Antioxidant Properties and Polyphenol Screening of the Leaves of Native Hungarian Oak (Quercus) Species

Article ID: e010921191387 Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Abstract: Due to their ecological significance and timber value, Quercus species are especially important in Hungary. Nevertheless, the leaves of these species lack a dedicated utilization field and are considered a waste biomass.

Materials and Methods: The present study comprehensively analyses three selected oak species (Q. petraea, Q. pubescens, Q. cerris) native to Hungary to assess their antioxidant capacity (FRAP, ABTS, DPPH) and provide information on their polyphenol pool using state-of-the-art liquid chromatographic/ tandem mass spectrometric technique. To the best of our knowledge, no such investigation has yet been conducted for the assigned species.

Results: According to the results, the antioxidant capacity of the three species’ leaves are roughly equal. Altogether, 109 compounds have been tentatively identified and described, including phenolic acid derivatives, tannins, flavonoid glycosides, and catechins. Compared to other oak leaf samples and other types of plant tissues, the investigated samples contained a large number (24) of acylated polyphenols.

Conclusion: The recent findings on the excellent antioxidant and antibacterial properties of acylated polyphenols suggest that the investigated samples could also be beneficial to human health, requiring further analysis.

Keywords: Quercus, high-performance liquid chromatography, mass spectrometry, acylated polyphenols, antioxidant capacity, forestry byproducts.

Graphical Abstract

[1]
Gil-Pelegrín, E.; Peguero-Pina, J.J.; Sancho-Knapik, D. Oaks physiological ecology. Exploring the functional diversity of genus Quercus L; , 2017.
[http://dx.doi.org/10.1007/978-3-319-69099-5]
[2]
Kappelle, M. Ecology and conservation of neotropical montane oak forests. Ecological Studies; Springer-Verlag: Berlin, Heidelberg, 2006, Vol. 185, .
[http://dx.doi.org/10.1007/3-540-28909-7]
[3]
García-Villalba, R.; Espín, J.C.; Tomás-Barberán, F.A.; Rocha-Guzmán, N.E. Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J. Food Compos. Anal., 2017, 63, 38-46.
[http://dx.doi.org/10.1016/j.jfca.2017.07.034]
[4]
Süveges K, Löki V, Lovas-Kiss A, Ljubka T, Fekete T, Takács A, Vincze O, Lukács BA, Molnár VA. From European priority species to characteristic apophyte: Epipactis tallosii (Orchidaceae). Willdenowia, 2019, 49(3), 401-409.http://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_ome002b.html July 29, 2020 (in Hungarian)
[5]
Anlas, C.; Bakirel, T.; Ustun-Alkan, F.; Celik, B.; Baran, M.Y.; Ustuner, O.; Kuruuzum-Uz, A. In vitro evaluation of the therapeutic potential of Anatolian kermes oak (Quercus coccifera L.) as an alternative wound healing agent. Ind. Crops Prod., 2019, 137, 24-32.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.008]
[6]
Vázquez-Cabral, B.D.; Larrosa-Pérez, M.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; González-Laredo, R.F.; Rutiaga-Quiñones, J.G.; Gamboa-Gómez, C.I.; Rocha-Guzmán, N.E. Oak kombucha protects against oxidative stress and inflammatory processes. Chem. Biol. Interact., 2017, 272, 1-9.
[http://dx.doi.org/10.1016/j.cbi.2017.05.001] [PMID: 28476604]
[7]
Rocha-Guzmán, N.E.; González-Laredo, R.F.; Vázquez-Cabral, B.D.; Moreno-Jiménez, M.R.; Gallegos-Infante, J.A.; Gamboa-Gómez, C.I.; Flores-Rueda, A.G. 11 - Oak leaves as a new potential source for functional beverages: their antioxidant capacity and monomer flavonoid composition.Functional and Medical Beverages. The science of beverages; Grumezescu, A.M.; Holban, A.N., Eds.; Academic Press: New York, 2019, Vol. 11, pp. 381-411.
[http://dx.doi.org/10.1016/B978-0-12-816397-9.00011-X]
[8]
Sánchez-Burgos, J.A.; Ramírez-Mares, M.V.; Larrosa, M.M.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Medina-Torres, L.; Rocha-Guzmán, N.E. Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Ind. Crops Prod., 2013, 42, 57-62.
[http://dx.doi.org/10.1016/j.indcrop.2012.05.017]
[9]
Moreno-Jimenez, M.R.; Trujillo-Esquivel, F.; Gallegos-Corona, M.A.; Reynoso-Camacho, R.; González-Laredo, R.F.; Gallegos-Infante, J.A.; Rocha-Guzmán, N.E.; Ramos-Gomez, M. Antioxidant, anti-inflammatory and anticarcinogenic activities of edible red oak (Quercus spp.) infusions in rat colon carcinogenesis induced by 1,2-dimethylhydrazine. Food Chem. Toxicol., 2015, 80, 144-153.
[http://dx.doi.org/10.1016/j.fct.2015.03.011] [PMID: 25795146]
[10]
Paray, B.A.; Hoseini, S.M.; Hoseinifar, S.H.; Doan, H.V. Effects of dietary oak (Quercus castaneifolia) leaf extract on growth, antioxidant, and immune characteristics and responses to crowding stress in common carp (Cyprinus carpio). Aquaculture, 2020, 524, 735276.
[http://dx.doi.org/10.1016/j.aquaculture.2020.735276]
[11]
Rivas-Arreola, M.J.; Rocha-Guzmán, N.E.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Rosales-Castro, M.; Bacon, J.R.; Cao, R. (T).; Proulx, A.; Intriago-Ortega, P. Antioxidant activity of oak (Quercus) leaves infusion against free radicals and their cardioprotective potential. Pak. J. Biol. Sci., 2010, 13, 537-545.
[http://dx.doi.org/10.3923/pjbs.2010.537.545] [PMID: 21848067]
[12]
Custódio, L.; Patarra, J.; Alberício, F.; Neng, N.R.; Nogueira, J.M.F.; Romano, A. Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind. Crops Prod., 2015, 64, 45-51.
[http://dx.doi.org/10.1016/j.indcrop.2014.11.001]
[13]
Kheirandish, F.; Delfan, B.; Mahmoudvand, H.; Moradi, N.; Ezatpour, B.; Ebrahimzadeh, F.; Rashidipour, M. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed. Pharmacother., 2016, 82, 208-215.
[http://dx.doi.org/10.1016/j.biopha.2016.04.040] [PMID: 27470357]
[14]
Molina-García, L.; Martínez-Expósito, R.; Fernández-de Córdova, M.L.; Llorent-Martínez, E.J. Determination of the phenolic profile and antioxidant activity of leaves and fruits of Spanish Quercus coccifera. J. Chem., 2018, 2018.
[15]
Barbehenn, R.; Cheek, S.; Gasperut, A.; Lister, E.; Maben, R. Phenolic compounds in red oak and sugar maple leaves have prooxidant activities in the midgut fluids of Malacosoma disstria and Orgyia leucostigma caterpillars. J. Chem. Ecol., 2005, 31(5), 969-988.
[http://dx.doi.org/10.1007/s10886-005-4242-4] [PMID: 16124227]
[16]
Pitino, M.; Sturgeon, K.; Dorado, C.; Cano, L.M.; Manthey, J.A.; Shatters, R.G., Jr; Rossi, L. Quercus leaf extracts display curative effects against Candidatus Liberibacter asiaticus that restore leaf physiological parameters in HLB-affected citrus trees. Plant Physiol. Biochem., 2020, 148, 70-79.
[http://dx.doi.org/10.1016/j.plaphy.2020.01.013] [PMID: 31945669]
[17]
Li, A.N.; Li, S.; Zhang, Y.J.; Xu, X.R.; Chen, Y.M.; Li, H.B. Resources and biological activities of natural polyphenols. Nutrients, 2014, 6(12), 6020-6047.
[http://dx.doi.org/10.3390/nu6126020] [PMID: 25533011]
[18]
Stavrou, I.J.; Christou, A.; Kapnissi-Christodoulou, C.P. Polyphenols in carobs: A review on their composition, antioxidant capacity and cytotoxic effects, and health impact. Food Chem., 2018, 269, 355-374.
[http://dx.doi.org/10.1016/j.foodchem.2018.06.152] [PMID: 30100447]
[19]
Achmadi, S.S. Polyphenols resources in Indonesia from economic perspective.Polyphenols in Plants, Isolation, Purification and Extract Preparation, 2nd ed; Watson, R.R., Ed.; Academic Press: New York, 2019, pp. 67-79.
[http://dx.doi.org/10.1016/B978-0-12-813768-0.00005-0]
[20]
Lu, Y.; Du, Y.; Qin, X.; Wu, H.; Huang, Y.; Cheng, Y.; Wie, Y. Comprehensive evaluation of effective polyphenols in apple leaves and their combinatory antioxidant and neuroprotective activities. Ind. Crops Prod., 2019, 129, 242-252.
[http://dx.doi.org/10.1016/j.indcrop.2018.12.013]
[21]
Tanase, C.; Coșarcă, S.; Muntean, D.L. A critical review of phenolic compounds extracted from the bark of woody vascular plants and their potential biological activity. Molecules, 2019, 24(6), 1182.
[http://dx.doi.org/10.3390/molecules24061182] [PMID: 30917556]
[22]
Salminen, J.P.; Roslin, T.; Karonen, M.; Sinkkonen, J.; Pihlaja, K.; Pulkkinen, P. Seasonal variation in the content of hydrolyzable tannins, flavonoid glycosides, and proanthocyanidins in oak leaves. J. Chem. Ecol., 2004, 30(9), 1693-1711.
[http://dx.doi.org/10.1023/B:JOEC.0000042396.40756.b7] [PMID: 15586669]
[23]
Nugroho, A.; Song, B.M.; Seong, S.H.; Choi, J.S.; Choi, J.; Choi, J.Y.; Park, H.J. HPLC analysis of phenolic substances and anti-Alzheimer’s activity of Korean Quercus species. Nat. Prod. Sci., 2016, 22, 299-306.
[http://dx.doi.org/10.20307/nps.2016.22.4.299]
[24]
Romussi, G.; Parodi, B.; Caviglioli, G. Flavonoidglycoside aus Quercus pubescens Willd., Quercus cerris L., und Quercus ilex L. XIV: Über Inhaltsstoffe von Cupuliferae. Pharmazie, 1991, 46, 679.
[25]
Scalbert, A.; Haslam, E. Polyphenols and chemical defence of the leaves of Quercus robur. Phytochemistry, 1987, 26, 3191-3195.
[http://dx.doi.org/10.1016/S0031-9422(00)82468-1]
[26]
Benyagoub, E.; Nabbou, N.; Dine, A. Antimicrobial effect of Quercus robur L leaves selective extracts from the Mezi Mountain of Djeniene Bourezg (West of Algeria). Curr. Bioac. Prod., 2020, 16(8)
[http://dx.doi.org/10.2174/1573407216666191226141609]
[27]
Wang, D.; Lu, J.; Miao, A.; Xie, Z.; Yang, D. HPLC-DAD-ESI-MS/MS analysis of polyphenols and purine alkaloids in leaves of 22 tea cultivars in China. J. Food Compos. Anal., 2008, 21, 361-369.
[http://dx.doi.org/10.1016/j.jfca.2008.01.002]
[28]
Makk, Á.N.; Hofmann, T.; Rétfalvi, T. Utilization of oak bark (Quercus petraea (Matt.) Liebl.) for anaerobic digested biogas production. Acta Silvatica & Lignaria Hungarica, Faipar, 2013, 61, 16-26.
[29]
Hofmann, T.; Nebehaj, T.; Albert, L. Antioxidant properties and detailed polyphenol profiling of European hornbeam (Carpinus betulus L.) leaves by multiple antioxidant capacity assays and high-performance liquid hromatography/multistage electrospray mass spectrometry. Ind. Crops Prod., 2016, 87, 340-349.
[http://dx.doi.org/10.1016/j.indcrop.2016.04.037]
[30]
Benzie, I.F.F.; Strain, J.J. Ferric Reducing Ability Of Plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[31]
Stratil, P.; Klejdus, B.; Kubán, V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals. Talanta, 2007, 71(4), 1741-1751.
[http://dx.doi.org/10.1016/j.talanta.2006.08.012] [PMID: 19071517]
[32]
Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem., 2009, 113, 1202-1205.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[33]
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic., 1965, 16, 144-158.
[34]
Kalita, P.; Tapan, B.K.; Pal, T.K.; Kalita, R. Estimation of Total Flavonoids Content (TFC) and anti oxidant activities of methanolic whole plant extract of Biophytum sensitivum Linn. J. Drug Deliv. Ther., 2013, 3, 33-37.
[http://dx.doi.org/10.22270/jddt.v3i4.546]
[35]
Treutter, D. Chemical reaction detection of catechins and proanthocyanidins with 4-diemthylaminocinnamaldehyde. J. Chromatogr. A, 1989, 467, 185-193.
[http://dx.doi.org/10.1016/S0021-9673(01)93963-9]
[36]
Zhang, Q.; Su, Y.; Zhang, J. Seasonal difference in antioxidant capacity and active compounds contents of Eucommia ulmoides oliver leaf. Molecules, 2013, 18(2), 1857-1868.
[http://dx.doi.org/10.3390/molecules18021857] [PMID: 23377129]
[37]
Tálos-Nebehaj, E.; Hofmann, T.; Albert, L. Seasonal changes of natural antioxidant content in the leaves of Hungarian forest trees. Ind. Crops Prod., 2017, 98, 53-59.
[http://dx.doi.org/10.1016/j.indcrop.2017.01.011]
[38]
Sen, S.; De, B.; Devanna, N.; Chakraborty, R. Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant. Chin. J. Nat. Med., 2013, 11, 0149-0157..
[39]
Valencia-Avilés, E.; García-Pérez, M.E.; Garnica-Romo, M.G.; Figueroa-Cárdenas, J.D.D.; Meléndez-Herrera, E.; Salgado-Garciglia, R.; Martínez-Flores, H.E. Antioxidant Properties of Polyphenolic Extracts from Quercus laurina, Quercus crassifolia, and Quercus scytophylla Bark. Antioxidants, 2018, 7(7), 81.
[http://dx.doi.org/10.3390/antiox7070081]
[40]
Reynertson, K.A.; Basile, M.J.; Kennelly, E.J. Antioxidant potential of seven myrtaceous fruits. Ethnobotany Res. Appl., 2005, 3, 025-036.
[41]
Wang, J.B.; Qin, Y.; Kong, W.J.; Wang, Z.W.; Zeng, L.N.; Fang, F.; Jin, C.; Zhao, Y.L.; Xiao, X.H. Identification of the antidiarrhoeal components in official rhubarb using liquid chromatography-tandem mass spectrometry. Food Chem., 2011, 129, 1737-1743.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.041]
[42]
Gamboa-Gómez, C.I.; Simental-Mendía, L.E.; González-Laredo, R.F.; Alcantar-Orozco, E.J.; Monserrat-Juarez, V.H.; Ramírez-España, J.C.; Gallegos-Infante, J.A.; Moreno-Jiménez, M.R.; Rocha-Guzmán, N.E. In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of Oak leaves (Quercus convallata and Quercus arizonica) infusions and fermented beverages. Food Res. Int., 2017, 102, 690-699.
[http://dx.doi.org/10.1016/j.foodres.2017.09.040] [PMID: 29196002]
[43]
Giftson Senapathy, J.; Jayanthi, S.; Viswanathan, P.; Umadevi, P.; Nalini, N. Effect of gallic acid on xenobiotic metabolizing enzymes in 1,2-dimethyl hydrazine induced colon carcinogenesis in Wistar rats-a chemopreventive approach. Food Chem. Toxicol., 2011, 49(4), 887-892.
[http://dx.doi.org/10.1016/j.fct.2010.12.012] [PMID: 21172399]
[44]
Umesalma, S.; Sudhandiran, G. Ellagic acid prevents rat colon carcinogenesis induced by 1, 2 dimethyl hydrazine through inhibition of AKT-phosphoinositide-3 kinase pathway. Eur. J. Pharmacol., 2011, 660(2-3), 249-258.
[http://dx.doi.org/10.1016/j.ejphar.2011.03.036] [PMID: 21463623]
[45]
Kumar, K.N.; Raja, S.B.; Vidhya, N.; Devaraj, S.N. Ellagic acid modulates antioxidant status, ornithine decarboxylase expression, and aberrant crypt foci progression in 1,2-dimethylhydrazine-instigated colon preneoplastic lesions in rats. J. Agric. Food Chem., 2012, 60(14), 3665-3672.
[http://dx.doi.org/10.1021/jf204128z] [PMID: 22439659]
[46]
Amarowicz, R.; Janiak, M. Hydrolisable tannins.Encyclopedia of Food Chemistry; Melton, L.; Shahidi, F.; Varelis, P., Eds.; Elsevier Science: New York, 2019, pp. 337-343.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21771-X]
[47]
Sanz, M.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Fernández de Simón, B.; Hernández, T.; Estrella, I. Phenolic compounds in chestnut (Castanea sativa Mill.) heartwood. Effect of toasting at cooperage. J. Agric. Food Chem., 2010, 58(17), 9631-9640.
[http://dx.doi.org/10.1021/jf102718t] [PMID: 20687564]
[48]
Salminen J-P, ; Ossipov, V.; Loponen, J.; Haukioja, E.; Pihlaja, K. Characterisation of hydrolysable tannins from leaves of Betula pubescens by high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A, 1999, 864(2), 283-291.
[http://dx.doi.org/10.1016/S0021-9673(99)01036-5] [PMID: 10669296]
[49]
Cadahía, E.; Fernández de Simón, B.; Aranda, I.; Sanz, M.; Sánchez-Gómez, D.; Pinto, E. Non-targeted metabolomic profile of Fagus sylvatica L. leaves using liquid chromatography with mass spectrometry and gas chromatography with mass spectrometry. Phytochem. Anal., 2015, 26(2), 171-182.
[http://dx.doi.org/10.1002/pca.2549] [PMID: 25516018]
[50]
Hofmann, T.; Tálos-Nebehaj, E.; Albert, L. Leaf polyphenols as indicators of climatic adaptation of Beech (Fagus sylvatica L.) - an HPLC-MS/MS via MRM approach. International Labmate, 2017, 42, 12-14.
[51]
Vieira, V.; Pereira, C.; Pires, T.C.S.P.; Calhelha, R.C.; Alves, M.J.; Ferreira, O.; Baross, L.; Ferreira, I.C.F.R. Phenolic profile, antioxidant and antibacterial properties of Juglans regia L.(walnut) leaves from the Northeast of Portugal. Ind. Crops Prod., 2019, 134, 347-355.
[http://dx.doi.org/10.1016/j.indcrop.2019.04.020]
[52]
Larrosa, M.; González-Sarrías, A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. J. Agric. Food Chem., 2006, 54(5), 1611-1620.
[http://dx.doi.org/10.1021/jf0527403] [PMID: 16506809]
[53]
Karas, D.; Ulrichová, J.; Valentová, K. Galloylation of polyphenols alters their biological activity. Food Chem. Toxicol., 2017, 105, 223-240.
[http://dx.doi.org/10.1016/j.fct.2017.04.021] [PMID: 28428085]
[54]
Rocha-Guzmán, N.E.; Medina-Medrano, J.R.; Gallegos-Infante, J.A.; González-Laredo, R.F.; Ramos-Gómez, M.; Reynoso-Camacho, R.; Guzmán-Maldonado, H.; González-Herrera, S.M. Chemical evaluation, antioxidant capacity, and consumer acceptance of several oak infusions. J. Food Sci., 2012, 77(2), C162-C166.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02524.x] [PMID: 22339542]
[55]
Mellou, F.; Lazari, D.; Skaltsa, H.; Tselepis, A.D.; Kolisis, F.N.; Stamatis, H. Biocatalytic preparation of acylated derivatives of flavonoid glycosides enhances their antioxidant and antimicrobial activity. J. Biotechnol., 2005, 116(3), 295-304.
[http://dx.doi.org/10.1016/j.jbiotec.2004.12.002] [PMID: 15707690]
[56]
Terahara, N. Flavonoids in foods: A review. Nat. Prod. Commun., 2015, 10(3), 521-528.
[http://dx.doi.org/10.1177/1934578X1501000334] [PMID: 25924542]
[57]
Hashimoto, F.; Ono, M.; Masuoka, C.; Ito, Y.; Sakata, Y.; Shimizu, K.; Nonaka, G.; Nishioka, I.; Nohara, T. Evaluation of the anti-oxidative effect (in vitro) of tea polyphenols. Biosci. Biotechnol. Biochem., 2003, 67(2), 396-401.
[http://dx.doi.org/10.1271/bbb.67.396] [PMID: 12729007]
[58]
Olas, B.; Żuchowski, J.; Lis, B.; Skalski, B.; Kontek, B.; Grabarczyk, Ł.; Stochmal, A. comparative chemical composition, antioxidant and anticoagulant properties of phenolic fraction (a rich in non-acylated and acylated flavonoids and non-polar compounds) and non-polar fraction from Elaeagnus rhamnoides (L.) A. Nelson fruits. Food Chem., 2018, 247, 39-45.
[http://dx.doi.org/10.1016/j.foodchem.2017.12.010] [PMID: 29277226]
[59]
Li, Y.; Li, D.; An, Q.; Ma, H.; Mu, Y.; Qiao, W.; Zhang, Z.; Zhang, J.; Huang, X.; Li, L. New acylated phenolic glycosides with ROS-scavenging activity from Psidium guajava leaves. J. Agric. Food Chem., 2019, 67(40), 11089-11098.
[http://dx.doi.org/10.1021/acs.jafc.9b04318] [PMID: 31509411]
[60]
Oliveira, H.; Perez-Gregório, R.; de Freitas, V.; Mateus, N.; Fernandes, I. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs. red wine. Food Chem., 2019, 276, 410-418.
[http://dx.doi.org/10.1016/j.foodchem.2018.09.159] [PMID: 30409613]
[61]
Hadidi, L.; Babou, L.; Zaidi, F.; Valentão, P.; Andrade, P.B.; Grosso, C. Quercus ilex L.: How season, plant organ and extraction procedure can influence chemistry and bioactivities. Chem. Biodivers., 2017, 14(1), e1600187.
[http://dx.doi.org/10.1002/cbdv.201600187] [PMID: 27584870]
[62]
Karioti, A.; Bilia, A.R.; Skaltsa, H. Quercus ilex L.: A rich source of polyacylated flavonoid glucosides. Food Chem., 2010, 123, 231-142.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.020]
[63]
Wang, L.L.; Jiang, M.X.; Xu, S.X.; Sun, Q.S.; Zeng, G.Y.; Zhou, Y.J. Two acylated flavonoid glycosides from the leaves of Quercus dentata. Nat. Prod. Commun., 2010, 5(10), 1597-1599.
[http://dx.doi.org/10.1177/1934578X1000501017] [PMID: 21121256]