Direct Synthesis of Aromatic Imine Schiff Bases from β-Phenol Hydroxy Ketone

Page: [181 - 189] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

A facile methodology has been developed to build carbon nitrogen double bond from ketones promoted by the hydroxyl groups in β-phenol hydroxy ketone. It is noteworthy that the halogenated β-phenol hydroxy ketone can chemoselectively react with the amine to afford halogenated phenol imine. It is suitable for certain natural products and also suitable for water-based heteroamines. The method possesses low toxicity and is widely applicable. This strategy is usually used to obtain moderate to good yields of aromatic amine Schiff base.

Keywords: Schiff base, low toxicity synthesis, widely applicable, β-phenol hydroxy ketone, amines, organic chemistry.

Graphical Abstract

[1]
Elkhazandar, A. N. Phosphorus. sulfur., 1997, 126, 243-255.
[2]
Tshabalala, T.A.; Ojwach, S.O. J. Organomet. Chem., 2018, 35-42.
[http://dx.doi.org/10.1016/j.jorganchem.2018.07.034]
[3]
Xu, Q.; Cai, Y.H.; Wang, F. Asian J. Chem., 2013, 25.
[4]
Zarei, L.; Asadi, Z.; Samolova, E.; Dusek, M. Amirghofran. Z. Inorg. Chim. Acta, 2020, 509119674
[http://dx.doi.org/10.1016/j.ica.2020.119674]
[5]
Al Zoubi, W.; Al‐Hamdani, A.A.S.; Kaseem, M. Appl. Organomet. Chem., 2016, 30, 810-817.
[http://dx.doi.org/10.1002/aoc.3506]
[6]
Nazir, U.; Akhter, Z.; Ali, N.; Shah, F.U. RSC Advances, 2019, 9, 36455-36470.
[http://dx.doi.org/10.1039/C9RA07105A]
[7]
Mohod, R.B.; Aswar, A.S. Bull. Electrochem., 1998, 14, 443-445.
[8]
Süleymanoğlu, N.; Demir, E.E.; Direkel, S. J. Mol. Struct., 2020, 1218128522
[9]
Gan, K.C.; Sim, K.M.; Lim, T.M.; Teo, K.C. Lett. Org. Chem., 2019, 16, 996-1003.
[http://dx.doi.org/10.2174/1570178616666190315154512]
[10]
Zhou, X.G.; Peng, M.S. Asian J. Chem., 2013, 25.
[11]
Wang, Z.C.; Li, Y.Q.; Li, J.C.; Li, G.S.; Wang, X.L.; Li, Z.; Min, Y. Youji Huaxue, 2005, 25, 1135-1137.
[12]
Yousef, T.A. J. Mol. Struct., 2020, 1215128180
[http://dx.doi.org/10.1016/j.molstruc.2020.128180]
[13]
Shakil, N.A.; Sharma, P.K.; Kumar, R. Pestic. Res. J., 2006, 18, 119-123.
[14]
Vasas, A.; Lajter, I.; Kúsz, N.; Forgó, P.; Jakab, G.; Fazakas, C.; Wilhelm, I.; Krizbai, I.A.; Hohmann, J. Fitoterapia, 2020, 145104610
[http://dx.doi.org/10.1016/j.fitote.2020.104610] [PMID: 32433929]
[15]
Arndt, S.; Emde, U.; Bäurle, S.; Friedrich, T.; Grubert, L.; Koert, U. Chemistry, 2001, 7(5), 993-1005.
[http://dx.doi.org/10.1002/1521-3765(20010302)7:5<993:AID-CHEM993>3.0.CO;2-S] [PMID: 11303880]
[16]
Salvo, A.D.; Dugois, P.; Tandeo, D.; Peltekian, M.; Lin, P.K. Eur. J. Med. Chem., 2013, 69, 754-761.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.038] [PMID: 24099994]
[17]
Li, C.B.; Zhang, H.; Cui, Y.; Zhang, S.M.; Zhao, Z.Y.; Choi, M.C.; Chan, A.S. Synth. Commun., 2003, 33, 543-546.
[http://dx.doi.org/10.1081/SCC-120015807]
[18]
Denmark, S.E.; Ares, J.J. J. Org. Chem., 2008, 73(24), 9647-9656.
[http://dx.doi.org/10.1021/jo801790r] [PMID: 18855478]
[19]
Denmark, S.E.; Sternberg, J.A.; Lueoend, R. J. Org. Chem., 1988, 53, 1251-1263.
[http://dx.doi.org/10.1021/jo00241a024]
[20]
Shehzadi, S. A. Eur. J. Org. Chem. 2018, 2018.
[21]
Jousset, S.; Catala, J.M. Macromolecules , 2000, 33, 4705-4710.
[http://dx.doi.org/10.1021/ma9920902]
[22]
Mohammed, S.; Dawood, A.; Mohammed, M. J Chem Environ., 2019, 23, 1-5.