Gold Nanoparticles as Efficient Catalysts in Organic Transformations

Page: [724 - 732] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

This review summarizes the utilization of gold nanoparticles as efficient catalysts for a variety of chemical transformations like oxidation, hydrogenation, and coupling reactions as compared to conventional catalytic materials. This review explores the gold nanoparticles-based catalysts for the liquid phase chemo-selective organic transformations which are proving to be evergreen reactions and have importance for industrial applications. Apart from organic transformation reactions, gold nanoparticles have been found to be applicable in removing the atmospheric contaminants and improving the efficiency of the fuel cells by removing the impurities of carbon monoxide.

Keywords: Gold nanoparticles, heterogeneous catalysis, oxidation, reduction, coupling reactions, pollution control.

Graphical Abstract

[1]
Astruc, D.; Lu, F.; Aranzaes, J.R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2005, 44(48), 7852-7872.
[http://dx.doi.org/10.1002/anie.200500766] [PMID: 16304662]
[2]
Jin, R. The impacts of nanotechnology on catalysis by precious metal nanoparticles. Nanotechnol. Rev., 2012, 1, 31-56.
[http://dx.doi.org/10.1515/ntrev-2011-0003 ]
[3]
Li, G.; Jin, R. Catalysis by gold nanoparticles: Carbon-carbon coupling reactions. Nanotechnol. Rev., 2013, 2, 529-545.
[http://dx.doi.org/10.1515/ntrev-2013-0020]
[4]
Bond, G.C.; Thompson, D.T. Catalysis by gold. Catal. Rev., 1999, 41, 319-388.
[http://dx.doi.org/10.1081/CR-100101171]
[5]
Bond, G.C.; Sermon, P.A.; Webb, G.; Buchanan, D.A.; Wells, P.B. Hydrogenation over supported gold catalysts. J. Chem. Soc. Chem. Commun., 1973, 444b.
[http://dx.doi.org/10.1039/c3973000444b]
[6]
Hutchings, G.J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal., 1985, 96, 292-295.
[http://dx.doi.org/10.1016/0021-9517(85)90383-5]
[7]
Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem. Lett., 1987, 16, 405-408.
[http://dx.doi.org/10.1246/cl.1987.405]
[8]
Dimitratos, N.; Hammond, C.; Kiely, C.J.; Hutchings, G.J. catalysis using colloidal-supported gold-based nanoparticles. Appl. Petrochem. Res., 2014, 4, 85-94.
[http://dx.doi.org/10.1007/s13203-014-0059-9]
[9]
Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev., 2008, 37(9), 2096-2126.
[http://dx.doi.org/10.1039/b707314n] [PMID: 18762848]
[10]
Haruta, M.; Yamada, N.; Kobayahsi, T.; Lijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal., 1989, 115, 301-309.
[http://dx.doi.org/10.1016/0021-9517(89)90034-1]
[11]
Hutchings, G. J. Catalysis: A golden future. Gold Bull., 1996, 29, 123-130.
[http://dx.doi.org/10.1007/BF03214746]
[12]
Nkosi, B.; Coville, N.J.; Hutchings, G.J. reactivation of a supported gold catalyst for acetylene hydrochlorination. J. Chem. Soc. Chem. Commun., 1988, 71-72.
[http://dx.doi.org/10.1039/c39880000071]
[13]
Bond, G.C.; Louis, C.; Thompson, D.T. Catalysis by Gold (Catalytic Science Series; Hutchings, G.J., Ed.; Imperial College Press: London, 2006, Vol. 6, p. 384.
[http://dx.doi.org/10.1142/p450]
[14]
Bond, G.C.; Thompson, D.T. status of catalysis by gold following an AURICAT workshop. Appl. Catal. A Gen., 2006, 302, 1-4.
[http://dx.doi.org/10.1016/j.apcata.2006.01.001]
[15]
Thompson, D.T. Nanoparticulate Au catalysts are active under mild conditions. Nano Today, 2007, 2, 40-43.
[http://dx.doi.org/10.1016/S1748-0132(07)70116-0]
[16]
Wani, I.A.; Khatoon, S.; Ganguly, A.; Ahmed, J.; Ahmad, T.; Manzoor, N. Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloids Surf. B Biointerfaces, 2013, 101, 243-250.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.001] [PMID: 23010026]
[17]
Ahmad, T.; Ganguli, A.K. Structural and dielectric characterization of nanocrystalline (Ba,Pb)ZrO3 developed by reverse micellar synthesis. J. Am. Ceram. Soc., 2006, 89(10), 3140-3146.
[http://dx.doi.org/10.1111/j.1551-2916.2006.01187.x]
[18]
Ganguli, A.K.; Vaidya, S.; Ahmad, T. Synthesis of nanocrystalline materials through reverse micelles: A versatile methodology for synthesis of complex metal oxides. Bull. Mater. Sci., 2008, 31(3), 415-419.
[http://dx.doi.org/10.1007/s12034-008-0065-6]
[19]
Wani, I.A.; Khatoon, S.; Ganguly, A.; Ahmed, J.; Ganguli, A.K.; Ahmad, T. Silver nanoparticles: Large scale solvothermal synthesis and optical properties. Mater. Res. Bull., 2010, 45, 1033-1038.
[http://dx.doi.org/10.1016/j.materresbull.2010.03.028]
[20]
Ahmad, T.; Khatoon, S.; Coolahan, K.; Lofland, S.E. Solvothermal synthesis, optical and magnetic properties of nanocrystalline Cd1-xMnxO (0.04 < x = 0.10) solid solutions. J. Alloys Compd., 2013, 558, 117-124.
[http://dx.doi.org/10.1016/j.jallcom.2012.12.159]
[21]
Khatoon, S.; Ahmad, T. synthesis, optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Mats. Sci. Engin. B, 2012, 2(6), 325-333.
[22]
Wani, I.A.; Ganguly, A.; Ahmed, J.; Ahmad, T. Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies. Mater. Lett., 2011, 65(3), 520-522.
[http://dx.doi.org/10.1016/j.matlet.2010.11.003]
[23]
Ahmad, T.; Phul, R. Magnetic iron oxide nanoparticles as contrast agents: Hydrothermal synthesis, characterization and properties. Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., 2015, 232, 111-145.
[http://dx.doi.org/10.4028/www.scientific.net/SSP.232.111]
[24]
Ahmad, T.; Shahazad, M.; Phul, R. Hydrothermal Synthesis, characterization and dielectric properties of zirconia nanoparticles. Mat. Sci. Engin. Int. J., 2017, 1(3), 1-5.
[25]
Ahmad, T.; Lone, I.H. Citrate Precursor synthesis and multifunctional properties of YCrO3 nanoparticles. New J. Chem., 2016, 40, 3216-3224.
[http://dx.doi.org/10.1039/C5NJ02763B]
[26]
Ahmad, T.; Phul, R.; Alam, P.; Lone, I.H.; Shahazad, M.; Ahmed, J.; Ahamad, T.; Alshehri, S.M. Dielectric, optical and enhanced photo-catalytic properties of CuCrO2 nanoparticles. RSC Adv.,, 2017, 7, 27549-27557.
[http://dx.doi.org/10.1039/C6RA26888A]
[27]
Ahmad, T.; Wani, I.A.; Manzoor, N.; Ahmed, J.; Kalam, A.; Al-Shihri, A.S. Structural characterization, antifungal activity and optical properties of gold nanoparticles prepared by reverse micelles. Adv. Sci. Lett., 2014, 20, 1631-1636.
[http://dx.doi.org/10.1166/asl.2014.5589]
[28]
Ahmad, T.; Wani, I.A.; Ahmed, J.; Al-Hartomy, O.A. Effect of gold ion concentration on size and properties of gold nanoparticles in tritonX-100 based inverse microemulsions. Appl. Nanosci., 2013, 4, 491-498.
[http://dx.doi.org/10.1007/s13204-013-0224-y]
[29]
Ahmad, T.; Wani, I.A.; Lone, I.H.; Ganguly, A.; Manzoor, N.; Ahmad, A.; Ahmed, J.; Al-Shihri, A.S. Antifungal activity of gold nanoparticles prepared by solvothermal method. Mater. Res. Bull., 2013, 48, 12-20.
[http://dx.doi.org/10.1016/j.materresbull.2012.09.069]
[30]
Wani, I.A.; Ahmad, T.; Manzoor, N. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloids Surf. B Biointerfaces, 2013, 101, 162-170.
[http://dx.doi.org/10.1016/j.colsurfb.2012.06.005] [PMID: 22796787]
[31]
Ahmad, T.; Wani, I.A.; Manzoor, N.; Ahmed, J.; Asiri, A.M. Biosynthesis, structural characterization and antimicrobial activity of gold and silver nanoparticles. Colloids Surf. B Biointerfaces, 2013, 107, 227-234.
[http://dx.doi.org/10.1016/j.colsurfb.2013.02.004] [PMID: 23500733]
[32]
Mihaly, M.; Fleancu, M.C.; Olteanu, N.L.; Bojin, D.; Meghea, A.; Enachescu, M. Synthesis of gold nanoparticles by microemulsion assisted photoreduction method. C. R. Chim., 2012, 15, 1012-1021.
[http://dx.doi.org/10.1016/j.crci.2012.09.013]
[33]
Chang, S.S.; Lee, C.L.; Wang, C.R.C. Gold nanorods: Electrochemical synthesis and optical properties. J. Phys. Chem. B, 1997, 101, 6661-6664.
[http://dx.doi.org/10.1021/jp971656q]
[34]
Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev., 2004, 104(1), 293-346.
[http://dx.doi.org/10.1021/cr030698+] [PMID: 14719978]
[35]
Lopez-Sanchez, J.A.; Dimitratos, N.; Miedziak, P.; Ntainjua, E.; Edwards, J.K.; Morgan, D.; Carley, A.F.; Tiruvalam, R.; Kiely, C.J.; Hutchings, G.J. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Phys. Chem. Chem. Phys., 2008, 10(14), 1921-1930.
[http://dx.doi.org/10.1039/b719345a] [PMID: 18368185]
[36]
Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett., 2010, 10(1), 30-35.
[http://dx.doi.org/10.1021/nl903062e] [PMID: 19928909]
[37]
Min, B.K.; Friend, C.M. Heterogeneous gold-based catalysis for green chemistry: low-temperature CO oxidation and propene oxidation. Chem. Rev., 2007, 107(6), 2709-2724.
[http://dx.doi.org/10.1021/cr050954d] [PMID: 17564483]
[38]
Mallat, T.; Baiker, A. Oxidation of alcohols with molecular oxygen on solid catalysts. Chem. Rev., 2004, 104(6), 3037-3058.
[http://dx.doi.org/10.1021/cr0200116] [PMID: 15186187]
[39]
Dimitratos, N.; Lopez-Sanchez, J.A.; Morgan, D.; Carley, A.F.; Tiruvalam, R.; Kiely, C.J.; Bethell, D.; Hutchings, G.J. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation. Phys. Chem. Chem. Phys., 2009, 11(25), 5142-5153.
[http://dx.doi.org/10.1039/b900151b] [PMID: 19562147]
[40]
Alabbad, S.; Adil, S.F.; Assal, M.E.; Khan, M.; Alwarthan, A.; Siddiqui, M.R.H. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol. Arab. J. Chem., 2014, 7(6), 1192-1198.
[http://dx.doi.org/10.1016/j.arabjc.2014.02.007]
[41]
Wang, L.C.; Liu, Y.M.; Chen, M.; Cao, Y.; He, H.Y.; Fan, K.N. MnO2 nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation. J. Phys. Chem. C, 2008, 112, 6981-6987.
[http://dx.doi.org/10.1021/jp711333t]
[42]
Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc., 2005, 127(26), 9374-9375.
[http://dx.doi.org/10.1021/ja052161e] [PMID: 15984857]
[43]
Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of electronic structures of Au clusters stabilized by poly(N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc., 2009, 131(20), 7086-7093.
[http://dx.doi.org/10.1021/ja810045y] [PMID: 19408934]
[44]
Mikami, Y.; Dhakshinamoorthy, A.; Alvaro, M.; García, H. Catalytic activity of unsupported gold nanoparticles. Catal. Sci. Technol., 2013, 3, 58-69.
[http://dx.doi.org/10.1039/C2CY20068F]
[45]
Takale, B.S.; Bao, M.; Yamamoto, Y. Gold nanoparticle (AuNPs) and gold nanopore (AuNPore) catalysts in organic synthesis. Org. Biomol. Chem., 2014, 12(13), 2005-2027.
[http://dx.doi.org/10.1039/c3ob42207k] [PMID: 24525525]
[46]
Zhao, R.; Ji, D.; Lv, G.; Qian, G.; Yan, L.; Wang, X.; Suo, J. A highly efficient oxidation of cyclohexane over Au/ZSM-5 molecular sieve catalyst with oxygen as oxidant. Chem. Commun. , 2004, 7, 904-905.
[http://dx.doi.org/10.1039/b315098d] [PMID: 15045122]
[47]
Berezin, I.V.; Denisov, E.T.; Emanuel, N.M. The Oxidation of Cyclohexane, 1st ed; Elsevier, 2013.
[48]
Carabineiro, S.A.C.; Martins, L.; Avalos-Borja, M.; Buijnsters, J.G.; Pombeiro, A.J.L.; Figueiredo, J.L. Gold nanoparticles supported on carbon materials for cyclohexane oxidation with hydrogen peroxide. Appl. Catal. A Gen., 2013, 467, 279-290.
[http://dx.doi.org/10.1016/j.apcata.2013.07.035]
[49]
Blaser, H-U.; Steiner, H.; Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem, 2009, 1, 210-221.
[http://dx.doi.org/10.1002/cctc.200900129]
[50]
Chen, Y.; Qiu, J.; Wang, X.; Xiu, J. Preparation and application of highly dispersed gold nanoparticles supported on silica for catalytic hydrogenation of aromatic nitro compounds. J. Catal., 2006, 242, 227-230.
[http://dx.doi.org/10.1016/j.jcat.2006.05.028]
[51]
Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science, 2006, 313(5785), 332-334.
[http://dx.doi.org/10.1126/science.1128383] [PMID: 16857934]
[52]
Tarek, M.; Fattah, A.; Wixtrom, A. Catalytic reduction of 4-nitrophenol using gold nanoparticles supported on carbon nanotubes. ECS J. Solid State Sci. Technol., 2014, 3, 18-20.
[http://dx.doi.org/10.1149/2.023404jss]
[53]
Serna, P.; Concepción, P.; Corma, A. Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies. J. Catal., 2009, 265, 19-25.
[http://dx.doi.org/10.1016/j.jcat.2009.04.004]
[54]
Li, M.; Chen, G. Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres. Nanoscale, 2013, 5(23), 11919-11927.
[http://dx.doi.org/10.1039/c3nr03521b] [PMID: 24129942]
[55]
Shibata, M.; Kawata, N.; Masumoto, T.; Kimura, H. Selective hydrogenation of unsaturated carbonyl compounds over an oxidized gold-zirconium alloy. J. Chem. Soc. Chem. Commun., 1988, 154-156.
[http://dx.doi.org/10.1039/C39880000154]
[56]
Bailie, J.; Hutchings, G. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Commun. , 1999, (21), 2151-2152.
[http://dx.doi.org/10.1039/a906538e]
[57]
Mohr, C.; Hofmeister, H.; Claus, P. The influence of real structure of gold catalysts in the partial hydrogenation of acrolein. J. Catal., 2003, 213, 86-94.
[http://dx.doi.org/10.1016/S0021-9517(02)00043-X]
[58]
Yang, Q.Y.; Zhu, Y.; Tian, L.; Xie, S.H.; Pei, Y.; Li, H.; Li, H.X.; Qiao, M.H.; Fan, K.N. Preparation and characterization of au-in/aptms-sba-15 catalysts for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol. Appl. Catal. A Gen., 2009, 369, 67-76.
[http://dx.doi.org/10.1016/j.apcata.2009.08.032]
[59]
Shi, H.; Xu, N.; Zhao, D.; Xu, B.Q. Immobilized PVA-stabilized gold nanoparticles on silica show an unusual selectivity in the hydrogenation of cinnamaldehyde. Catal. Commun., 2008, 9, 1949-1954.
[http://dx.doi.org/10.1016/j.catcom.2008.03.025]
[60]
Zhang, X.; Guo, Y.C.; Zhang, Z.C.; Gao, J.S.; Xu, C.M. High performance of carbon nanotubes confining gold nanoparticles for selective hydrogenation of 1, 3-butadiene and cinnamaldehyde. J. Catal., 2012, 292, 213-226.
[http://dx.doi.org/10.1016/j.jcat.2012.05.017]
[61]
Tian, Z.; Xiang, X.; Xie, L.; Li, F. Liquid-phase hydrogenation of cinnamaldehyde: Enhancing selectivity of supported gold catalysts by incorporation of cerium into the support. Ind. Eng. Chem. Res., 2012, 52(1), 288-296.
[http://dx.doi.org/10.1021/ie300847j]
[62]
Mitsudome, T.; Kaneda, K. Gold nanoparticle catalysts for selective hydrogenations. Green Chem., 2013, 15(10), 2636-2654.
[http://dx.doi.org/10.1039/c3gc41360h]
[63]
Tsunoyama, H.; Sakurai, H.; Ichikuni, N.; Negishi, Y.; Tsukuda, T. Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation: Application to aerobic homocoupling of phenylboronic acid in water. Langmuir, 2004, 20(26), 11293-11296.
[http://dx.doi.org/10.1021/la0478189] [PMID: 15595746]
[64]
Karimi, B.; Esfahani, F.K. Unexpected golden Ullmann reaction catalyzed by Au nanoparticles supported on Periodic Mesoporous Organosilica (PMO). Chem. Commun. (Camb.), 2011, 47(37), 10452-10454.
[http://dx.doi.org/10.1039/c1cc12566d] [PMID: 21850317]
[65]
Monopoli, A.; Cotugno, P.; Palazzo, G.; Ditaranto, N.; Mariano, B.; Cioffi, N.; Ciminale, F.; Nacci, A. Ullmann homocoupling catalysed by gold nanoparticles in water and ionic liquid. Adv. Synth. Catal., 2012, 354, 2777-2788.
[http://dx.doi.org/10.1002/adsc.201200422]
[66]
Dhital, R.N.; Murugadoss, A.; Sakurai, H. Dual roles of polyhydroxy matrices in the homocoupling of arylboronic acids catalyzed by gold nanoclusters under acidic conditions. Chem. Asian J., 2012, 7(1), 55-59.
[http://dx.doi.org/10.1002/asia.201100478] [PMID: 21984053]
[67]
Chaicharoenwimolkul, L.; Munmai, A.; Chairam, S.; Tewasekson, U.; Sapudom, S.; Lakliang, Y.; Somsook, E. Effect of stabilizing ligands bearing ferrocene moieties on the gold nanoparticle-catalyzed reactions of arylboronic acids. Tetrahedron Lett., 2008, 49, 7299-7302.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.040]
[68]
Han, J.; Liu, Y.; Guo, R. Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water. J. Am. Chem. Soc., 2009, 131(6), 2060-2061.
[http://dx.doi.org/10.1021/ja808935n] [PMID: 19170490]
[69]
Li, Y.; Fan, X.; Qi, J.; Ji, J.; Wang, S.; Zhang, G.; Zhang, F. Gold nanoparticles-graphene hybrids as active catalysts for suzuki reaction. Mater. Res. Bull., 2010, 45, 1413-1418.
[http://dx.doi.org/10.1016/j.materresbull.2010.06.041]
[70]
González-Arellano, C.; Abad, A.; Corma, A.; García, H.; Iglesias, M.; Sánchez, F. Catalysis by gold(I) and gold(III): A parallelism between homo- and heterogeneous catalysts for copper-free Sonogashira cross-coupling reactions. Angew. Chem. Int. Ed. Engl., 2007, 46(9), 1536-1538.
[http://dx.doi.org/10.1002/anie.200604746] [PMID: 17226890]
[71]
Li, P.; Wang, L.; Wang, M.; You, F. Gold (I) iodide catalyzed sonogashira reactions. Eur. J. Org. Chem., 2008, 2008, 5946-5951.
[http://dx.doi.org/10.1002/ejoc.200800765]
[72]
Hirner, J.J.; Shi, Y.; Blum, S.A. Organogold reactivity with palladium, nickel, and rhodium: Transmetalation, cross-coupling, and dual catalysis. Acc. Chem. Res., 2011, 44(8), 603-613.
[http://dx.doi.org/10.1021/ar200055y] [PMID: 21644576]
[73]
Robinson, P.S.; Khairallah, G.N.; da Silva, G.; Lioe, H.; O’Hair, R.A. Gold-mediated C-I bond activation of iodobenzene. Angew. Chem. Int. Ed. Engl., 2012, 51(16), 3812-3817.
[http://dx.doi.org/10.1002/anie.201108502] [PMID: 22344975]
[74]
Stratakis, M.; Garcia, H. Catalysis by supported gold nanoparticles: Beyond aerobic oxidative processes. Chem. Rev., 2012, 112(8), 4469-4506.
[http://dx.doi.org/10.1021/cr3000785] [PMID: 22690711]
[75]
Nutt, M.O.; Heck, K.N.; Alvarez, P.; Wong, M.S. Improved Pd-on-Au bimetallic nanoparticle catalysts for aqueous-phase trichloroethene hydrodechlorination. Appl. Catal. B, 2006, 69, 115-125.
[http://dx.doi.org/10.1016/j.apcatb.2006.06.005]
[76]
Chi, Y.S.; Lin, H.P.; Mou, C.Y. CO oxidation over gold nanocatalyst confined in mesoporous silica. Appl. Catal. A Gen., 2005, 284, 199-206.
[http://dx.doi.org/10.1016/j.apcata.2005.01.034]
[77]
Chiang, C.W.; Wang, A.; Wan, B.Z.; Mou, C.Y. High catalytic activity for CO oxidation of gold nanoparticles confined in acidic support Al-SBA-15 at low temperatures. J. Phys. Chem. B, 2005, 109(38), 18042-18047.
[http://dx.doi.org/10.1021/jp052867v] [PMID: 16853317]
[78]
Chiang, C.W.; Wang, A.; Mou, C.Y. CO oxidation catalyzed by gold nanoparticles confined in mesoporous aluminosilicate Al-SBA-15: Pretreatment methods. Catal. Today, 2006, 117, 220-227.
[http://dx.doi.org/10.1016/j.cattod.2006.05.026]
[79]
Daté, M.; Ichihashi, Y.; Yamashita, T.; Chiorino, A.; Boccuzzi, F.; Haruta, M. Performance of Au/TiO2 catalyst under ambient conditions. Catal. Today, 2002, 72, 89-94.
[http://dx.doi.org/10.1016/S0920-5861(01)00481-3]
[80]
Wu, K.C.; Tung, Y.L.; Dai, C.C. Nano-gold catalyst and process for preparing the same. CN104307514A,. 2005.
[81]
Bartholomew, C.H.; Farrauto, R.J. Fundamentals of Industrial Catalytic Processes, 2nd ed; John Wiley and Sons: Hoboken, NJ, 2006.
[82]
Anderson, J.R.; Boudart, M. Catalysis: Science and technology; Springer Science & Business Media, 2012.
[83]
Rostrup-Nielsen, J.R. Catalytic steam reforming; Springer: Heidelberg, 1984.
[http://dx.doi.org/10.1007/978-3-642-93247-2_1]
[84]
Al-Ubaid, A.; Wolf, E. Steam reforming of methane on reduced non-stoichiometric nickel aluminate catalysts. Appl. Catal., 1988, 40, 73-85.
[http://dx.doi.org/10.1016/S0166-9834(00)80427-3]
[85]
Guo, X.; Sun, Y.; Yu, Y.; Zhu, X.; Liu, C-j. Carbon formation and steam reforming of methane on silica supported nickel catalysts. Catal. Commun., 2012, 19, 61-65.
[http://dx.doi.org/10.1016/j.catcom.2011.12.031]
[86]
Lercher, J.; Bitter, J.; Hally, W.; Niessen, W.; Seshan, K. Design of stable catalysts for methane-carbon dioxide reforming. Stud. Surf. Sci. Catal., 1996, 101, 463-472.
[http://dx.doi.org/10.1016/S0167-2991(96)80257-6]
[87]
Maluf, S.; Assaf, E. Ni catalysts with Mo promoter for methane steam reforming. Fuel, 2009, 88, 1547-1553.
[http://dx.doi.org/10.1016/j.fuel.2009.03.025]
[88]
Roh, H.S.; Jun, K.W.; Dong, W.S.; Park, S.E.; Baek, Y.S. Highly stable Ni catalyst supported on Ce-ZrO2 for oxy-steam reforming of methane. Catal. Lett., 2001, 74, 31-36.
[http://dx.doi.org/10.1023/A:1016699317421]
[89]
Rostrup-Nielsen, J.R.; Sehested, J.; Nørskov, J.K. Hydrogen and synthesis gas by steam and CO2 reforming. Adv. Catal., 2002, 47, 65-139.
[http://dx.doi.org/10.1016/S0360-0564(02)47006-X]
[90]
Thielecke, N.; Vorlop, K.D.; Prüße, U. Long-term stability of an Au/Al2O3 catalyst prepared by incipient wetness in continuous-flow glucose oxidation. Catal. Today, 2007, 122, 266-269.
[http://dx.doi.org/10.1016/j.cattod.2007.02.008]
[91]
Burch, R. Gold catalysts for pure hydrogen production in the water-gas shift reaction: Activity, structure and reaction mechanism. Phys. Chem. Chem. Phys., 2006, 8(47), 5483-5500.
[http://dx.doi.org/10.1039/B607837K] [PMID: 17136264]
[92]
Thompson, D.T. Catalysis by gold/platinum group metals. Platin. Met. Rev., 2004, 48, 169-172.
[http://dx.doi.org/10.1595/147106704X5717]
[93]
Zhang, J.; Sasaki, K.; Sutter, E.; Adzic, R.R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science, 2007, 315(5809), 220-222.
[http://dx.doi.org/10.1126/science.1134569] [PMID: 17218522]
[94]
Chen, B.B.; Shi, C.; Crocker, M.; Wang, Y.; Zhu, A.M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Appl. Catal. B, 2013, 132-133, 245-255.
[http://dx.doi.org/10.1016/j.apcatb.2012.11.028]
[95]
Zhang, Y.; Shen, Y.; Yang, X.; Sheng, S.; Wang, T.; Adebajo, M.F.; Zhu, H. Gold catalysts supported on the mesoporous nanoparticles composited of zirconia and silicate for oxidation of formaldehyde. J. Mol. Catal. Chem., 2010, 316, 100-105.
[http://dx.doi.org/10.1016/j.molcata.2009.10.006]
[96]
Chen, X.; Zhu, H.Y.; Zhao, J.C.; Zheng, Z.F.; Gao, X.P. Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. Angew. Chem. Int. Ed. Engl., 2008, 47(29), 5353-5356.
[http://dx.doi.org/10.1002/anie.200800602] [PMID: 18548470]
[97]
Dan, M.; Mihet, M.; Biris, A.R.; Marginean, P.; Almasan, V.; Borodi, G.; Watanabe, F.; Biris, A.S.; Lazar, M.D. Supported nickel catalysts for low temperature methane steam reforming: Comparison between metal additives and support modification. React. Kinet. Mech. Catal., 2012, 105, 173-193.
[http://dx.doi.org/10.1007/s11144-011-0406-0]
[98]
Lazar, M.; Mihet, M.; Dan, M.; Almasan, V.; Marginean, P. Preparation and characterization of nickel based multicomponent catalysts. J. Physics Conf. Series, 2009., 012049.
[99]
Lazar, M.D.; Dan, M.; Mihet, M.; Almasan, V.; Rednic, V.; Borodi, G. Hydrogen production by low temperature methane steam reforming using Ag and Au modified alumina supported nickel catalysts. Rev. Roum. Chim., 2011, 56, 637-642.
[100]
Corti, C.W.; Holliday, R.J.; Thompson, D.T. Progress towards the commercial application of gold catalyst. Top. Catal., 2007, 44, 331-343.
[http://dx.doi.org/10.1007/s11244-007-0307-7]
[101]
Thompson, D.T. Using gold nanoparticles for catalysis. Nano Today, 2007, 2, 40-43.
[http://dx.doi.org/10.1016/S1748-0132(07)70116-0]
[102]
Naaz, F.; Farooq, U.; Ahmad, T. Ceria as an Efficient Nanocatalyst for Organic Transformations, Nanocatalysts; IntechOpen: London, 2019, pp. 1-31.
[103]
Ahmad, T.; Phul, R.; Khan, H. Iron oxide nanoparticles: An efficient nano-catalyst. Curr. Org. Chem., 2019, 23(9), 994-1004.
[http://dx.doi.org/10.2174/1385272823666190314153208]