Recent Advances in Genome-wide Analyses of Plant Potassium Transporter Families

Page: [164 - 180] Pages: 17

  • * (Excluding Mailing and Handling)

Abstract

Plants require potassium (K+) as a macronutrient to support numerous physiological processes. Understanding how this nutrient is transported, stored, and utilized within plants is crucial for breeding crops with high K+ use efficiency. As K+ is not metabolized, cross-membrane transport becomes a rate-limiting step for efficient distribution and utilization in plants. Several K+ transporter families, such as KUP/HAK/KT and KEA transporters and Shaker-like and TPK channels, play dominant roles in plant K+ transport processes. In this review, we provide a comprehensive contemporary overview of our knowledge about these K+ transporter families in angiosperms, with a major focus on the genome-wide identification of K+ transporter families, subcellular localization, spatial expression, function and regulation. We also expanded the genome-wide search for the K+ transporter genes and examined their tissue-specific expression in Camelina sativa, a polyploid oil-seed crop with a potential to adapt to marginal lands for biofuel purposes and contribution to sustainable agriculture. In addition, we present new insights and emphasis on the study of K+ transporters in polyploids in an effort to generate crops with high K+ Utilization Efficiency (KUE).

Keywords: KUP/HAK/KT transporters, shaker-like channels, TPK channels, KEA transporters, subcellular localization, gene expression, function, Camelina sativa.

Graphical Abstract