[29]
Pagliaro, BPagliaro, B. Santolamazza, C.; Simonelli, F.; Rubattu, S. Phytochemical Compounds and Protection from Cardiovascular Diseases: A State of the Art. BioMed Res. Int., 2015, 2015918069
[32]
Villarreal, F.J. Cardiac hypertrophy-induced changes in mRNA levels for TGF-beta 1, fibronectin, and collagen. Dillmann WHJAJoP-H. Physiology C, 1992, 262(6), H1861-H6.
[34]
Piacentini, L.; Gray, M.; Honbo, N.Y.; Chentoufi, J.; Bergman, M.; Karliner, J.S. Endothelin-1 stimulates cardiac fibroblast proliferation through activation of protein kinase C. J. Mol. Cell. Cardiol., 2000, 32(4), 565-576.
[35]
Shi-Wen, X.; Denton, C.P.; Dashwood, M.R.; Holmes, A.M.; Bou-Gharios, G.; Pearson, J.D.; Black, C.M.; Abraham, D.J. Fibroblast matrix gene expression and connective tissue remodeling: Role of endothelin-1. J. Invest. Dermatol., 2001, 116(3), 417-425.
[36]
Shibasaki, Y.; Nishiue, T.; Masaki, H.; Tamura, K.; Matsumoto, N.; Mori, Y.; Nishikawa, M.; Matsubara, H.; Iwasaka, T. Impact of the angiotensin ii receptor antagonist, losartan, on myocardial fibrosis in patients with end-stage renal disease: Assessment by ultrasonic integrated backscatter and biochemical markers. Hypertens. Res., 2005, 28(10), 787-795.
[37]
Shi, Y.; Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell, 2003, 113(6), 685-700.
[40]
Lam, S.; van der Geest, R.N.; Verhagen, N.A.M.; van Nieuwenhoven, F.A.; Blom, I.E.; Aten, J.; Goldschmeding, R.; Daha, M.R.; van Kooten, C. Connective tissue growth factor and igf-i are produced by human renal fibroblasts and cooperate in the induction of collagen production by high glucose. Diabetes, 2003, 52(12), 2975-2983.
[41]
Duncan, M.R.; Frazier, K.S.; Abramson, S.; Williams, S.; Klapper, H.; Huang, X.; Grotendorst, G.R. Connective tissue growth factor mediates transforming growth factor beta-induced collagen synthesis: down-regulation by camp. FASEB J., 1999, 13(13), 1774-1786.
[42]
Daniels, J.T.; Schultz, G.S.; Blalock, T.D.; Garrett, Q.; Grotendorst, G.R.; Dean, N.M.; Khaw, P.T. Mediation of transforming growth factor-β1-stimulated matrix contraction by fibroblasts. Am. J. Pathol., 2003, 163(5), 2043-2052.
[43]
Grotendorst, G.R.; Rahmanie, H.; Duncan, M.R. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. FASEB J., 2004, 18(3), 469-479.
[44]
Sadoshima, J.; Xu, Y.; Slayter, H.S.; Izumo, S. Autocrine release of angiotensin ii mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell, 1993, 75(5), 977-984.
[45]
Kawano, H.; Do, Y.S.; Kawano, Y.; Starnes, V.; Barr, M.; Law, R.E.; Hsueh, W.A. Angiotensin II has multiple profibrotic effects in human cardiac fibroblasts. Circulation, 2000, 101(10), 1130-1137.
[46]
Kamo, T.; Akazawa, H.; Komuro, I. Cardiac nonmyocytes in the hub of cardiac hypertrophy. Circ. Res., 2015, 117(1), 89-98.
[47]
Mitchell, M.D.; Laird, R.E. Brown. Rd il-1β stimulates rat cardiac fibroblast migration via map kinase pathways. Long CSJAJoP-H. Physiol. C., 2007, 292(2), 1139-1147.
[48]
Honsho, S.; Nishikawa, S.; Amano, K.; Zen, K.; Adachi, Y.; Kishita, E.; Matsui, A.; Katsume, A.; Yamaguchi, S.; Nishikawa, K.; Isoda, K.; Riches, D.W.H.; Matoba, S.; Okigaki, M.; Matsubara, H. Pressure-mediated hypertrophy and mechanical stretch induces il-1 release and subsequent igf-1 generation to maintain compensative hypertrophy by affecting akt and jnk pathways. Circ. Res., 2009, 105(11), 1149-1158.
[49]
Testa, M.; Yeh, M.; Lee, P.; Fanelli, R.; Loperfido, F.; Berman, J.W.; LeJemtel, T.H. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J. Am. Coll. Cardiol., 1996, 28(4), 964-971.
[50]
Testa, M.; Yeh, M.; Lee, P.; Fanelli, R.; Loperfido, F.; Berman, J.W.; LeJemtel, T.H. Circulating levels of cytokines and their endogenous modulators in patients with mild to severe congestive heart failure due to coronary artery disease or hypertension. J. Am. Coll. Cardiol., 1996, 28(4), 964-971.
[51]
Kubota, T.; McTiernan, C.F.; Frye, C.S.; Slawson, S.E.; Lemster, B.H.; Koretsky, A.P.; Demetris, A.J.; Feldman, A.M. Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ. Res., 1997, 81(4), 627-635.
[52]
Meléndez, G.C.; McLarty, J.L.; Levick, S.P.; Du, Y.; Janicki, J.S.; Brower, G.L. Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension, 2010, 56(2), 225-231.
[70]
Nahrendorf, M.; Swirski, F.K.; Aikawa, E.; Stangenberg, L.; Wurdinger, T.; Figueiredo, J-L.; Libby, P.; Weissleder, R.; Pittet, M.J. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med., 2007, 204(12), 3037-3047.
[71]
Kong, P; Christia, P; Frangogiannis, NGJC The pathogenesis of cardiac fibrosis. Sciences ml, 2014, 71(4), 549-74.,
[72]
Mantovani, A.; Sica, A.; Locati, M. Macrophage polarization comes of age. Immunity, 2005, 23(4), 344-346.
[73]
Yang, M.; Zheng, J.; Miao, Y.; Wang, Y.; Cui, W.; Guo, J.; Qiu, S.; Han, Y.; Jia, L.; Li, H.; Cheng, J.; Du, J. Serum-glucocorticoid regulated kinase 1 regulates alternatively activated macrophage polarization contributing to angiotensin ii-induced inflammation and cardiac fibrosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(7), 1675-1686.
[74]
Tokuda, K.; Kai, H.; Kuwahara, F.; Yasukawa, H.; Tahara, N.; Kudo, H.; Takemiya, K.; Koga, M.; Yamamoto, T.; Imaizumi, T. Pressure-independent effects of angiotensin ii on hypertensive myocardial fibrosis. Hypertension, 2004, 43(2), 499-503.
[75]
Sun, Y.; Zhang, J.; Lu, L.; Chen, S.S.; Quinn, M.T.; Weber, K.T. Aldosterone-induced inflammation in the rat heart : role of oxidative stress. Am. J. Pathol., 2002, 161(5), 1773-1781.
[76]
Fallowfield, J.A.; Mizuno, M.; Kendall, T.J.; Constandinou, C.M.; Benyon, R.C.; Duffield, J.S.; Iredale, J.P. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol., 2007, 178(8), 5288-5295.
[79]
Barallobre-Barreiro, J.; Didangelos, A.; Yin, X.; Doménech, N.; Mayr, M. A sequential extraction methodology for cardiac extracellular matrix prior to proteomics analysis; Heart Proteomics, 2013, pp. 215-223.
[89]
Dobaczewski, M Chen, W Transforming growth factor (TGF)-β
signaling in cardiac remodeling. cardiology c., 2011, 51(4), 600-6.,
[97]
Bujak, M.; Ren, G.; Kweon, H.J.; Dobaczewski, M.; Reddy, A.; Taffet, G.; Wang, X-F.; Frangogiannis, N.G. Essential role of smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation, 2007, 116(19), 2127-2138.
[103]
Eghbali, M. Cardiac fibroblasts: function, regulation of gene expression, and phenotypic modulation.Cardiac adaptation in heart failure., 1992, , 183-189.,
[115]
Huang, S-h.; Brett, E.; Frydas, S.; Kempuraj, D.; Barbacane, R.C.; Grilli, A., Eds.; Huang, S-h.; Brett, E.; Frydas, S.; Kempuraj, D.; Barbacane, R.C.;
Grilli, A., Eds.; Interleukin-17 and the interleukin-17 family member
network; , 2004.