events in diabetes? Study design and baseline characteristics of 5238 patients. Diabetes Care, 2004, 27(7), 1647-1653.
[http://dx.doi.org/10.2337/diacare.27.7.1647] [PMID: 15220241]
[44]
Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; Warren, S.R.; Goldman, S.; McCarren, M.; Vitek, M.E.; Henderson, W.G.; Huang, G.D. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med., 2009, 360(2), 129-139.
[http://dx.doi.org/10.1056/NEJMoa0808431] [PMID: 19092145]
[45]
Patel, A.; Chalmers, J.; Poulter, N. ADVANCE: action in diabetes and vascular disease. J. Hum. Hypertens., 2005, 19(Suppl. 1), S27-S32.
[http://dx.doi.org/10.1038/sj.jhh.1001890] [PMID: 16075030]
[46]
Gerstein, H.C.; Miller, M.E.; Byington, R.P.; Goff, D.C., Jr; Bigger, J.T.; Buse, J.B.; Cushman, W.C.; Genuth, S.; Ismail-Beigi, F.; Grimm, R.H., Jr; Probstfield, J.L.; Simons-Morton, D.G.; Friedewald, W.T. Effects of intensive glucose lowering in type 2 diabetes. N. Engl. J. Med., 2008, 358(24), 2545-2559.
[http://dx.doi.org/10.1056/NEJMoa0802743] [PMID: 18539917]
[47]
Chawla, A.; Chawla, R.; Bhasin, G.K.; Soota, K. Profile of adolescent diabetics in North Indian population. J. Clin. Diabetol, 2014, 1, 1-3.
[48]
Krentz, A.J.; Clough, G.; Byrne, C.D. Interactions between microvascular and macrovascular disease in diabetes: pathophysiology and therapeutic implications. Diabetes Obes. Metab., 2007, 9(6), 781-791.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00670.x] [PMID: 17924862]
[49]
Al-Wakeel, J.S.; Hammad, D.; Al Suwaida, A.; Mitwalli, A.H.; Memon, N.A.; Sulimani, F. Microvascular and macrovascular complications in diabetic nephropathy patients referred to nephrology clinic. Saudi J. Kidney Dis. Transpl., 2009, 20(1), 77-85.
[PMID: 19112222]
[50]
Matheus, A.S.; Gomes, M.B. Early aggressive macrovascular disease and type 1 diabetes mellitus without chronic complications: a case report. BMC Res. Notes, 2013, 6, 222.
[http://dx.doi.org/10.1186/1756-0500-6-222] [PMID: 23742649]
[51]
Kadir, M.F.; Bin Sayeed, M.S.; Shams, T.; Mia, M.M.K. Ethnobotanical survey of medicinal plants used by Bangladeshi traditional health practitioners in the management of diabetes mellitus. J. Ethnopharmacol., 2012, 144(3), 605-611.
[http://dx.doi.org/10.1016/j.jep.2012.09.050] [PMID: 23063956]
[52]
American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care, 2013, 36(4), 1033-1046.
[http://dx.doi.org/10.2337/dc12-2625] [PMID: 23468086]
[53]
Kanaya, A.M.; Herrington, D.; Vittinghoff, E.; Ewing, S.K.; Liu, K.; Blaha, M.J.; Dave, S.S.; Qureshi, F.; Kandula, N.R. Understanding the high prevalence of diabetes in U.S. south Asians compared with four racial/ethnic groups: the MASALA and MESA studies. Diabetes Care, 2014, 37(6), 1621-1628.
[http://dx.doi.org/10.2337/dc13-2656] [PMID: 24705613]
[54]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[55]
Mather, H.M.; Keen, H. The Southall Diabetes Survey: prevalence of known diabetes in Asians and Europeans. Br. Med. J. (Clin. Res. Ed.), 1985, 291(6502), 1081-1084.
[http://dx.doi.org/10.1136/bmj.291.6502.1081] [PMID: 3931804]
[56]
Census update. Available from: http://www. statistics.gov.uk/statbase/ [Accessed May 03, 2020
[57]
Erens, B.; Primatesta, P.; Prior, G. The Health Survey for England. In: The Health of Minority Ethnic Groups'99 Methodology & Documentation;; The Stationery Office: London., 2001; 2, .
[58]
Mukhopadhyay, B.; Forouhi, N.G.; Fisher, B.M.; Kesson, C.M.; Sattar, N. A comparison of glycaemic and metabolic control over time among South Asian and European patients with Type 2 diabetes: results from follow-up in a routine diabetes clinic. Diabet. Med., 2006, 23(1), 94-98.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01735.x] [PMID: 16409573]
[59]
Ramachandran, A.; Ma, R.C.; Snehalatha, C. Diabetes in Asia. Lancet, 2010, 375(9712), 408-418.
[http://dx.doi.org/10.1016/S0140-6736(09)60937-5] [PMID: 19875164]
[60]
Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed., 2012, 2(4), 320-330.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X] [PMID: 23569923]
[61]
Diabetes. Available from: https://www.who.int/health-topics/diabetes[Accessed April 06, 2020
[62]
Bhatia, V.; Srivastava, S.P.; Srivastava, R.; Mishra, A.; Narender, T.; Maurya, R.; Srivastava, A.K. Antihyperglycaemic and aldose reductase inhibitory potential of Acacia catechu hard wood and Tectona grandis leaves. Med. Chem. Res., 2011, 20, 1724-1731.
[http://dx.doi.org/10.1007/s00044-010-9473-4]
[63]
Deepthi, B.; Sowjanya, K.; Lidiya, B. A modern review of diabetes mellitus: an annihilatory metabolic disorder. J. In SilicoIn Vitro Pharmacol, 2017, 3, 1.
[64]
Steppel, J.H.; Horton, E.S. Beta-cell failure in the pathogenesis of type 2 diabetes mellitus. Curr. Diab. Rep., 2004, 4(3), 169-175.
[http://dx.doi.org/10.1007/s11892-004-0019-3] [PMID: 15132880]
[65]
Nathan, D.M.; Buse, J.B.; Davidson, M.B.; Heine, R.J.; Holman, R.R.; Sherwin, R.; Zinman, B. Management of hyperglycemia in type 2 diabetes: A consensus algorithm for the initiation and adjustment of therapy: a consensus statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 2006, 29(8), 1963-1972.
[http://dx.doi.org/10.2337/dc06-9912] [PMID: 16873813]
[66]
Deacon, C.F.; Ahrén, B.; Holst, J.J. Inhibitors of dipeptidyl peptidase IV: a novel approach for the prevention and treatment of Type 2 diabetes? Expert Opin. Investig. Drugs, 2004, 13(9), 1091-1102.
[http://dx.doi.org/10.1517/13543784.13.9.1091] [PMID: 15330741]
[67]
Ahrén, B. Inhibition of dipeptidyl peptidase-4 (DPP-4) – a novel approach to treat type 2 diabetes. Curr. Enzym. Inhib., 2005, 1, 65-73.
[http://dx.doi.org/10.2174/1573408052952667]
[68]
Holst, J.J.; Deacon, C.F. Glucagon-like peptide-1 mediates the therapeutic actions of DPP-IV inhibitors. Diabetologia, 2005, 48(4), 612-615.
[http://dx.doi.org/10.1007/s00125-005-1705-7] [PMID: 15759106]
[69]
Ahrén, B. Vildagliptin: an inhibitor of dipeptidyl peptidase-4 with antidiabetic properties. Expert Opin. Investig. Drugs, 2006, 15(4), 431-442.
[http://dx.doi.org/10.1517/13543784.15.4.431] [PMID: 16548792]
[70]
Bell, D.S.H. Practical considerations and guidelines for dosing sulfonylureas as monotherapy or combination therapy. Clin. Ther., 2004, 26(11), 1714-1727.
[http://dx.doi.org/10.1016/j.clinthera.2004.10.014] [PMID: 15639686]
[71]
Rendell, M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs, 2004, 64(12), 1339-1358.
[http://dx.doi.org/10.2165/00003495-200464120-00006] [PMID: 15200348]
[72]
Diabetes medication side effects. Available from: http://www.diabetes.co.uk/features/diabetes-medication-side-effects.html [Accessed April 26, 2020
[73]
Internal Clinical Guidelines Team. Type 2 Diabetes in Adults: Management; National Institute for Health and Care Excellence: London, 2015, p. 28.
[74]
Standards of medical care in diabetes-2016: summary of revisions. Diabetes Care, 2016, 39(Suppl. 1), S4-S5.
[http://dx.doi.org/10.2337/dc16-S003] [PMID: 26696680]
[75]
Kalra, S.; Agrawal, N. Diabetes and HIV: current understanding and future perspectives. Curr. Diab. Rep., 2013, 13(3), 419-427.
[http://dx.doi.org/10.1007/s11892-013-0369-9] [PMID: 23446780]
[76]
Sukhija, R.; Prayaga, S.; Marashdeh, M.; Bursac, Z.; Kakar, P.; Bansal, D.; Sachdeva, R.; Kesan, S.H.; Mehta, J.L. Effect of statins on fasting plasma glucose in diabetic and nondiabetic patients. J. Investig. Med., 2009, 57(3), 495-499.
[http://dx.doi.org/10.2310/JIM.0b013e318197ec8b] [PMID: 19188844]
[77]
Do I Need to Change My Type 2 Diabetes Medication. Available from: https://www.webmd.com/diabetes/change-type-2-diabetes-meds [Accessed April 26, 2020
[78]
Vaidya, A.D.B.; Devasagayam, T.P.A. Current status of herbal drugs in India: an overview. J. Clin. Biochem. Nutr., 2007, 41(1), 1-11.
[http://dx.doi.org/10.3164/jcbn.2007001] [PMID: 18392106]
[79]
Venkatesh, S.; Madhava Reddy, B.; Dayanand Reddy, G.; Mullangi, R.; Lakshman, M. Antihyperglycemic and hypolipidemic effects of Helicteres isora roots in alloxan-induced diabetic rats: a possible mechanism of action. J. Nat. Med., 2010, 64(3), 295-304.
[http://dx.doi.org/10.1007/s11418-010-0406-9] [PMID: 20238178]
[80]
Butler, M.S.; Buss, A.D. Natural products--the future scaffolds for novel antibiotics? Biochem. Pharmacol., 2006, 71(7), 919-929.
[http://dx.doi.org/10.1016/j.bcp.2005.10.012] [PMID: 16289393]
[81]
Gothai, S.; Ganesan, P.; Park, S.Y.; Fakurazi, S.; Choi, D.K.; Arulselvan, P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: inflammation as a target. Nutrients, 2016, 8(8), 461-498.
[http://dx.doi.org/10.3390/nu8080461] [PMID: 27527213]
[82]
Maurya, A.; Kalani, K.; Verma, S.C.; Singh, R. Vacuum liquid chromatography: simple, efficient and versatile separation technique for natural products. Org. Med. Chem. I.J., 2018, 7(2), 80-82.
[http://dx.doi.org/10.19080/OMCIJ.2018.07.555710]
[83]
Gupta, S.; Khanna, V.K.; Maurya, A.; Bawankule, D.U.; Shukla, R.K.; Pal, A.; Srivastava, S.K. Bioactivity guided isolation of antipsychotic constituents from the leaves of Rauwolfia tetraphylla L. Fitoterapia, 2012, 83(6), 1092-1099.
[http://dx.doi.org/10.1016/j.fitote.2012.04.029] [PMID: 22579842]
[84]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[85]
Phillipson, J.D. Phytochemistry and medicinal plants. Phytochemistry, 2001, 56(3), 237-243.
[http://dx.doi.org/10.1016/S0031-9422(00)00456-8] [PMID: 11243450]
[86]
Maurya, A. hemical investigation and development of validated analytical methods for some selected medicinal plants. RML Avadh University, PhD Thesis, Faizabad, India.
[87]
Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P.; Devasagayam, A. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40(3), 163-173.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[88]
Soon, Y.Y.; Tan, B.K.H. Evaluation of the hypoglycemic and anti-oxidant activities of Morinda officinalis in streptozotocin-induced diabetic rats. Singapore Med. J., 2002, 43(2), 077-085.
[PMID: 11993894]
[89]
Powers, A.C. Diabetes mellitus. In: Harrison’s Principles of Internal Medicine, 16th ed; Kasper, D.L.; Fauci, A.S.; Longo, D.L.; Braunwald, E.; Hauser, S.L.; Jameson, J.L., Eds.; McGraw-Hill Medical Publishing Division: New York, 2005; pp. 2152-2180.
[90]
Colagiuri, R. Diabetes: a pandemic, a development issue or both? Expert Rev. Cardiovasc. Ther., 2010, 8(3), 305-309.
[http://dx.doi.org/10.1586/erc.10.12] [PMID: 20222807]
[91]
Feher, M.; Schmidt, J.M. Property distributions: differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput. Sci., 2003, 43(1), 218-227.
[http://dx.doi.org/10.1021/ci0200467] [PMID: 12546556]
[92]
Kingston, D.G.I. Successful drug discovery from natural products: methods and results. 11th NAPRECA Symposium Book of Proceedings, Antananarivo, Madagascar2006.
[93]
Ortholand, J.Y.; Ganesan, A. Natural products and combinatorial chemistry: back to the future. Curr. Opin. Chem. Biol., 2004, 8(3), 271-280.
[http://dx.doi.org/10.1016/j.cbpa.2004.04.011] [PMID: 15183325]
[94]
Nurmikko, T.J.; Serpell, M.G.; Hoggart, B.; Toomey, P.J.; Morlion, B.J.; Haines, D. Sativex successfully treats neuropathic pain characterised by allodynia: a randomised, double-blind, placebo-controlled clinical trial. Pain, 2007, 133(1-3), 210-220.
[http://dx.doi.org/10.1016/j.pain.2007.08.028] [PMID: 17997224]
[95]
Patwardhan, B.; Hooper, M. Ayurveda and future drug development. Int. J. Altern. Complement. Med., 1992, 10, 9-11.
[96]
Craig, M.E.; Hattersley, A.; Donaghue, K.C. Definition, epidemiology and classification of diabetes in children and adolescents. Pediatr. Diabetes, 2009, 10(Suppl. 12), 3-12.
[http://dx.doi.org/10.1111/j.1399-5448.2009.00568.x] [PMID: 19754613]
[97]
Thévenod, F. Pathophysiology of diabetes mellitus type 2: Roles of obesity, insulin resistance and β-cell dysfunction. Front Diab. Basel. Karger., 2008, 19, 1-18.
[98]
Sheetz, M.J.; King, G.L. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA, 2002, 288(20), 2579-2588.
[http://dx.doi.org/10.1001/jama.288.20.2579] [PMID: 12444865]
[99]
Jung, H.A.; Islam, M.D.; Kwon, Y.S.; Jin, S.E.; Son, Y.K.; Park, J.J.; Sohn, H.S.; Choi, J.S. Extraction and identification of three major aldose reductase inhibitors from Artemisia montana. Food Chem. Toxicol., 2011, 49(2), 376-384.
[http://dx.doi.org/10.1016/j.fct.2010.11.012] [PMID: 21092751]
[100]
Patel, O.P.; Mishra, A.; Maurya, R.; Saini, D.; Pandey, J.; Taneja, I.; Raju, K.S.; Kanojiya, S.; Shukla, S.K.; Srivastava, M.N.; Wahajuddin, M.; Tamrakar, A.K.; Srivastava, A.K.; Yadav, P.P. Naturally occurring Carbazole alkaloids from Murraya koenigii as potential anti-diabetic agents. J. Nat. Prod., 2016, 79(5), 1276-1284.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00883] [PMID: 27136692]
[101]
Fröde, T.S.; Medeiros, Y.S. Animal models to test drugs with potential antidiabetic activity. J. Ethnopharmacol., 2008, 115(2), 173-183.
[http://dx.doi.org/10.1016/j.jep.2007.10.038] [PMID: 18068921]
[102]
Warjeet, S.L. Traditional medicinal plants of Manipur as anti-diabetics. J. Med. Plants Res., 2011, 5, 677-687.
[103]
Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electron. Physician, 2016, 8(1), 1832-1842.
[http://dx.doi.org/10.19082/1832] [PMID: 26955456]
[104]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[105]
Maurya, A.; Verma, S.C. Natural products isolation: a challenge and redressal,Arc. Org. Inorg. Chem. Sci, 2018, 1
[http://dx.doi.org/10.32474/AOICS.2018.01.000117]
[106]
Trujillo, E.; Davis, C.; Milner, J. Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. J. Am. Diet. Assoc., 2006, 106(3), 403-413.
[http://dx.doi.org/10.1016/j.jada.2005.12.002] [PMID: 16503231]
[107]
Feng, X.; Liu, X.; Luo, Q.; Liu, B.F. Mass spectrometry in systems biology: an overview. Mass Spectrom. Rev., 2008, 27(6), 635-660.
[http://dx.doi.org/10.1002/mas.20182] [PMID: 18636545]
[108]
Brown, F.K. Chemo-informatics: what is it and how does it impact drug discovery. Annu. Rep. Med. Chem., 1998, 33, 375-384.
[http://dx.doi.org/10.1016/S0065-7743(08)61100-8]
[109]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[110]
Adam, S.A.E. Isolation and Identification of Antidiabetic Compounds from Brachylaena discolor DC, Master of Science Thesis, School of Chemistry and Physics University of KwaZulu-Natal Pietermaritzburg, 2017.
[111]
Dasgeb, B.; Kornreich, D.; McGuinn, K.; Okon, L.; Brownell, I.; Sackett, D.L. Colchicine: an ancient drug with novel applications. Br. J. Dermatol., 2018, 178(2), 350-356.
[http://dx.doi.org/10.1111/bjd.15896] [PMID: 28832953]
[112]
Isah, T. Natural sources of taxol. Br. J. Pharmacol., 2015, 6, 214-227.
[http://dx.doi.org/10.9734/BJPR/2015/16293]
[113]
Dewanjee, S.; Das, A.K.; Sahu, R.; Gangopadhyay, M. Antidiabetic activity of Diospyros peregrina fruit: effect on hyperglycemia, hyperlipidemia and augmented oxidative stress in experimental type 2 diabetes. Food Chem. Toxicol., 2009, 47(10), 2679-2685.
[http://dx.doi.org/10.1016/j.fct.2009.07.038] [PMID: 19660513]
[114]
Legault, J.; Pichette, A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol., 2007, 59(12), 1643-1647.
[http://dx.doi.org/10.1211/jpp.59.12.0005] [PMID: 18053325]
[115]
Osadebe, P.O.; Odoh, E.U.; Uzor, P.F. Natural products as potential sources of antidiabetic drugs. Br. J. Pharm. Res., 2014, 4, 2075-2095.
[http://dx.doi.org/10.9734/BJPR/2014/8382]
[116]
Tang, G.Y.; Li, X.J.; Zhang, H.Y. Antidiabetic components contained in vegetables and legumes. Molecules, 2008, 13(5), 1189-1194.
[http://dx.doi.org/10.3390/molecules13051189] [PMID: 18560337]
[117]
Liu, I.M.; Tzeng, T.F.; Liou, S.S.; Lan, T.W. Improvement of insulin sensitivity in obese Zucker rats by myricetin extracted from Abelmoschus moschatus. Planta Med., 2007, 73(10), 1054-1060.
[http://dx.doi.org/10.1055/s-2007-981577] [PMID: 17694473]
[118]
Krenisky, J.M.; Luo, J.; Reed, M.J.; Carney, J.R. Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubescens (Fabaceae), a Peruvian medicinal plant used for the treatment of diabetes. Biol. Pharm. Bull., 1999, 22(10), 1137-1140.
[http://dx.doi.org/10.1248/bpb.22.1137] [PMID: 10549873]
[119]
Luo, J.; Chuang, T.; Cheung, J.; Quan, J.; Tsai, J.; Sullivan, C.; Hector, R.F.; Reed, M.J.; Meszaros, K.; King, S.R.; Carlson, T.J.; Reaven, G.M. Masoprocol (nordihydroguaiaretic acid): a new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). Eur. J. Pharmacol., 1998, 346(1), 77-79.
[http://dx.doi.org/10.1016/S0014-2999(98)00139-3] [PMID: 9617755]
[120]
Basnet, P.; Kadota, S.; Shimizu, M.; Takata, Y.; Kobayashi, M.; Namba, T. Bellidifolin stimulates glucose uptake in rat 1 fibroblasts and ameliorates hyperglycemia in streptozotocin (STZ)-induced diabetic rats. Planta Med., 1995, 61(5), 402-405.
[http://dx.doi.org/10.1055/s-2006-958124] [PMID: 7480198]
[121]
Glombitza, K.W.; Mahran, G.H.; Mirhom, Y.W.; Michel, K.G.; Motawi, T.K. Hypoglycemic and antihyperglycemic effects of Zizyphus spina-christi in rats. Planta Med., 1994, 60(3), 244-247.
[http://dx.doi.org/10.1055/s-2006-959468] [PMID: 8073092]
[122]
Murakami, C.; Myoga, K.; Kasai, R.; Ohtani, K.; Kurokawa, T.; Ishibashi, S.; Dayrit, F.; Padolina, W.G.; Yamasaki, K. Screening of plant constituents for effect on glucose transport activity in Ehrlich ascites tumour cells. Chem. Pharm. Bull. (Tokyo), 1993, 41(12), 2129-2131.
[http://dx.doi.org/10.1248/cpb.41.2129] [PMID: 8118906]
[123]
Breitmaier, E.; Yarla, N.S. ”Sesquiterpenes”. In: Terpenes: Flavors, Fragrances; Wiley: Hoboken, 2006.
[http://dx.doi.org/10.1002/9783527609949.ch3]
[124]
Putta, S.; Yarla, N.S.; Kilari, E.K.; Surekha, C.; Aliev, G.; Divakara, M.B.; Santosh, M.S.; Ramu, R.; Zameer, F.; Mn, N.P.; Chintala, R.; Rao, P.V.; Shiralgi, Y.; Dhananjaya, B.L. Therapeutic potentials of triterpenes in diabetes and its associated complications. Curr. Top. Med. Chem., 2016, 16(23), 2532-2542.
[http://dx.doi.org/10.2174/1568026616666160414123343] [PMID: 27086788]
[125]
Chen, H.; Yang, Y.; Xue, J.; Wei, J.; Zhang, Z.; Chen, H. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) gilg trees. Molecules, 2011, 16(6), 4884-4896.
[http://dx.doi.org/10.3390/molecules16064884] [PMID: 21677602]
[126]
Eurlings, M.C.M. Gravendeel, B. TrnL-trnF sequence data imply paraphyly of Aquilaria and Gyrinops (Thymelaeaceae) and provide new perspectives for agarwood identification. Plant Syst. Evol., 2005, 254, 1-12.
[http://dx.doi.org/10.1007/s00606-005-0312-x]
[127]
Naef, R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: a review. Flav. Frag. J., 2011, 26, 73-87.
[http://dx.doi.org/10.1002/ffj.2034]
[128]
Sesquiterpene Lactones and their toxicity to livestock". Cornell CALS. Cornell University. Retrieved, 29 December, 2018.
[129]
Simpson, T.J.; Ahmed, S.A.; Ruper, M.C.; Scott, F.E. Sadler, Ian, H. Biosynthesis of polyketide-terpenoid (meroterpenoid) metabolites andibenin B and andilesin A in Aspergillus variecolor. Tetrahedron, 1997, 53, 4013-4034.
[http://dx.doi.org/10.1016/S0040-4020(97)00015-X]
[130]
Davis, E.M.; Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top. Curr. Med., 2000, 209, 53-95.
[http://dx.doi.org/10.1007/3-540-48146-X_2]
[131]
Chizzola, R. Regular Monoterpenes and Sesquiterpenes (Essential Oils). In: Natural Products; Springer: Berlin, 2015; pp. 2973-3008.
[132]
Supriyo, S.; Sumit, K. Sesquiterpene: A versatile Molecule. J. Pharm. Res., 2012, 5, 4182-4185.
[133]
Bartikova, H.; Hanusova, V.; Skalova, L.; Ambroz, M.; Bousova, I. Antioxidant, pro-oxidant and other biological activities of sesquiterpenes. Curr. Top. Med. Chem., 2014, 14(22), 2478-2494.
[http://dx.doi.org/10.2174/1568026614666141203120833] [PMID: 25478887]
[134]
Cheuka, P.M.; Mayoka, G.; Mutai, P.; Chibale, K. The role of natural products in drug discovery and development against neglected tropical diseases. Molecules, 2016, 22(1), 1-41.
[http://dx.doi.org/10.3390/molecules22010058] [PMID: 28042865]
[135]
Maria, P.; Ortiz, C.; Wei, M.Q. Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agents of a potential anticancer drug. J. Biomed. Biotechnol., 2012, 247597
[http://dx.doi.org/10.1155/2012/247597]
[136]
Ilic, A.; Biological Activities of selected Mono-and Sesquiterpenes: Possible Uses in Medicine, Master of Pharmacy Thesis, Submitted in University of Vienna 2013.
[137]
Wattenberg, L.W. Inhibition of azoxymethane-induced neoplasia of the large bowel by 3-hydroxy-3,7,11-trimethyl-1,6,10-dodecatriene (nerolidol). Carcinogenesis, 1991, 12(1), 151-152.
[http://dx.doi.org/10.1093/carcin/12.1.151] [PMID: 1988176]
[138]
Inoue, Y.; Shiraishi, A.; Hada, T.; Hirose, K.; Hamashima, H.; Shimada, J. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. FEMS Microbiol. Lett., 2004, 237(2), 325-331.
[http://dx.doi.org/10.1111/j.1574-6968.2004.tb09714.x] [PMID: 15321680]
[139]
Seki, T.; Kokuryo, T.; Yokoyama, Y.; Suzuki, H.; Itatsu, K.; Nakagawa, A.; Mizutani, T.; Miyake, T.; Uno, M.; Yamauchi, K.; Nagino, M. Antitumor effects of α-bisabolol against pancreatic cancer. Cancer Sci., 2011, 102(12), 2199-2205.
[http://dx.doi.org/10.1111/j.1349-7006.2011.02082.x] [PMID: 21883695]
[140]
Kim, D.Y.; Choi, B.Y. Costunolide-A Bioactive sesquiterpene lactone with diverse therapeutic potential. Int. J. Mol. Sci., 2019, 20(12), 2926.
[http://dx.doi.org/10.3390/ijms20122926] [PMID: 31208018]
[141]
Ezzat, S.M.; Bishbishy, M.H.E.; Habtemariam, S.; Salehi, B.; Sharifi-Rad, M.; Martins, N.; Sharifi-Rad, J. Looking at marine-derived bioactive molecules as upcoming anti-diabetic agents: a special emphasis on ptp1b inhibitors. Molecules, 2018, 23(12), 3334.
[http://dx.doi.org/10.3390/molecules23123334] [PMID: 30558294]
[142]
Zhang, Y.; Li, Y.; Guo, Y.W.; Jiang, H.L.; Shen, X. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases. Acta Pharmacol. Sin., 2009, 30(3), 333-345.
[http://dx.doi.org/10.1038/aps.2009.5] [PMID: 19262557]
[143]
Basha, R.H.; Sankaranarayanan, C. β-Caryophyllene, a natural sesquiterpene, modulates carbohydrate metabolism in streptozotocin-induced diabetic rats. Acta Histochem., 2014, 116(8), 1469-1479.
[http://dx.doi.org/10.1016/j.acthis.2014.10.001] [PMID: 25457874]
[145]
Maurya, A.; Khan, F.; Bawankule, D.U.; Yadav, D.K.; Srivastava, S.K. QSAR, docking and in vivo studies for immunomodulatory activity of isolated triterpenoids from Eucalyptus tereticornis and Gentiana kurroo. Eur. J. Pharm. Sci., 2012, 47(1), 152-161.
[http://dx.doi.org/10.1016/j.ejps.2012.05.009] [PMID: 22659375]
[146]
Ubillas, R.P.; Mendez, C.O.; Jolad, S.D. Luo1, J.; King, S.R.; Carlso, T.J.; Fort, D.M. Antihyperglycemic Furanosesquiterpenes from Commiphor amyrrha. Planta Med., 1999, 65, 778-779.
[http://dx.doi.org/10.1055/s-2006-960870] [PMID: 10630129]
[147]
Inman, W.D.; Luo, J.; Jolad, S.D.; King, S.R.; Cooper, R. Antihyperglycemic sesquiterpenes from Psacalium decompositum. J. Nat. Prod., 1999, 62(8), 1088-1092.
[http://dx.doi.org/10.1021/np990023v] [PMID: 10479309]
[148]
Gutiérrez, R.M.P.; Ramirez, A.M. Hypoglycemic Effects of sesquiterpene lactones from Byrsonima crassifolia. Food Sci. Biotechnol., 2016, 25(4), 1135-1145.
[http://dx.doi.org/10.1007/s10068-016-0182-8] [PMID: 30263386]
[149]
Sharma, S.; Chattopadhyay, S.K.; Yadav, D.K.; Khan, F.; Mohanty, S.; Maurya, A.; Bawankule, D.U. QSAR, docking and in vitro studies for anti-inflammatory activity of cleomiscosin A methyl ether derivatives. Eur. J. Pharm. Sci., 2012, 47(5), 952-964.
[http://dx.doi.org/10.1016/j.ejps.2012.09.008] [PMID: 23022518]
[150]
Onoja, S.O.; Nnadi, C.O.; Udem, S.C.; Anaga, A.O.; Aruh, O. Potential antidiabetic and antioxidant activities of a heliangolide sesquiterpene lactone isolated from Helianthus annuus L. leaves. Acta Pharm., 2020, 70(2), 215-226.
[http://dx.doi.org/10.2478/acph-2020-0019] [PMID: 31955145]
[151]
Chaturvedi, D.; Dwivedi, P.K. Recent Development of the Antidiabetic sesquiterpene lactones and their semisynthetic analogues. In: Discovery and Development of Antidiabetic Agents from Natural Products; Brahmachari, G., Ed.; Elsevier Science: Amsterdam, 2017; pp. 185-207.
[http://dx.doi.org/10.1016/B978-0-12-809450-1.00006-5]
[152]
Zhao, G.; Li, X.; Chen, W.; Xi, Z.; Sun, L. Three new sesquiterpenes from Tithonia diversifolia and their anti-hyperglycemic activity. Fitoterapia, 2012, 83(8), 1590-1597.
[http://dx.doi.org/10.1016/j.fitote.2012.09.007] [PMID: 22986291]
[153]
Amin, A.; Hanif, M.; Rafe, A.; Zaib, S.; Bakhsh, S.; Ramzan, M.; Zaman, A.; Rehman, F.U.; Iqbal, J.; Pieter, L. Sesquiterpene coumarins from Ferula narthex 15-lox, α-glucosidase inhibition and molecular docking studies. Rev. Bras. Farmacogn., 2020, 30, 12-17.
[http://dx.doi.org/10.1007/s43450-020-00029-1]