Comparison of the Efficacy of HIV-1 Nef-Tat-Gp160-p24 Polyepitope Vaccine Candidate with Nef Protein in Different Immunization Strategies

Page: [142 - 156] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Objectives: One of the promising strategies for effective HIV-1 vaccine design involves finding the polyepitope immunogens using T cell epitopes.

Methods: Herein, an HIV-1 polyepitope construct (i.e., Nef-Tat-Gp160-P24) comprising of several epitopes from Nef, Tat, Gp160, and P24 proteins was designed. To improve its immunogenicity in BALB/c mice, cell-penetrating peptides (HR9 and MPG for DNA delivery, and LDP-NLS and Cy- LoP-1 for protein transfer), Montanide adjuvant, and heterologous DNA prime/polypeptide boost strategy were used. To compare the immunogenicity, Nef was utilized as a vaccine candidate. The levels of total IgG and its subclasses, cytokines, and Granzyme B were assessed using ELISA.

Results: Immunological studies showed that heterologous prime-boost regimens for both antigens could considerably augment the levels of IgG2a, IgG2b, IFN-γ, and Granzyme B directed toward Th1 and CTL immune responses in comparison with homologous prime-boost strategies. The levels of IFN-γ, IL-10, total IgG, IgG1, and IgG2b were drastically higher in groups immunized with Nef-Tat-Gp160-P24 in heterologous prime-boost regimens than those in groups immunized with Nef.

Conclusion: The use of the Nef-Tat-Gp160-P24 polyepitope immunogen in heterologous primeboost strategy could generate the mixture of Th1 and Th2 responses directed further toward Th1 response as a hopeful method for improvement of HIV-1 vaccine.

Keywords: HIV-1, Therapeutic vaccine, Polyepitope construct, Prime/boost strategy, Cell-penetrating peptides, Adjuvant.

Graphical Abstract

[1]
Alves, B.M.; Siqueira, J.D.; Prellwitz, I.M.; Botelho, O.M.; Da Hora, V.P.; Sanabani, S.; Recordon-Pinson, P.; Fleury, H.; Soares, E.A.; Soares, M.A. Estimating HIV-1 genetic diversity in Brazil through next-generation sequencing. Front. Microbiol., 2019, 10, 749.
[http://dx.doi.org/10.3389/fmicb.2019.00749] [PMID: 31024510]
[2]
Abdulla, F.; Adhikari, U.K.; Uddin, M.K.; Exploring, T. Exploring T & B-cell epitopes and designing multi-epitope subunit vaccine targeting integration step of HIV-1 lifecycle using immunoinformatics approach. Microb. Pathog., 2019, 137, 103791.
[http://dx.doi.org/10.1016/j.micpath.2019.103791] [PMID: 31606417]
[3]
Trovato, M.; D’Apice, L.; Prisco, A.; De Berardinis, P. HIV vaccination: a roadmap among advancements and concerns. Int. J. Mol. Sci., 2018, 19(4), 1241.
[http://dx.doi.org/10.3390/ijms19041241] [PMID: 29671786]
[4]
Rudometov, A.P.; Chikaev, A.N.; Rudometova, N.B.; Antonets, D.V.; Lomzov, A.A.; Kaplina, O.N.; Ilyichev, A.A.; Karpenko, L.I. Artificial anti-HIV-1 immunogen comprising epitopes of broadly neutralizing antibodies 2F5, 10E8, and a peptide mimic of VRC01 discontinuous epitope. Vaccines (Basel), 2019, 7(3), 83.
[http://dx.doi.org/10.3390/vaccines7030083] [PMID: 31390770]
[5]
Wang, H.B.; Mo, Q.H.; Yang, Z. HIV vaccine research: the challenge and the way forward. J. Immunol. Res., 2015, 2015, 503978.
[http://dx.doi.org/10.1155/2015/503978] [PMID: 25861656]
[6]
Buchbinder, S.P.; Mehrotra, D.V.; Duerr, A.; Fitzgerald, D.W.; Mogg, R.; Li, D.; Gilbert, P.B.; Lama, J.R.; Marmor, M.; Del Rio, C.; McElrath, M.J.; Casimiro, D.R.; Gottesdiener, K.M.; Chodakewitz, J.A.; Corey, L.; Robertson, M.N. Step Study Protocol Team. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet, 2008, 372(9653), 1881-1893.
[http://dx.doi.org/10.1016/S0140-6736(08)61591-3] [PMID: 19012954]
[7]
McElrath, M.J.; De Rosa, S.C.; Moodie, Z.; Dubey, S.; Kierstead, L.; Janes, H.; Defawe, O.D.; Carter, D.K.; Hural, J.; Akondy, R.; Buchbinder, S.P.; Robertson, M.N.; Mehrotra, D.V.; Self, S.G.; Corey, L.; Shiver, J.W.; Casimiro, D.R. Step Study Protocol Team. HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet, 2008, 372(9653), 1894-1905.
[http://dx.doi.org/10.1016/S0140-6736(08)61592-5] [PMID: 19012957]
[8]
Fauci, A.S.; Johnston, M.I.; Dieffenbach, C.W.; Burton, D.R.; Hammer, S.M.; Hoxie, J.A.; Martin, M.; Overbaugh, J.; Watkins, D.I.; Mahmoud, A.; Greene, W.C. HIV vaccine research: the way forward. Science, 2008, 321(5888), 530-532.
[http://dx.doi.org/10.1126/science.1161000] [PMID: 18653883]
[9]
Shu, J.; Fan, X.; Ping, J.; Jin, X.; Hao, P. Designing peptide-based HIV vaccine for Chinese. BioMed Res. Int., 2014, 2014, 272950.
[http://dx.doi.org/10.1155/2014/272950] [PMID: 25136573]
[10]
Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; Benenson, M.; Gurunathan, S.; Tartaglia, J.; McNeil, J.G.; Francis, D.P.; Stablein, D.; Birx, D.L.; Chunsuttiwat, S.; Khamboonruang, C.; Thongcharoen, P.; Robb, M.L.; Michael, N.L.; Kunasol, P.; Kim, J.H. MOPH-TAVEG Investigators. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med., 2009, 361(23), 2209-2220.
[http://dx.doi.org/10.1056/NEJMoa0908492] [PMID: 19843557]
[11]
DeVico, A.L.; Gallo, R.C. Control of HIV-1 infection by soluble factors of the immune response. Nat. Rev. Microbiol., 2004, 2(5), 401-413.
[http://dx.doi.org/10.1038/nrmicro878] [PMID: 15100693]
[12]
Korber, B.; Fischer, W. T cell-based strategies for HIV-1 vaccines. Hum. Vaccin. Immunother., 2020, 16(3), 713-722.
[http://dx.doi.org/10.1080/21645515.2019.1666957] [PMID: 31584318]
[13]
Borrow, P.; Moody, M.A. Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies. Immunol. Rev., 2017, 275(1), 62-78.
[http://dx.doi.org/10.1111/imr.12504] [PMID: 28133804]
[14]
Haynes, B.F.; Shaw, G.M.; Korber, B.; Kelsoe, G.; Sodroski, J.; Hahn, B.H.; Borrow, P.; McMichael, A.J. HIV-host interactions: implications for vaccine design. Cell Host Microbe, 2016, 19(3), 292-303.
[http://dx.doi.org/10.1016/j.chom.2016.02.002] [PMID: 26922989]
[15]
Liu, H.; Shen, W.; Shu, J.; Kou, Z.; Jin, X. A novel polyepitope vaccine elicited HIV peptide specific CD4+ T cell responses in HLA-A2/DRB1 transgenic mice. PLoS One, 2017, 12(9), e0184207.
[http://dx.doi.org/10.1371/journal.pone.0184207] [PMID: 28863168]
[16]
De Groot, A.S.; Moise, L. New tools, new approaches and new ideas for vaccine development. Expert Rev. Vaccines, 2007, 6(2), 125-127.
[http://dx.doi.org/10.1586/14760584.6.2.125] [PMID: 17408360]
[17]
Reid, A.; Lall, N. Natural products as possible vaccine adjuvants for infectious diseases and cancer; Medicinal Plants, 2019, pp. 187-213.
[http://dx.doi.org/10.1007/978-3-030-31269-5_9]
[18]
Mata, E.; Salvador, A.; Igartua, M.; Hernández, R.M.; Pedraz, J.L. Malaria vaccine adjuvants: latest update and challenges in preclinical and clinical research. BioMed Res. Int., 2013, 2013, 282913.
[http://dx.doi.org/10.1155/2013/282913] [PMID: 23710439]
[19]
Kardani, K.; Bolhassani, A.; Shahbazi, S. Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine, 2016, 34(4), 413-423.
[http://dx.doi.org/10.1016/j.vaccine.2015.11.062] [PMID: 26691569]
[20]
Kardani, K.; Milani, A.; H Shabani, S.; Bolhassani, A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin. Drug Deliv., 2019, 16(11), 1227-1258.
[http://dx.doi.org/10.1080/17425247.2019.1676720] [PMID: 31583914]
[21]
Liu, B.R.; Lin, M.D.; Chiang, H.J.; Lee, H.J. Arginine-rich cell-penetrating peptides deliver gene into living human cells. Gene, 2012, 505(1), 37-45.
[http://dx.doi.org/10.1016/j.gene.2012.05.053] [PMID: 22669044]
[22]
Deshayes, S.; Gerbal-Chaloin, S.; Morris, M.; Aldrian-Herrada, G.; Charnet, P.; Divita, G.; Heitz, F. On the mechanism of non-endosomial peptide-mediated cellular delivery of nucleic acids. Biochimica et biophysica acta (BBA)-biomembranes, 2014, 1667, 141-147..
[http://dx.doi.org/10.1016/j.bbamem.2004.09.010]
[23]
Ponnappan, N.; Chugh, A. Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. Eur. J. Pharm. Biopharm., 2017, 114, 145-153.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.012] [PMID: 28159722]
[24]
Ponnappan, N.; Budagavi, D.P.; Chugh, A. CyLoP-1: Membrane-active peptide with cell-penetrating and antimicrobial properties. Biochim. Biophys. Acta Biomembr., 2017, 1859(2), 167-176.
[http://dx.doi.org/10.1016/j.bbamem.2016.11.002] [PMID: 27836642]
[25]
Namazi, F.; Bolhassani, A.; Sadat, S.M.; Irani, S. Delivery of HIV-1 polyepitope constructs using cationic and amphipathic cell penetrating peptides into mammalian cells. Curr. HIV Res., 2019, 17(6), 408-428. a
[http://dx.doi.org/10.2174/1570162X17666191121114522] [PMID: 31755394]
[26]
Khairkhah, N.; Namvar, A.; Kardani, K.; Bolhassani, A. Prediction of cross-clade HIV-1 T-cell epitopes using immunoinformatics analysis. Proteins, 2018, 86(12), 1284-1293.
[http://dx.doi.org/10.1002/prot.25609] [PMID: 30260061]
[27]
Kadkhodayan, S.; Jafarzade, B.S.; Sadat, S.M.; Motevalli, F.; Agi, E.; Bolhassani, A. Combination of cell penetrating peptides and heterologous DNA prime/protein boost strategy enhances immune responses against HIV-1 Nef antigen in BALB/c mouse model. Immunol. Lett., 2017, 188, 38-45.
[http://dx.doi.org/10.1016/j.imlet.2017.06.003] [PMID: 28602843]
[28]
Namazi, F.; Bolhassani, A.; Sadat, S.M.; Irani, S. In vitro delivery of HIV-1 Nef antigen by histidine-rich nona-arginine and Latarcin 1 peptide. Journal of Medical Microbiology and Infectious Diseases, 2019, 7, 107-115.
[http://dx.doi.org/10.29252/JoMMID.7.4.107]
[29]
Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. (Camb.), 2016, 7(2), 842-854.
[http://dx.doi.org/10.1039/C5SC03892H] [PMID: 28791117]
[30]
Bolesta, E.; Gzyl, J.; Wierzbicki, A.; Kmieciak, D.; Kowalczyk, A.; Kaneko, Y.; Srinivasan, A.; Kozbor, D. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens. Virology, 2005, 332(2), 467-479.
[http://dx.doi.org/10.1016/j.virol.2004.09.043] [PMID: 15680412]
[31]
Enany, S. Structural and functional analysis of hypothetical and conserved proteins of Clostridium tetani. J. Infect. Public Health, 2014, 7(4), 296-307.
[http://dx.doi.org/10.1016/j.jiph.2014.02.002] [PMID: 24802661]
[32]
Hasnain, S.E.; Ehtesham, N.Z.; Grover, S. Mycobacterium tuberculosis: molecular infection biology, pathogenesis, diagnostics and new interventions; Springer publishing: New York, United States, 2019.
[http://dx.doi.org/10.1007/978-981-32-9413-4]
[33]
Gangadhar, C.G.; Rohit, B.K.; Basappa, B.K. In silico characterization of beta-galactosidase using computational tools. Journal of Bioinformatics and Sequence Analysis, 2016, 8, 1-11.
[http://dx.doi.org/10.5897/JBSA2015.0101]
[34]
Hebditch, M.; Carballo-Amador, M.A.; Charonis, S.; Curtis, R.; Warwicker, J. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics, 2017, 33(19), 3098-3100.
[http://dx.doi.org/10.1093/bioinformatics/btx345] [PMID: 28575391]
[35]
Pandey, R.K.; Ojha, R.; Aathmanathan, V.S.; Krishnan, M.; Prajapati, V.K. Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine, 2018, 36(17), 2262-2272.
[http://dx.doi.org/10.1016/j.vaccine.2018.03.042] [PMID: 29571972]
[36]
Vartak, A.; Sucheck, S.J. Recent advances in subunit vaccine carriers. Vaccines (Basel), 2016, 4(2), 12.
[http://dx.doi.org/10.3390/vaccines4020012] [PMID: 27104575]
[37]
Karpenko, L.I.; Bazhan, S.I.; Eroshkin, A.M.; Antonets, D.V.; Chikaev, A.N.; Ilyichev, A.A. Artificial epitope-based immunogens in HIV-vaccine design; Advances in HIV and AIDS Control, 2018.
[http://dx.doi.org/10.5772/intechopen.77031]
[38]
Dhiman, G.; Lohia, N.; Jain, S.; Baranwal, M. Metadherin peptides containing CD4(+) and CD8(+) T cell epitopes as a therapeutic vaccine candidate against cancer. Microbiol. Immunol., 2016, 60(9), 646-652.
[http://dx.doi.org/10.1111/1348-0421.12436] [PMID: 27554419]
[39]
Adhikari, U.K.; Rahman, M.M. Overlapping CD8+ and CD4+ T- cell epitopes identification for the progression of epitope-based peptide vaccine from nucleocapsid and glycoprotein of emerging Rift Valley fever virus using immunoinformatics approach. Infect. Genet. Evol., 2017, 56, 75-91.
[http://dx.doi.org/10.1016/j.meegid.2017.10.022] [PMID: 29107145]
[40]
Jain, S.; Baranwal, M. Computational analysis in designing T cell epitopes enriched peptides of Ebola glycoprotein exhibiting strong binding interaction with HLA molecules. J. Theor. Biol., 2019, 465, 34-44.
[http://dx.doi.org/10.1016/j.jtbi.2019.01.016] [PMID: 30639295]
[41]
Meza, B.; Ascencio, F.; Sierra-Beltrán, A.P.; Torres, J.; Angulo, C. A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in silico approach. Infect. Genet. Evol., 2017, 49, 309-317.
[http://dx.doi.org/10.1016/j.meegid.2017.02.007] [PMID: 28185986]
[42]
Velders, M.P.; Weijzen, S.; Eiben, G.L.; Elmishad, A.G.; Kloetzel, P.M.; Higgins, T.; Ciccarelli, R.B.; Evans, M.; Man, S.; Smith, L.; Kast, W.M. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine. J. Immunol., 2001, 166(9), 5366-5373.
[http://dx.doi.org/10.4049/jimmunol.166.9.5366] [PMID: 11313372]
[43]
Wang, Q.M.; Sun, S.H.; Hu, Z.L.; Zhou, F.J.; Yin, M.; Xiao, C.J.; Zhang, J.C. Epitope DNA vaccines against tuberculosis: spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine. Scand. J. Immunol., 2004, 60(3), 219-225.
[http://dx.doi.org/10.1111/j.0300-9475.2004.01442.x] [PMID: 15320877]
[44]
Felli, C.; Vincentini, O.; Silano, M.; Masotti, A. HIV-1 Nef signaling in intestinal mucosa epithelium suggests the existence of an active inter-kingdom crosstalk mediated by exosomes. Front. Microbiol., 2017, 8, 1022.
[http://dx.doi.org/10.3389/fmicb.2017.01022] [PMID: 28642743]
[45]
Ensoli, B.; Bellino, S.; Tripiciano, A.; Longo, O.; Francavilla, V.; Marcotullio, S.; Cafaro, A.; Picconi, O.; Paniccia, G.; Scoglio, A.; Arancio, A.; Ariola, C.; Ruiz Alvarez, M.J.; Campagna, M.; Scaramuzzi, D.; Iori, C.; Esposito, R.; Mussini, C.; Ghinelli, F.; Sighinolfi, L.; Palamara, G.; Latini, A.; Angarano, G.; Ladisa, N.; Soscia, F.; Mercurio, V.S.; Lazzarin, A.; Tambussi, G.; Visintini, R.; Mazzotta, F.; Di Pietro, M.; Galli, M.; Rusconi, S.; Carosi, G.; Torti, C.; Di Perri, G.; Bonora, S.; Ensoli, F.; Garaci, E. Therapeutic immunization with HIV-1 Tat reduces immune activation and loss of regulatory T-cells and improves immune function in subjects on HAART. PLoS One, 2010, 5(11), e13540.
[http://dx.doi.org/10.1371/journal.pone.0013540] [PMID: 21085635]
[46]
Fernando, K.; Hu, H.; Ni, H.; Hoxie, J.A.; Weissman, D. Vaccine-delivered HIV envelope inhibits CD4(+) T-cell activation, a mechanism for poor HIV vaccine responses. Blood, 2007, 109(6), 2538-2544.
[http://dx.doi.org/10.1182/blood-2006-08-038661] [PMID: 17158230]
[47]
Ondondo, B.; Murakoshi, H.; Clutton, G.; Abdul-Jawad, S.; Wee, E.G.; Gatanaga, H.; Oka, S.; McMichael, A.J.; Takiguchi, M.; Korber, B.; Hanke, T. Novel conserved-region T-cell mosaic vaccine with high global HIV-1 coverage is recognized by protective responses in untreated infection. Mol. Ther., 2016, 24(4), 832-842.
[http://dx.doi.org/10.1038/mt.2016.3] [PMID: 26743582]
[48]
Hanke, T. Conserved immunogens in prime-boost strategies for the next-generation HIV-1 vaccines. Expert Opin. Biol. Ther., 2014, 14(5), 601-616.
[http://dx.doi.org/10.1517/14712598.2014.885946] [PMID: 24490585]
[49]
Borthwick, N.; Ahmed, T.; Ondondo, B.; Hayes, P.; Rose, A.; Ebrahimsa, U.; Hayton, E.J.; Black, A.; Bridgeman, A.; Rosario, M.; Hill, A.V.; Berrie, E.; Moyle, S.; Frahm, N.; Cox, J.; Colloca, S.; Nicosia, A.; Gilmour, J.; McMichael, A.J.; Dorrell, L.; Hanke, T. Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol. Ther., 2014, 22(2), 464-475.
[http://dx.doi.org/10.1038/mt.2013.248] [PMID: 24166483]
[50]
Pantaleo, G.; Graziosi, C.; Fauci, A.S. The role of lymphoid organs in the immunopathogenesis of HIV infection. AIDS, 1993, 7(Suppl. 1), S19-S23.
[http://dx.doi.org/10.1097/00002030-199301001-00003] [PMID: 8363784]
[51]
Oyarzún, P.; Kobe, B. Recombinant and epitope-based vaccines on the road to the market and implications for vaccine design and production. Hum. Vaccin. Immunother., 2016, 12(3), 763-767.
[http://dx.doi.org/10.1080/21645515.2015.1094595] [PMID: 26430814]
[52]
Walker, B.; McMichael, A. The T-cell response to HIV. Cold Spring Harb. Perspect. Med., 2012, 2(11), a007054-a007054.
[http://dx.doi.org/10.1101/cshperspect.a007054] [PMID: 23002014]
[53]
Rosa, D.S.; Ribeiro, S.P.; Cunha-Neto, E. CD4+ T cell epitope discovery and rational vaccine design. Arch. Immunol. Ther. Exp. (Warsz.), 2010, 58(2), 121-130.
[http://dx.doi.org/10.1007/s00005-010-0067-0] [PMID: 20155490]
[54]
Murakoshi, H.; Akahoshi, T.; Koyanagi, M.; Chikata, T.; Naruto, T.; Maruyama, R.; Tamura, Y.; Ishizuka, N.; Gatanaga, H.; Oka, S.; Takiguchi, M. Clinical control of HIV-1 by cytotoxic T cells specific for multiple conserved epitopes. J. Virol., 2015, 89(10), 5330-5339.
[http://dx.doi.org/10.1128/JVI.00020-15] [PMID: 25741000]
[55]
Yang, Y.; Zhu, Q.; Sun, W.; Guo, J.; Ning, X.; Li, Q.; Guo, Y.; Li, J.; Kou, Z.; Zhou, Y. A recombinant multi-epitope protein MEP1 elicits efficient long-term immune responses against HIV-1 infection. Hum. Vaccin. Immunother., 2017, 13(6), 1-9.
[http://dx.doi.org/10.1080/21645515.2017.1281488] [PMID: 28281860]
[56]
Kardani, K.; Hashemi, A.; Bolhassani, A. Comparative analysis of two HIV-1 multiepitope polypeptides for stimulation of immune responses in BALB/c mice. Mol. Immunol., 2020, 119, 106-122.
[http://dx.doi.org/10.1016/j.molimm.2020.01.013] [PMID: 32007753]
[57]
Lema, D.; Garcia, A.; De Sanctis, J.B. HIV vaccines: a brief overview. Scand. J. Immunol., 2014, 80(1), 1-11.
[http://dx.doi.org/10.1111/sji.12184] [PMID: 24813074]
[58]
Milani, A.; Bolhassani, A.; Shahbazi, S.; Motevalli, F.; Sadat, S.M.; Soleymani, S. Small heat shock protein 27: An effective adjuvant for enhancement of HIV-1 Nef antigen-specific immunity. Immunol. Lett., 2017, 191, 16-22.
[http://dx.doi.org/10.1016/j.imlet.2017.09.005] [PMID: 28917624]
[59]
Rostami, B.; Irani, S.; Bolhassani, A.; Cohan, R.A. Gene and protein delivery using four cell penetrating peptides for HIV-1 vaccine development. IUBMB Life, 2019, 71(10), 1619-1633.
[http://dx.doi.org/10.1002/iub.2107] [PMID: 31220406]
[60]
Habibzadeh, N.; Bolhassani, A.; Vahabpour, R.; Sadat, S. How can improve DNA vaccine modalities as a therapeutic approach against HIV infections? J. AIDS Clin. Res., 2015, 6
[http://dx.doi.org/10.4172/2155-6113.1000440]
[61]
Farhadi, T.; Ovchinnikov, R.; Ranjbar, M. In silico designing of some agonists of toll-like receptor 5 as a novel vaccine adjuvant candidates. Netw. Model. Anal. Health Inform. Bioinform., 2016, 5
[http://dx.doi.org/10.1007/s13721-016-0138-1]
[62]
Aucouturier, J.; Dupuis, L.; Deville, S.; Ascarateil, S.; Ganne, V. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev. Vaccines, 2002, 1(1), 111-118.
[http://dx.doi.org/10.1586/14760584.1.1.111] [PMID: 12908518]
[63]
Sugauchi, F.; Wang, R.Y.; Qiu, Q.; Jin, B.; Alter, H.J.; Shih, J.W. Vigorous hepatitis C virus-specific CD4+ and CD8+ T cell responses induced by protein immunization in the presence of Montanide ISA720 plus synthetic oligodeoxynucleotides containing immunostimulatory cytosine-guanine dinucleotide motifs. J. Infect. Dis., 2006, 193(4), 563-572.
[http://dx.doi.org/10.1086/499823] [PMID: 16425136]
[64]
Qiu, Q.; Wang, R.Y.; Jiao, X.; Jin, B.; Sugauchi, F.; Grandinetti, T.; Alter, H.J.; Shih, J.W. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants. Vaccine, 2008, 26(43), 5527-5534.
[http://dx.doi.org/10.1016/j.vaccine.2008.07.034] [PMID: 18675871]
[65]
Lu, S. Heterologous prime-boost vaccination. Curr. Opin. Immunol., 2009, 21(3), 346-351.
[http://dx.doi.org/10.1016/j.coi.2009.05.016] [PMID: 19500964]
[66]
Excler, J.L.; Kim, J.H. Novel prime-boost vaccine strategies against HIV-1. Expert Rev. Vaccines, 2019, 18(8), 765-779.
[http://dx.doi.org/10.1080/14760584.2019.1640117] [PMID: 31271322]
[67]
Delany, I.; Rappuoli, R.; De Gregorio, E. Vaccines for the 21st century. EMBO Mol. Med., 2014, 6(6), 708-720.
[http://dx.doi.org/10.1002/emmm.201403876] [PMID: 24803000]
[68]
Wang, S.; Kennedy, J.S.; West, K.; Montefiori, D.C.; Coley, S.; Lawrence, J.; Shen, S.; Green, S.; Rothman, A.L.; Ennis, F.A.; Arthos, J.; Pal, R.; Markham, P.; Lu, S. Cross-subtype antibody and cellular immune responses induced by a polyvalent DNA prime-protein boost HIV-1 vaccine in healthy human volunteers. Vaccine, 2008, 26(8), 1098-1110.
[http://dx.doi.org/10.1016/j.vaccine.2007.12.024] [PMID: 18243434]
[69]
Muthumani, K.; Wise, M.C.; Broderick, K.E.; Hutnick, N.; Goodman, J.; Flingai, S.; Yan, J.; Bian, C.B.; Mendoza, J.; Tingey, C.; Wilson, C.; Wojtak, K.; Sardesai, N.Y.; Weiner, D.B. HIV-1 Env DNA vaccine plus protein boost delivered by EP expands B- and T-cell responses and neutralizing phenotype in vivo. PLoS One, 2013, 8(12), e84234.
[http://dx.doi.org/10.1371/journal.pone.0084234] [PMID: 24391921]