Glutamate NMDA Receptor Antagonists with Relevance to Schizophrenia: A Review of Zebrafish Behavioral Studies

Page: [494 - 509] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Schizophrenia pathophysiology is associated with hypofunction of glutamate NMDA receptors (NMDAR) in GABAergic interneurons and dopaminergic hyperactivation in subcortical brain areas. The administration of NMDAR antagonists is used as an animal model that replicates behavioral phenotypes relevant to the positive, negative, and cognitive symptoms of schizophrenia. Such models overwhelmingly rely on rodents, which may lead to species-specific biases and poor translatability. Zebrafish, however, is increasingly used as a model organism to study evolutionarily conserved aspects of behavior. We thus aimed to review and integrate the major findings reported in the zebrafish literature regarding the behavioral effects of NMDAR antagonists with relevance to schizophrenia. We identified 44 research articles that met our inclusion criteria from 590 studies retrieved from MEDLINE (PubMed) and Web of Science databases. Dizocilpine (MK-801) and ketamine were employed in 29 and 10 studies, respectively. The use of other NMDAR antagonists, such as phencyclidine (PCP), APV, memantine, and tiletamine, was described in 6 studies. Frequently reported findings are the social interaction and memory deficits induced by MK-801 and circling behavior induced by ketamine. However, mixed results were described for several locomotor and exploratory parameters in the novel tank and open tank tests. The present review integrates the most relevant results while discussing variation in experimental design and methodological procedures. We conclude that zebrafish is a suitable model organism to study drug-induced behavioral phenotypes relevant to schizophrenia. However, more studies are necessary to further characterize the major differences in behavior as compared to mammals.

Keywords: Schizophrenia, zebrafish, behavior, MK-801, ketamine, PCP, psychosis, glutamate antagonists.

Graphical Abstract

[1]
Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. The Lancet, 2016, 388, 86-97.
[2]
Laursen, T.M.; Nordentoft, M.; Mortensen, P.B. Excess early mortality in schizophrenia. Annu. Rev. Clin. Psychol., 2014, 10, 425-448.
[http://dx.doi.org/10.1146/annurev-clinpsy-032813-153657] [PMID: 24313570]
[3]
Grace, A.A.; Gomes, F.V. The circuitry of dopamine system regulation and its disruption in schizophrenia: insights into treatment and prevention. Schizophr. Bull., 2019, 45(1), 148-157.
[http://dx.doi.org/10.1093/schbul/sbx199] [PMID: 29385549]
[4]
McCutcheon, R.A.; Krystal, J.H.; Howes, O.D. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry, 2020, 19(1), 15-33.
[http://dx.doi.org/10.1002/wps.20693] [PMID: 31922684]
[5]
Hardingham, G.E.; Do, K.Q. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat. Rev. Neurosci., 2016, 17(2), 125-134.
[http://dx.doi.org/10.1038/nrn.2015.19] [PMID: 26763624]
[6]
Coyle, J.T. NMDA receptor and schizophrenia: a brief history. Schizophr. Bull., 2012, 38(5), 920-926.
[http://dx.doi.org/10.1093/schbul/sbs076] [PMID: 22987850]
[7]
Powell, C.M.; Miyakawa, T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol. Psychiatry, 2006, 59(12), 1198-1207.
[http://dx.doi.org/10.1016/j.biopsych.2006.05.008] [PMID: 16797265]
[8]
Dong, H.; Yang, C.; Shen, Y.; Liu, L.; Liu, M.; Hao, W. Effects of ketamine use on psychotic disorders and symptoms in male, methamphetamine-dependent subjects. Am. J. Drug Alcohol Abuse, 2019, 45(3), 276-284.
[http://dx.doi.org/10.1080/00952990.2018.1559849] [PMID: 30640573]
[9]
Javitt, D.C.; Zukin, S.R. Recent advances in the phencyclidine model of schizophrenia. Am. J. Psychiatry, 1991, 148(10), 1301-1308.
[http://dx.doi.org/10.1176/ajp.148.10.1301] [PMID: 1654746]
[10]
Cosgrove, J.; Newell, T.G. Recovery of neuropsychological functions during reduction in use of phencyclidine. J. Clin. Psychol., 1991, 47(1), 159-169.
[http://dx.doi.org/10.1002/1097-4679(199101)47:1<159:AID-JCLP2270470125>3.0.CO;2-O] [PMID: 2026771]
[11]
Jones, C.A.; Watson, D.J.; Fone, K.C. Animal models of schizophrenia. Br. J. Pharmacol., 2011, 164(4), 1162-1194.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01386.x] [PMID: 21449915]
[12]
Winship, I.R.; Dursun, S.M.; Baker, G.B.; Balista, P.A.; Kandratavicius, L.; Maia-de-Oliveira, J.P.; Hallak, J.; Howland, J.G. An overview of animal models related to schizophrenia. Can. J. Psychiatry, 2019, 64(1), 5-17.
[http://dx.doi.org/10.1177/0706743718773728] [PMID: 29742910]
[13]
Krystal, J.H.; Karper, L.P.; Seibyl, J.P.; Freeman, G.K.; Delaney, R.; Bremner, J.D.; Heninger, G.R.; Bowers, M.B., Jr; Charney, D.S. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry, 1994, 51(3), 199-214.
[http://dx.doi.org/10.1001/archpsyc.1994.03950030035004] [PMID: 8122957]
[14]
Morris, R.G.; Anderson, E.; Lynch, G.S.; Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 1986, 319(6056), 774-776.
[http://dx.doi.org/10.1038/319774a0] [PMID: 2869411]
[15]
Weber-Stadlbauer, U.; Meyer, U. Challenges and opportunities of a-priori and a-posteriori variability in maternal immune activation models. Curr. Opin. Behav. Sci., 2019, 28, 119-128.
[http://dx.doi.org/10.1016/j.cobeha.2019.02.006]
[16]
Gerlai, R. Reproducibility and replicability in zebrafish behavioral neuroscience research. Pharmacol. Biochem. Behav., 2019, 178, 30-38.
[http://dx.doi.org/10.1016/j.pbb.2018.02.005] [PMID: 29481830]
[17]
Burrows, E.L.; Hannan, A.J. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia. Biol. Psychol., 2016, 116, 82-89.
[http://dx.doi.org/10.1016/j.biopsycho.2015.11.015] [PMID: 26687973]
[18]
Lambert, K.; Kent, M.; Vavra, D. Avoiding Beach’s Boojum Effect: Enhancing bench to bedside translation with field to laboratory considerations in optimal animal models. Neurosci. Biobehav. Rev., 2019, 104, 191-196.
[http://dx.doi.org/10.1016/j.neubiorev.2019.06.034] [PMID: 31278952]
[19]
Bruni, G.; Rennekamp, A.J.; Velenich, A.; McCarroll, M.; Gendelev, L.; Fertsch, E.; Taylor, J.; Lakhani, P.; Lensen, D.; Evron, T.; Lorello, P.J.; Huang, X.P.; Kolczewski, S.; Carey, G.; Caldarone, B.J.; Prinssen, E.; Roth, B.L.; Keiser, M.J.; Peterson, R.T.; Kokel, D. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds. Nat. Chem. Biol., 2016, 12(7), 559-566.
[http://dx.doi.org/10.1038/nchembio.2097] [PMID: 27239787]
[20]
Gawel, K.; Gibula, E.; Marszalek-Grabska, M.; Filarowska, J.; Kotlinska, J.H. Assessment of spatial learning and memory in the Barnes maze task in rodents-methodological consideration. Naunyn Schmiedebergs Arch. Pharmacol., 2019, 392(1), 1-18.
[http://dx.doi.org/10.1007/s00210-018-1589-y] [PMID: 30470917]
[21]
Leung, L.C.; Mourrain, P. Drug discovery: Zebrafish uncover novel antipsychotics. Nat. Chem. Biol., 2016, 12(7), 468-469.
[http://dx.doi.org/10.1038/nchembio.2114] [PMID: 27315534]
[22]
Gerlai, R. Evolutionary conservation, translational relevance and cognitive function: The future of zebrafish in behavioral neuroscience. Neurosci. Biobehav. Rev., 2020, 116, 426-435.
[http://dx.doi.org/10.1016/j.neubiorev.2020.07.009] [PMID: 32681940]
[23]
Grone, B.P.; Baraban, S.C. Animal models in epilepsy research: legacies and new directions. Nat. Neurosci., 2015, 18(3), 339-343.
[http://dx.doi.org/10.1038/nn.3934] [PMID: 25710835]
[24]
Stewart, A.M.; Braubach, O.; Spitsbergen, J.; Gerlai, R.; Kalueff, A.V. Zebrafish models for translational neuroscience research: from tank to bedside. Trends Neurosci., 2014, 37(5), 264-278.
[http://dx.doi.org/10.1016/j.tins.2014.02.011] [PMID: 24726051]
[25]
Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; McLaren, S.; Sealy, I.; Caccamo, M.; Churcher, C.; Scott, C.; Barrett, J.C.; Koch, R.; Rauch, G.J.; White, S.; Chow, W.; Kilian, B.; Quintais, L.T.; Guerra-Assunção, J.A.; Zhou, Y.; Gu, Y.; Yen, J.; Vogel, J.H.; Eyre, T.; Redmond, S.; Banerjee, R.; Chi, J.; Fu, B.; Langley, E.; Maguire, S.F.; Laird, G.K.; Lloyd, D.; Kenyon, E.; Donaldson, S.; Sehra, H.; Almeida-King, J.; Loveland, J.; Trevanion, S.; Jones, M.; Quail, M.; Willey, D.; Hunt, A.; Burton, J.; Sims, S.; McLay, K.; Plumb, B.; Davis, J.; Clee, C.; Oliver, K.; Clark, R.; Riddle, C.; Elliot, D.; Threadgold, G.; Harden, G.; Ware, D.; Begum, S.; Mortimore, B.; Kerry, G.; Heath, P.; Phillimore, B.; Tracey, A.; Corby, N.; Dunn, M.; Johnson, C.; Wood, J.; Clark, S.; Pelan, S.; Griffiths, G.; Smith, M.; Glithero, R.; Howden, P.; Barker, N.; Lloyd, C.; Stevens, C.; Harley, J.; Holt, K.; Panagiotidis, G.; Lovell, J.; Beasley, H.; Henderson, C.; Gordon, D.; Auger, K.; Wright, D.; Collins, J.; Raisen, C.; Dyer, L.; Leung, K.; Robertson, L.; Ambridge, K.; Leongamornlert, D.; McGuire, S.; Gilderthorp, R.; Griffiths, C.; Manthravadi, D.; Nichol, S.; Barker, G.; Whitehead, S.; Kay, M.; Brown, J.; Murnane, C.; Gray, E.; Humphries, M.; Sycamore, N.; Barker, D.; Saunders, D.; Wallis, J.; Babbage, A.; Hammond, S.; Mashreghi-Mohammadi, M.; Barr, L.; Martin, S.; Wray, P.; Ellington, A.; Matthews, N.; Ellwood, M.; Woodmansey, R.; Clark, G.; Cooper, J.; Tromans, A.; Grafham, D.; Skuce, C.; Pandian, R.; Andrews, R.; Harrison, E.; Kimberley, A.; Garnett, J.; Fosker, N.; Hall, R.; Garner, P.; Kelly, D.; Bird, C.; Palmer, S.; Gehring, I.; Berger, A.; Dooley, C.M.; Ersan-Ürün, Z.; Eser, C.; Geiger, H.; Geisler, M.; Karotki, L.; Kirn, A.; Konantz, J.; Konantz, M.; Oberländer, M.; Rudolph-Geiger, S.; Teucke, M.; Lanz, C.; Raddatz, G.; Osoegawa, K.; Zhu, B.; Rapp, A.; Widaa, S.; Langford, C.; Yang, F.; Schuster, S.C.; Carter, N.P.; Harrow, J.; Ning, Z.; Herrero, J.; Searle, S.M.; Enright, A.; Geisler, R.; Plasterk, R.H.; Lee, C.; Westerfield, M.; de Jong, P.J.; Zon, L.I.; Postlethwait, J.H.; Nüsslein-Volhard, C.; Hubbard, T.J.; Roest Crollius, H.; Rogers, J.; Stemple, D.L. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013, 496(7446), 498-503.
[http://dx.doi.org/10.1038/nature12111] [PMID: 23594743]
[26]
Barbazuk, W.B.; Korf, I.; Kadavi, C.; Heyen, J.; Tate, S.; Wun, E.; Bedell, J.A.; McPherson, J.D.; Johnson, S.L. The syntenic relationship of the zebrafish and human genomes. Genome Res., 2000, 10(9), 1351-1358.
[http://dx.doi.org/10.1101/gr.144700] [PMID: 10984453]
[27]
Kalueff, A.V.; Echevarria, D.J.; Stewart, A.M. Gaining translational momentum: more zebrafish models for neuroscience research. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 55, 1-6.
[http://dx.doi.org/10.1016/j.pnpbp.2014.01.022] [PMID: 24593944]
[28]
Oliveira, R.F. Mind the fish: zebrafish as a model in cognitive social neuroscience. Front Neural Circuits, 2013. Available from:, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3737460/http://dx.doi.org/10.3389/fncir.2013.00131
[29]
Kalueff, A.V.; Stewart, A.M.; Gerlai, R. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci., 2014, 35(2), 63-75.
[http://dx.doi.org/10.1016/j.tips.2013.12.002] [PMID: 24412421]
[30]
Panula, P.; Chen, Y-C.; Priyadarshini, M.; Kudo, H.; Semenova, S.; Sundvik, M.; Sallinen, V. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis., 2010, 40(1), 46-57.
[http://dx.doi.org/10.1016/j.nbd.2010.05.010] [PMID: 20472064]
[31]
Rink, E.; Wullimann, M.F. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res., 2001, 889(1-2), 316-330.
[http://dx.doi.org/10.1016/S0006-8993(00)03174-7] [PMID: 11166725]
[32]
Rink, E.; Guo, S. The too few mutant selectively affects subgroups of monoaminergic neurons in the zebrafish forebrain. Neuroscience, 2004, 127(1), 147-154.
[http://dx.doi.org/10.1016/j.neuroscience.2004.05.004] [PMID: 15219677]
[33]
Parker, M.O.; Brock, A.J.; Walton, R.T.; Brennan, C.H. The role of zebrafish (Danio rerio) in dissecting the genetics and neural circuits of executive function. Front. Neural Circuits, 2013, 7, 63.
[http://dx.doi.org/10.3389/fncir.2013.00063] [PMID: 23580329]
[34]
Panula, P.; Sallinen, V.; Sundvik, M.; Kolehmainen, J.; Torkko, V.; Tiittula, A.; Moshnyakov, M.; Podlasz, P. Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish, 2006, 3(2), 235-247.
[http://dx.doi.org/10.1089/zeb.2006.3.235] [PMID: 18248264]
[35]
Cox, J.A.; Kucenas, S.; Voigt, M.M. Molecular characterization and embryonic expression of the family of N-methyl-D-aspartate receptor subunit genes in the zebrafish. Dev. Dyn., 2005, 234(3), 756-766.
[http://dx.doi.org/10.1002/dvdy.20532] [PMID: 16123982]
[36]
McCarroll, M.N.; Gendelev, L.; Kinser, R.; Taylor, J.; Bruni, G.; Myers-Turnbull, D.; Helsell, C.; Carbajal, A.; Rinaldi, C.; Kang, H.J.; Gong, J.H.; Sello, J.K.; Tomita, S.; Peterson, R.T.; Keiser, M.J.; Kokel, D. Zebrafish behavioural profiling identifies GABA and serotonin receptor ligands related to sedation and paradoxical excitation. Nat. Commun., 2019, 10(1), 4078.
[http://dx.doi.org/10.1038/s41467-019-11936-w] [PMID: 31501447]
[37]
Horzmann, K.A.; Freeman, J.L. Zebrafish get connected: investigating neurotransmission targets and alterations in chemical toxicity. Toxics, 2016, 4(3), 4.
[http://dx.doi.org/10.3390/toxics4030019] [PMID: 28730152]
[38]
Wong, E.H.; Kemp, J.A.; Priestley, T.; Knight, A.R.; Woodruff, G.N.; Iversen, L.L. The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc. Natl. Acad. Sci. USA, 1986, 83(18), 7104-7108.
[http://dx.doi.org/10.1073/pnas.83.18.7104] [PMID: 3529096]
[39]
Newcomer, J.W.; Farber, N.B.; Jevtovic-Todorovic, V.; Selke, G.; Melson, A.K.; Hershey, T.; Craft, S.; Olney, J.W. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology, 1999, 20(2), 106-118.
[http://dx.doi.org/10.1016/S0893-133X(98)00067-0] [PMID: 9885791]
[40]
Olney, J.W.; Newcomer, J.W.; Farber, N.B. NMDA receptor hypofunction model of schizophrenia. J. Psychiatr. Res., 1999, 33(6), 523-533.
[http://dx.doi.org/10.1016/S0022-3956(99)00029-1] [PMID: 10628529]
[41]
Saunders, J.A.; Gandal, M.J.; Siegel, S.J. NMDA antagonists recreate signal-to-noise ratio and timing perturbations present in schizophrenia. Neurobiol. Dis., 2012, 46(1), 93-100.
[http://dx.doi.org/10.1016/j.nbd.2011.12.049] [PMID: 22245663]
[42]
Lahti, A.C.; Holcomb, H.H.; Medoff, D.R.; Tamminga, C.A. Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport, 1995, 6(6), 869-872.
[http://dx.doi.org/10.1097/00001756-199504190-00011] [PMID: 7612873]
[43]
Mohn, A.R.; Gainetdinov, R.R.; Caron, M.G.; Koller, B.H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell, 1999, 98(4), 427-436.
[http://dx.doi.org/10.1016/S0092-8674(00)81972-8] [PMID: 10481908]
[44]
Weickert, C.S.; Fung, S.J.; Catts, V.S.; Schofield, P.R.; Allen, K.M.; Moore, L.T.; Newell, K.A.; Pellen, D.; Huang, X.F.; Catts, S.V.; Weickert, T.W. Molecular evidence of N-methyl-D-aspartate receptor hypofunction in schizophrenia. Mol. Psychiatry, 2013, 18(11), 1185-1192.
[http://dx.doi.org/10.1038/mp.2012.137] [PMID: 23070074]
[45]
Balu, D.T.; Li, Y.; Puhl, M.D.; Benneyworth, M.A.; Basu, A.C.; Takagi, S.; Bolshakov, V.Y.; Coyle, J.T. Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc. Natl. Acad. Sci. USA, 2013, 110(26), E2400-E2409.
[http://dx.doi.org/10.1073/pnas.1304308110] [PMID: 23729812]
[46]
Insel, T.R. Rethinking schizophrenia. Nature, 2010, 468(7321), 187-193.
[http://dx.doi.org/10.1038/nature09552] [PMID: 21068826]
[47]
Korotkova, T.; Fuchs, E.C.; Ponomarenko, A.; von Engelhardt, J.; Monyer, H. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron, 2010, 68(3), 557-569.
[http://dx.doi.org/10.1016/j.neuron.2010.09.017] [PMID: 21040854]
[48]
Nakako, T.; Murai, T.; Ikejiri, M.; Ishiyama, T.; Taiji, M.; Ikeda, K. Effects of a dopamine D1 agonist on ketamine-induced spatial working memory dysfunction in common marmosets. Behav. Brain Res., 2013, 249, 109-115.
[http://dx.doi.org/10.1016/j.bbr.2013.04.012] [PMID: 23608483]
[49]
Kotani, M.; Enomoto, T.; Murai, T.; Nakako, T.; Iwamura, Y.; Kiyoshi, A.; Matsumoto, K.; Matsumoto, A.; Ikejiri, M.; Nakayama, T.; Ogi, Y.; Ikeda, K. The atypical antipsychotic blonanserin reverses (+)-PD-128907- and ketamine-induced deficit in executive function in common marmosets. Behav. Brain Res., 2016, 305, 212-217.
[http://dx.doi.org/10.1016/j.bbr.2016.02.031] [PMID: 26970575]
[50]
Weinberger, D.R. On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuropsychopharmacology, 1996, 14(3)(Suppl.), 1S-11S.
[http://dx.doi.org/10.1016/0893-133X(95)00199-N] [PMID: 8866738]
[51]
Lipska, B.K.; Weinberger, D.R. To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology, 2000, 23(3), 223-239.
[http://dx.doi.org/10.1016/S0893-133X(00)00137-8] [PMID: 10942847]
[52]
Carlsson, M.; Carlsson, A. The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J. Neural Transm. (Vienna), 1989, 75(3), 221-226.
[http://dx.doi.org/10.1007/BF01258633] [PMID: 2538557]
[53]
Large, C.H. Do NMDA receptor antagonist models of schizophrenia predict the clinical efficacy of antipsychotic drugs? J. Psychopharmacol., 2007, 21(3), 283-301.
[http://dx.doi.org/10.1177/0269881107077712] [PMID: 17591656]
[54]
Kawabe, K. Effects of chronic forced-swim stress on behavioral properties in rats with neonatal repeated MK-801 treatment. Pharmacol. Biochem. Behav., 2017, 159, 48-54.
[http://dx.doi.org/10.1016/j.pbb.2017.06.009] [PMID: 28647564]
[55]
Uehara, T.; Sumiyoshi, T.; Seo, T.; Matsuoka, T.; Itoh, H.; Suzuki, M.; Kurachi, M. Neonatal exposure to MK-801, an N-methyl-D-aspartate receptor antagonist, enhances methamphetamine-induced locomotion and disrupts sensorimotor gating in pre- and postpubertal rats. Brain Res., 2010, 1352, 223-230.
[http://dx.doi.org/10.1016/j.brainres.2010.07.013] [PMID: 20633540]
[56]
Al-Amin, H.A.; Shannon, W.C.; Weinberger, D.R.; Lipska, B.K. Delayed onset of enhanced MK-801-induced motor hyperactivity after neonatal lesions of the rat ventral hippocampus. Biol. Psychiatry, 2001, 49(6), 528-539.
[http://dx.doi.org/10.1016/S0006-3223(00)00968-9] [PMID: 11257238]
[57]
Andersson, M.Å.; Ek, F.; Olsson, R. Using visual lateralization to model learning and memory in zebrafish larvae. Sci. Rep., 2015, 5, 8667.
[http://dx.doi.org/10.1038/srep08667] [PMID: 25727677]
[58]
Blank, M.; Guerim, L.D.; Cordeiro, R.F.; Vianna, M.R.M. A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol. Learn. Mem., 2009, 92(4), 529-534.
[http://dx.doi.org/10.1016/j.nlm.2009.07.001] [PMID: 19591953]
[59]
Seibt, K.J.; Piato, A.L.; da Luz Oliveira, R.; Capiotti, K.M.; Vianna, M.R.; Bonan, C.D. Antipsychotic drugs reverse MK-801-induced cognitive and social interaction deficits in zebrafish (Danio rerio). Behav. Brain Res., 2011, 224(1), 135-139.
[http://dx.doi.org/10.1016/j.bbr.2011.05.034] [PMID: 21669233]
[60]
Ng, M-C.; Hsu, C-P.; Wu, Y-J.; Wu, S-Y.; Yang, Y-L.; Lu, K-T. Effect of MK-801-induced impairment of inhibitory avoidance learning in zebrafish via inactivation of extracellular signal-regulated kinase (ERK) in telencephalon. Fish Physiol. Biochem., 2012, 38, 1099-1106.
[61]
Franscescon, F.; Müller, T.E.; Bertoncello, K.T.; Rosemberg, D.B. Neuroprotective role of taurine on MK-801-induced memory impairment and hyperlocomotion in zebrafish. Neurochem. Int., 2020, 135104710
[http://dx.doi.org/10.1016/j.neuint.2020.104710] [PMID: 32105720]
[62]
Kenney, J.W.; Scott, I.C.; Josselyn, S.A.; Frankland, P.W. Contextual fear conditioning in zebrafish. Learn. Mem., 2017, 24(10), 516-523.
[http://dx.doi.org/10.1101/lm.045690.117] [PMID: 28916626]
[63]
Xu, X.; Scott-Scheiern, T.; Kempker, L.; Simons, K. Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol. Learn. Mem., 2007, 87, 72-77.
[64]
Sison, M.; Gerlai, R. Behavioral performance altering effects of MK-801 in zebrafish (Danio rerio). Behav. Brain Res., 2011, 220(2), 331-337.
[http://dx.doi.org/10.1016/j.bbr.2011.02.019] [PMID: 21333690]
[65]
Cognato, G de P.; Bortolotto, J.W.; Blazina, A.R.; Christoff, R.R.; Lara, D.R.; Vianna, M.R.; Bonan, C.D. Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol. Learn. Mem., 2012, 98(4), 321-328.
[http://dx.doi.org/10.1016/j.nlm.2012.09.008] [PMID: 23044456]
[66]
Gaspary, K.V.; Reolon, G.K.; Gusso, D.; Bonan, C.D. Novel object recognition and object location tasks in zebrafish: Influence of habituation and NMDA receptor antagonism. Neurobiol. Learn. Mem., 2018, 155, 249-260.
[67]
Dreosti, E.; Lopes, G.; Kampff, A.R.; Wilson, S.W. Development of social behavior in young zebrafish. Front. Neural Circuits, 2015, 9, 39.
[http://dx.doi.org/10.3389/fncir.2015.00039] [PMID: 26347614]
[68]
Zimmermann, F.F.; Gaspary, K.V.; Siebel, A.M.; Bonan, C.D. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish. Behav. Brain Res., 2016, 311, 368-374.
[http://dx.doi.org/10.1016/j.bbr.2016.05.059] [PMID: 27247142]
[69]
Maaswinkel, H.; Zhu, L.; Weng, W. Assessing social engagement in heterogeneous groups of zebrafish: a new paradigm for autism-like behavioral responses. PLoS One, 2013, 8(10)e75955
[http://dx.doi.org/10.1371/journal.pone.0075955] [PMID: 24116082]
[70]
McCutcheon, V.; Park, E.; Liu, E.; Wang, Y.; Wen, X-Y.; Baker, A.J. A Model of excitotoxic brain injury in larval zebrafish: potential application for high-throughput drug evaluation to treat traumatic brain injury. Zebrafish, 2016, 13(3), 161-169.
[http://dx.doi.org/10.1089/zeb.2015.1188] [PMID: 27028704]
[71]
Tran, S.; Muraleetharan, A.; Fulcher, N.; Chatterjee, D.; Gerlai, R. MK-801 increases locomotor activity in a context-dependent manner in zebrafish. Behav. Brain Res., 2016, 296, 26-29.
[http://dx.doi.org/10.1016/j.bbr.2015.08.029] [PMID: 26318934]
[72]
Seibt, K.J.; Oliveira, R. da L.; Zimmermann, F.F.; Capiotti, K.M.; Bogo, M.R.; Ghisleni, G.; Bonan, C.D. Antipsychotic drugs prevent the motor hyperactivity induced by psychotomimetic MK-801 in zebrafish (Danio rerio). Behav. Brain Res., 2010, 214(2), 417-422.
[http://dx.doi.org/10.1016/j.bbr.2010.06.014] [PMID: 20600350]
[73]
Swain, H.A.; Sigstad, C.; Scalzo, F.M. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol. Teratol., 2004, 26(6), 725-729.
[http://dx.doi.org/10.1016/j.ntt.2004.06.009] [PMID: 15451036]
[74]
Zoodsma, J.D.; Chan, K.; Bhandiwad, A.A.; Golann, D.R.; Liu, G.; Syed, S.A.; Napoli, A.J.; Burgess, H.A.; Sirotkin, H.I.; Wollmuth, L.P. A Model to Study NMDA receptors in early nervous system development. J. Neurosci., 2020, 40(18), 3631-3645.
[http://dx.doi.org/10.1523/JNEUROSCI.3025-19.2020] [PMID: 32245827]
[75]
Menezes, F.P.; Kist, L.W.; Bogo, M.R.; Bonan, C.D.; Da Silva, R.S. Evaluation of age-dependent response to NMDA receptor antagonism in zebrafish. Zebrafish, 2015, 12(2), 137-143.
[http://dx.doi.org/10.1089/zeb.2014.1018] [PMID: 25602300]
[76]
Liu, X.; Guo, N.; Lin, J.; Zhang, Y.; Chen, X.Q.; Li, S. Strain-dependent differential behavioral responses of zebrafish larvae to acute MK-801 treatment. Pharmacol. Biochem. Behav., 2014, 127, 82-89.
[77]
Chen, J.; Patel, R.; Friedman, T.C.; Jones, K.S. The Behavioral and pharmacological actions of NMDA receptor antagonism are conserved in Zebrafish Larvae. Int. J. Comp. Psychol., 2010, 23(1), 82-90.
[PMID: 21278812]
[78]
Palmér, T.; Ek, F.; Enqvist, O.; Olsson, R.; Åström, K.; Petersson, P. Action sequencing in the spontaneous swimming behavior of zebrafish larvae - implications for drug development. Sci. Rep., 2017, 7(1), 3191.
[http://dx.doi.org/10.1038/s41598-017-03144-7] [PMID: 28600565]
[79]
da Silva, R.B.; Siebel, A.M.; Bonan, C.D. The role of purinergic and dopaminergic systems on MK-801-induced antidepressant effects in zebrafish. Pharmacol. Biochem. Behav., 2015, 139(Pt B), 149-57.
[80]
Herculano, A.M.; Puty, B.; Miranda, V.; Lima, M.G.; Maximino, C. Interactions between serotonin and glutamate-nitric oxide pathways in zebrafish scototaxis. Pharmacol. Biochem. Behav., 2015, 129, 97-104.
[http://dx.doi.org/10.1016/j.pbb.2014.12.005]
[81]
Li, F.; Lin, J.; Liu, X.; Li, W.; Ding, Y.; Zhang, Y.; Zhou, S.; Guo, N.; Li, Q. Characterization of the locomotor activities of zebrafish larvae under the influence of various neuroactive drugs. Ann. Transl. Med., 2018, 6(10), 173.
[http://dx.doi.org/10.21037/atm.2018.04.25] [PMID: 29951495]
[82]
Pietri, T.; Manalo, E.; Ryan, J.; Saint-Amant, L.; Washbourne, P. Glutamate drives the touch response through a rostral loop in the spinal cord of zebrafish embryos. Dev. Neurobiol., 2009, 69(12), 780-795.
[http://dx.doi.org/10.1002/dneu.20741] [PMID: 19634126]
[83]
Anis, N.A.; Berry, S.C.; Burton, N.R.; Lodge, D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br. J. Pharmacol., 1983, 79(2), 565-575.
[http://dx.doi.org/10.1111/j.1476-5381.1983.tb11031.x] [PMID: 6317114]
[84]
Lahti, A.C.; Weiler, M.A.; Tamara Michaelidis, B.A.; Parwani, A.; Tamminga, C.A. Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology, 2001, 25(4), 455-467.
[http://dx.doi.org/10.1016/S0893-133X(01)00243-3] [PMID: 11557159]
[85]
Cadinu, D.; Grayson, B.; Podda, G.; Harte, M.K.; Doostdar, N.; Neill, J.C. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update. Neuropharmacology, 2018, 142, 41-62.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.045] [PMID: 29196183]
[86]
Chan, M-H.; Chiu, P-H.; Sou, J-H.; Chen, H-H. Attenuation of ketamine-evoked behavioral responses by mGluR5 positive modulators in mice. Psychopharmacology (Berl.), 2008, 198(1), 141-148.
[http://dx.doi.org/10.1007/s00213-008-1103-1] [PMID: 18311557]
[87]
Mansbach, R.S.; Geyer, M.A. Parametric determinants in pre-stimulus modification of acoustic startle: interaction with ketamine. Psychopharmacology (Berl.), 1991, 105(2), 162-168.
[http://dx.doi.org/10.1007/BF02244303] [PMID: 1796122]
[88]
Silvestre, J.S.; Nadal, R.; Pallarés, M.; Ferré, N. Acute effects of ketamine in the holeboard, the elevated-plus maze, and the social interaction test in Wistar rats. Depress. Anxiety, 1997, 5(1), 29-33.
[http://dx.doi.org/10.1002/(SICI)1520-6394(1997)5:1<29:AID-DA5>3.0.CO;2-0] [PMID: 9250438]
[89]
Thelen, C.; Sens, J.; Mauch, J.; Pandit, R.; Pitychoutis, P.M. Repeated ketamine treatment induces sex-specific behavioral and neurochemical effects in mice. Behav. Brain Res., 2016, 312, 305-312.
[http://dx.doi.org/10.1016/j.bbr.2016.06.041] [PMID: 27343934]
[90]
Keilhoff, G.; Becker, A.; Grecksch, G.; Wolf, G.; Bernstein, H-G. Repeated application of ketamine to rats induces changes in the hippocampal expression of parvalbumin, neuronal nitric oxide synthase and cFOS similar to those found in human schizophrenia. Neuroscience, 2004, 126(3), 591-598.
[http://dx.doi.org/10.1016/j.neuroscience.2004.03.039] [PMID: 15183509]
[91]
Schobel, S.A.; Chaudhury, N.H.; Khan, U.A.; Paniagua, B.; Styner, M.A.; Asllani, I.; Inbar, B.P.; Corcoran, C.M.; Lieberman, J.A.; Moore, H.; Small, S.A. Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron, 2013, 78(1), 81-93.
[http://dx.doi.org/10.1016/j.neuron.2013.02.011] [PMID: 23583108]
[92]
Zakhary, S.M.; Ayubcha, D.; Ansari, F.; Kamran, K.; Karim, M.; Leheste, J.R.; Horowitz, J.M.; Torres, G. A behavioral and molecular analysis of ketamine in zebrafish. Synapse, 2011, 65(2), 160-167.
[http://dx.doi.org/10.1002/syn.20830] [PMID: 20623473]
[93]
Riehl, R.; Kyzar, E.; Allain, A.; Green, J.; Hook, M.; Monnig, L.; Rhymes, K.; Roth, A.; Pham, M.; Razavi, R.; Dileo, J.; Gaikwad, S.; Hart, P.; Kalueff, A.V. Behavioral and physiological effects of acute ketamine exposure in adult zebrafish. Neurotoxicol. Teratol., 2011, 33(6), 658-667.
[http://dx.doi.org/10.1016/j.ntt.2011.05.011] [PMID: 21683787]
[94]
Pittman, J; Hylton, A Behavioral, endocrine, and neuronal alterations in zebrafish (Danio rerio) following sub-chronic coadministration of fluoxetine and ketamine. Pharmacol. Biochem. Behav., 2015, 139(Pt B), 158-62.
[95]
De Campos, E.G.; Bruni, A.T.; De Martinis, B.S. Ketamine induces anxiolytic effects in adult zebrafish: A multivariate statistics approach. Behav. Brain Res., 2015, 292, 537-546.
[http://dx.doi.org/10.1016/j.bbr.2015.07.017] [PMID: 26187688]
[96]
Michelotti, P.; Quadros, V.A.; Pereira, M.E.; Rosemberg, D.B. Ketamine modulates aggressive behavior in adult zebrafish. Neurosci. Lett., 2018, 684, 164-168.
[http://dx.doi.org/10.1016/j.neulet.2018.08.009] [PMID: 30102959]
[97]
Martins, T.; Diniz, E.; Félix, L.M.; Antunes, L. Evaluation of anaesthetic protocols for laboratory adult zebrafish (Danio rerio). PLoS One, 2018, 13(5)e0197846
[http://dx.doi.org/10.1371/journal.pone.0197846] [PMID: 29787611]
[98]
Suen, M.F.K.; Chan, W.S.; Hung, K.W.Y.; Chen, Y.F.; Mo, Z.X.; Yung, K.K.L. Assessments of the effects of nicotine and ketamine using tyrosine hydroxylase-green fluorescent protein transgenic zebrafish as biosensors. Biosens. Bioelectron., 2013, 42, 177-185.
[http://dx.doi.org/10.1016/j.bios.2012.09.042] [PMID: 23202349]
[99]
Félix, L.M.; Serafim, C.; Valentim, A.M.; Antunes, L.M.; Matos, M.; Coimbra, A.M. Apoptosis-related genes induced in response to ketamine during early life stages of zebrafish. Toxicol. Lett., 2017, 279, 1-8.
[http://dx.doi.org/10.1016/j.toxlet.2017.07.888] [PMID: 28716577]
[100]
Félix, L.M.; Serafim, C.; Martins, M.J.; Valentim, A.M.; Antunes, L.M.; Matos, M. Morphological and behavioral responses of zebrafish after 24h of ketamine embryonic exposure. Toxicol. Appl. Pharmacol., 2017, 321, 27-36.
[101]
Shen, Q.; Truong, L.; Simonich, M.T.; Huang, C.; Tanguay, R.L.; Dong, Q. Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav. Brain Res., 2020, 391112625
[http://dx.doi.org/10.1016/j.bbr.2020.112625] [PMID: 32428631]
[102]
Domino, E.F. Taming the ketamine tiger. 1965. Anesthesiology, 2010, 113(3), 678-684.
[http://dx.doi.org/10.1097/ALN.0b013e3181ed09a2] [PMID: 20693870]
[103]
Mouri, A.; Noda, Y.; Enomoto, T.; Nabeshima, T. Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem. Int., 2007, 51(2-4), 173-184.
[http://dx.doi.org/10.1016/j.neuint.2007.06.019] [PMID: 17669558]
[104]
Andersen, J.D.; Pouzet, B. Spatial memory deficits induced by perinatal treatment of rats with PCP and reversal effect of D-serine. Neuropsychopharmacology, 2004, 29(6), 1080-1090.
[http://dx.doi.org/10.1038/sj.npp.1300394] [PMID: 14970828]
[105]
Takahashi, M.; Kakita, A.; Futamura, T.; Watanabe, Y.; Mizuno, M.; Sakimura, K.; Castren, E.; Nabeshima, T.; Someya, T.; Nawa, H. Sustained brain-derived neurotrophic factor up-regulation and sensorimotor gating abnormality induced by postnatal exposure to phencyclidine: comparison with adult treatment. J. Neurochem., 2006, 99(3), 770-780.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04106.x] [PMID: 16903871]
[106]
Nagai, T.; Noda, Y.; Une, T.; Furukawa, K.; Furukawa, H.; Kan, Q.M.; Nabeshima, T. Effect of AD-5423 on animal models of schizophrenia: phencyclidine-induced behavioral changes in mice. Neuroreport, 2003, 14(2), 269-272.
[http://dx.doi.org/10.1097/00001756-200302100-00023] [PMID: 12598744]
[107]
Xu, T.; Zhao, J.; Hu, P.; Dong, Z.; Li, J. Zhang, H Pentachlorophenol exposure causes Warburg-like effects in zebrafish embryos at gastrulation stage. Toxicol. Appl. Pharmacol., 2014, 277, 183-191.
[http://dx.doi.org/10.1016/j.taap.2014.03.004]
[108]
Abdul-Monim, Z.; Reynolds, G.P.; Neill, J.C. The atypical antipsychotic ziprasidone, but not haloperidol, improves phencyclidine-induced cognitive deficits in a reversal learning task in the rat. J. Psychopharmacol., 2003, 17(1), 57-65.
[http://dx.doi.org/10.1177/0269881103017001700] [PMID: 12680740]
[109]
Abdul-Monim, Z.; Neill, J.C.; Reynolds, G.P. Sub-chronic psychotomimetic phencyclidine induces deficits in reversal learning and alterations in parvalbumin-immunoreactive expression in the rat. J. Psychopharmacol., 2007, 21(2), 198-205.
[http://dx.doi.org/10.1177/0269881107067097] [PMID: 17329300]
[110]
Kyzar, E.J.; Collins, C.; Gaikwad, S.; Green, J.; Roth, A.; Monnig, L.; El-Ounsi, M.; Davis, A.; Freeman, A.; Capezio, N.; Stewart, A.M.; Kalueff, A.V. Effects of hallucinogenic agents mescaline and phencyclidine on zebrafish behavior and physiology. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 37(1), 194-202.
[http://dx.doi.org/10.1016/j.pnpbp.2012.01.003] [PMID: 22251567]
[111]
Stewart, A.M.; Grieco, F.; Tegelenbosch, R.A.J.; Kyzar, E.J.; Nguyen, M.; Kaluyeva, A. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes. J. Neurosci. Methods, 2015, 255, 66-74.
[112]
Johnson, J.W.; Glasgow, N.G.; Povysheva, N.V. Recent insights into the mode of action of memantine and ketamine. Curr. Opin. Pharmacol., 2015, 20, 54-63.
[http://dx.doi.org/10.1016/j.coph.2014.11.006] [PMID: 25462293]
[113]
Popik, P.; Hołuj, M.; Kos, T.; Nowak, G.; Librowski, T.; Sałat, K. Comparison of the psychopharmacological effects of tiletamine and ketamine in rodents. Neurotox. Res., 2017, 32(4), 544-554.
[http://dx.doi.org/10.1007/s12640-017-9759-0] [PMID: 28577066]
[114]
Lodge, D.; Watkins, J.C.; Bortolotto, Z.A.; Jane, D.E.; Volianskis, A. The 1980s: D-AP5, LTP and a decade of NMDA receptor discoveries. Neurochem. Res., 2019, 44(3), 516-530.
[http://dx.doi.org/10.1007/s11064-018-2640-6] [PMID: 30284673]
[115]
Morris, R.G.M. NMDA receptors and memory encoding. Neuropharmacology, 2013, 74, 32-40.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.014] [PMID: 23628345]
[116]
Xia, P.; Chen, H.S.; Zhang, D.; Lipton, S.A. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J. Neurosci., 2010, 30(33), 11246-11250.
[http://dx.doi.org/10.1523/JNEUROSCI.2488-10.2010] [PMID: 20720132]
[117]
Glasgow, N.G.; Povysheva, N.V.; Azofeifa, A.M.; Johnson, J.W. Memantine and ketamine differentially alter NMDA receptor desensitization. J. Neurosci., 2017, 37(40), 9686-9704.
[http://dx.doi.org/10.1523/JNEUROSCI.1173-17.2017] [PMID: 28877967]
[118]
Best, J.D.; Berghmans, S.; Hunt, J.J.F.G.; Clarke, S.C.; Fleming, A.; Goldsmith, P.; Roach, A.G. Non-associative learning in larval zebrafish. Neuropsychopharmacology, 2008, 33(5), 1206-1215.
[http://dx.doi.org/10.1038/sj.npp.1301489] [PMID: 17581529]
[119]
Kolesnikova, T.O.; Khatsko, S.L.; Shevyrin, V.A.; Morzherin, Y.Y.; Kalueff, A.V. Effects of a non-competitive N-methyl-d-aspartate (NMDA) antagonist, tiletamine, in adult zebrafish. Neurotoxicol. Teratol., 2017, 59, 62-67.
[http://dx.doi.org/10.1016/j.ntt.2016.11.009] [PMID: 27916716]
[120]
Roberts, A.C.; Reichl, J.; Song, M.Y.; Dearinger, A.D.; Moridzadeh, N.; Lu, E.D.; Pearce, K.; Esdin, J.; Glanzman, D.L. Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade. PLoS One, 2011, 6(12)e29132
[http://dx.doi.org/10.1371/journal.pone.0029132] [PMID: 22216183]
[121]
Kafkafi, N.; Agassi, J.; Chesler, E.J.; Crabbe, J.C.; Crusio, W.E.; Eilam, D.; Gerlai, R.; Golani, I.; Gomez-Marin, A.; Heller, R.; Iraqi, F.; Jaljuli, I.; Karp, N.A.; Morgan, H.; Nicholson, G.; Pfaff, D.W.; Richter, S.H.; Stark, P.B.; Stiedl, O.; Stodden, V.; Tarantino, L.M.; Tucci, V.; Valdar, W.; Williams, R.W.; Würbel, H.; Benjamini, Y. Reproducibility and replicability of rodent phenotyping in preclinical studies. Neurosci. Biobehav. Rev., 2018, 87, 218-232.
[http://dx.doi.org/10.1016/j.neubiorev.2018.01.003] [PMID: 29357292]
[122]
Crabbe, J.C.; Wahlsten, D.; Dudek, B.C. Genetics of mouse behavior: interactions with laboratory environment. Science, 1999, 284(5420), 1670-1672.
[http://dx.doi.org/10.1126/science.284.5420.1670] [PMID: 10356397]
[123]
Voelkl, B.; Vogt, L.; Sena, E.S.; Würbel, H. Reproducibility of preclinical animal research improves with heterogeneity of study samples. PLoS Biol., 2018, 16(2)e2003693
[http://dx.doi.org/10.1371/journal.pbio.2003693] [PMID: 29470495]
[124]
du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M. he ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol., Available from:. https://bpspubs.onlinelibrary.wiley.com/doi/abs/10.1111/bph.15193
[125]
Nosek, B.A.; Alter, G.; Banks, G.C.; Borsboom, D.; Bowman, S.D.; Breckler, S.J. Promoting an open research culture. Science, 2015, 348, 1422-1425.
[http://dx.doi.org/10.1126/science.aab2374]
[126]
Leger, M.; Neill, J.C. A systematic review comparing sex differences in cognitive function in schizophrenia and in rodent models for schizophrenia, implications for improved therapeutic strategies. Neurosci. Biobehav. Rev., 2016, 68, 979-1000.
[http://dx.doi.org/10.1016/j.neubiorev.2016.06.029] [PMID: 27344000]
[127]
Félix, L.M.; Antunes, L.M.; Coimbra, A.M.; Valentim, A.M. Behavioral alterations of zebrafish larvae after early embryonic exposure to ketamine. Psychopharmacology (Berl.), 2017, 234(4), 549-558.
[http://dx.doi.org/10.1007/s00213-016-4491-7] [PMID: 27933364]
[128]
Choi, Y.; Lee, C-J.; Kim, Y-H. MK-801-induced learning impairments reversed by physostigmine and nicotine in zebrafish. Anim. Cells Syst., 2011, 15, 115-121.
[http://dx.doi.org/10.1080/19768354.2011.555124]
[129]
Sison, M.; Gerlai, R. Associative learning in zebrafish (Danio rerio) in the plus maze. Behav. Brain Res., 2010, 207(1), 99-104.
[http://dx.doi.org/10.1016/j.bbr.2009.09.043] [PMID: 19800919]
[130]
McCutcheon, V.; Park, E.; Liu, E.; Sobhebidari, P.; Tavakkoli, J.; Wen, X-Y. A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. J. Neurotrauma, 2017, 34, 1382-1393.