Dioclea Altissima Seed Lectin (DAL) Prevents Anxiety-like Behavioral Responses in Adult Zebrafish (Danio Rerio): Involvement of GABAergic and 5-HT Systems

Page: [95 - 103] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Plant lectins have shown promising neuropharmacological activities in animal models.

Objective: This study evaluated the effect of Dioclea altissima seed lectin (DAL) on adult zebrafish behavior.

Method: Zebrafish (n=6/group) were treated (i.p.; 20 μL) with DAL (0.025; 0.05 or 0.1 mg/mL), vehicle or diazepam (DZP) and submitted to several tests (open field, light/dark preference or novel tank). Flumazenil, pizotifen or granisetron were administered 15 min before DAL (0.05 mg/mL), and the animals were evaluated on light/dark preference test. It was also verified whether the DAL effect depended on its structural integrity and ability to interact with carbohydrates.

Results: DAL decreased the locomotor activity of adult zebrafish (0.025; 0.05 or 0.1 mg/mL), increased the time spent in the upper region of the aquarium (0.025 mg/mL), and decreased the latency time of adult zebrafish to enter the upper region on the novel tank test. DAL (0.05 mg/mL) also increased their permanence in the light zone of the light/dark preference test. The effect of DAL was dependent on carbohydrate interaction and protein structure integrity and was prevented by pizotifen, granizetron and flumazenil.

Conclusion: DAL was found to have an anxiolytic-like effect mediated by the 5-HT and GABAergic receptors.

Keywords: Dioclea altissima, lectin, neurobehavioral, anxiolytic-like, 5-HT receptors, GABAergic receptors.

Graphical Abstract

[1]
Taylor S, Koch WJ, Crockett DJ. Anxiety sensitivity, trait anxiety, and the anxiety disorders. J Anxiety Disord 1991; 5: 293-311.
[http://dx.doi.org/10.1016/0887-6185(91)90030-W]
[2]
Ennaceur A. Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav 2014; 135: 55-71.
[http://dx.doi.org/10.1016/j.physbeh.2014.05.032] [PMID: 24910138]
[3]
Allen AJ, Leonard H, Swedo SE. Current knowledge of medications for the treatment of childhood anxiety disorders. J Am Acad Child Adolesc Psychiatry 1995; 34(8): 976-86.
[http://dx.doi.org/10.1097/00004583-199508000-00007] [PMID: 7665455]
[4]
Kulesskaya N, Voikar V. Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Physiol Behav 2014; 133: 30-8.
[http://dx.doi.org/10.1016/j.physbeh.2014.05.006] [PMID: 24832050]
[5]
Halfin A. Depression: the benefits of early and appropriate treatment. Am J Manag Care 2007; 13(4)(Suppl.): S92-7.
[PMID: 18041868]
[6]
Braga JEF, Pordeus LC, Da Silva ATMC, Pimenta FCF, Diniz MFFM, De Almeida RN. Pathological Anxiety: Neural Bases and Advances in Psychopharmacological Approach. Rev. Bras. Ciênc Saúde (Porto Alegre) 2011; 14: 93-100.
[http://dx.doi.org/10.4034/RBCS.2010.14.02.13]
[7]
Guo S. Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 2004; 3(2): 63-74.
[http://dx.doi.org/10.1046/j.1601-183X.2003.00053.x] [PMID: 15005714]
[8]
Miklósi A, Andrew RJ. The zebrafish as a model for behavioral studies. Zebrafish 2006; 3(2): 227-34.
[http://dx.doi.org/10.1089/zeb.2006.3.227] [PMID: 18248263]
[9]
Collier AD, Kalueff AV, Echevarria DJ. Zebrafish Models of Anxiety-Like Behaviors.The rights and wrongs of zebrafish: Behavioral phenotyping of zebrafish; Kalueff, A, Ed. Springer: Cham 2017; 1: pp. 45-72.
[10]
Soares MC, Cardoso SC, Carvalho TDS, Maximino C. Using model fish to study the biological mechanisms of cooperative behaviour: A future for translational research concerning social anxiety disorders? Prog Neuropsychopharmacol Biol Psychiatry 2018; 82: 205-15.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.014] [PMID: 29154800]
[11]
Barbazuk WB, Korf I, Kadavi C, et al. The syntenic relationship of the zebrafish and human genomes. Genome Res 2000; 10(9): 1351-8.http://www.genome.org/cgi/doi/10.1101/gr.144700
[http://dx.doi.org/10.1101/gr.144700] [PMID: 10984453]
[12]
Gheno EM, Rosemberg DB, Souza DO, Calabró L. Zebrafish in brazilian science: scientific production, impact, and collaboration. Zebrafish 2016; 13(3): 217-25.
[http://dx.doi.org/10.1089/zeb.2015.1183] [PMID: 27045850]
[13]
Gebauer DL, Pagnussat N, Piato ÂL, Schaefer IC, Bonan CD, Lara DR. Effects of anxiolytics in zebrafish: similarities and differences between benzodiazepines, buspirone and ethanol. Pharmacol Biochem Behav 2011; 99(3): 480-6.
[http://dx.doi.org/10.1016/j.pbb.2011.04.021] [PMID: 21570997]
[14]
Maximino C, Puty B, Benzecry R, et al. Role of serotonin in zebrafish (Danio rerio) anxiety: relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 2013; 71: 83-97.
[http://dx.doi.org/10.1016/j.neuropharm.2013.03.006] [PMID: 23541719]
[15]
Mansur BM, Dos Santos BR, Gouveia A. Efeitos da substância de alarme no teste claro/escuro no Zebrafish, Danio rerio. Amazonian Biota 2014; 4: 87-93.
[http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v4n1p87-93]
[16]
Van Dammes EJ, Fouquaert E, Lannoo N, Vandenborre G, Schouppe D, Peumans WJ. Novel concepts about the role of lectins in the plant cell. Adv Exp Med Biol 2011; 705: 271-94.
[http://dx.doi.org/10.1007/978-1-4419-7877-6_13] [PMID: 21618113]
[17]
Cavada BS, Barbosa T, Arruda S, Grangeiro TB, Barral-Netto M. Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins. Curr Protein Pept Sci 2001; 2(2): 123-35.
[http://dx.doi.org/10.2174/1389203013381152] [PMID: 12370020]
[18]
Barauna SC, Kaster MP, Heckert BT, et al. Antidepressant-like effect of lectin from Canavalia brasiliensis (ConBr) administered centrally in mice. Pharmacol Biochem Behav 2006; 85(1): 160-9.
[http://dx.doi.org/10.1016/j.pbb.2006.07.030] [PMID: 16950503]
[19]
Araújo JRC, Júnior JMAM, Damasceno MBMV, et al. Neuropharmacological characterization of frutalin in mice: Evidence of an antidepressant-like effect mediated by the NMDA receptor/NO/cGMP pathway. Int J Biol Macromol 2018; 112: 548-54.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.01.180] [PMID: 29408007]
[20]
Gonçalves NGG. Ação da lectina de Dioclea altissima sobre células tumorais: Citotoxidade e Perfil Proteômico da Linhagem PC3M 2012. [Action of Dioclea altissima lectin on cells tumors: Cytotoxicity and Proteomic Lineage Profile PC3M].
[21]
Gonçalves NGG, Moreno FBMB, Costa MP, Moreira RA, Monteiro-Moreira ACO. Ação da lectina de Dioclea altissima sobre a linhagem PC3M de carcinoma de próstata - Análise Proteômica diferencial, XIV Encontro de Pós-graduação e Pesquisa da Universidade de Fortaleza, Fortaleza, BR. 2014; pp. 1-6. [Action of the Dioclea altissima lectin on the PC3M Prostate Carcinoma Lineage - Proteomic Analysis differential, XIV University Graduate and Research Meeting from Fortaleza]
[22]
Araújo JRC, Campos AR, de Barros M V Damasceno M, et al. Neuropharmacological characterization of Dioclea altissima seed lectin (DAL) in mice: evidence of anxiolytic-like effect mediated by serotonergic, GABAergic receptors and NO pathway. Curr Pharm Des 2020; 26(31): 3895-904.
[http://dx.doi.org/10.2174/1381612826666200331093207] [PMID: 32228418]
[23]
Moreira RA, Monteiro AC, Horta AC, Oliveira JT, Cavada BS. Isolation and characterization of Dioclea altissima var. megacarpa seed lectin. Phytochemistry 1997; 46: 139-44.
[http://dx.doi.org/10.1016/S0031-9422(97)00262-8]
[24]
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227(5259): 680-5.
[http://dx.doi.org/10.1038/227680a0] [PMID: 5432063]
[25]
Stewart A, Gaikwad S, Kyzar E, Green J, Roth A, Kalueff AV. Modeling anxiety using adult zebrafish: a conceptual review. Neuropharmacology 2012; 62(1): 135-43.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.037] [PMID: 21843537]
[26]
Magalhães FEA, de Sousa CAPB, Santos SAAR, et al. Adult Zebrafish (Danio rerio): An Alternative Behavioral Model of Formalin-Induced Nociception. Zebrafish 2017; 14(5): 422-9.
[http://dx.doi.org/10.1089/zeb.2017.1436] [PMID: 28704145]
[27]
Blaser RE, Rosemberg DB. Measures of anxiety in zebrafish (Danio rerio): dissociation of black/white preference and novel tank test. PLoS One 2012; 7(5): e36931.
[http://dx.doi.org/10.1371/journal.pone.0036931] [PMID: 22615849]
[28]
Ferreira MKA, da Silva AW, Silva FCO, et al. Anxiolytic-like effect of chalcone N-(4′-[(E)-3-(4-fluorophenyl)-1-(phenyl) prop-2-en-1-one] acetamide on adult zebrafish (Danio rerio): Involvement of the GABAergic system. Behav Brain Res 2019; 374: 111871.
[http://dx.doi.org/10.1016/j.bbr.2019.03.040] [PMID: 30922939]
[29]
Benneh CK, Biney RP, Mante PK, Tandoh A, Adongo DW, Woode E. Maerua angolensis stem bark extract reverses anxiety and related behaviours in zebrafish-Involvement of GABAergic and 5-HT systems. J Ethnopharmacol 2017; 207: 129-45.
[http://dx.doi.org/10.1016/j.jep.2017.06.012] [PMID: 28645783]
[30]
Everts I, Petroski R, Kizelsztein P, Teichberg VI, Heinemann SF, Hollmann M. Lectin-induced inhibition of desensitization of the kainate receptor GluR6 depends on the activation state and can be mediated by a single native or ectopic N-linked carbohydrate side chain. J Neurosci 1999; 19(3): 916-27.
[http://dx.doi.org/10.1523/JNEUROSCI.19-03-00916.1999] [PMID: 9920655]
[31]
Araújo JRC, Coelho CB, Campos AR, de Azevedo Moreira R, de Oliveira Monteiro-Moreira AC. Animal Galectins and Plant Lectins as Tools for Studies in Neurosciences. Curr Neuropharmacol 2020; 18(3): 202-15.
[http://dx.doi.org/10.2174/1570159X17666191016092221] [PMID: 31622208]
[32]
Maximino C, de Brito TM, da Silva Batista AW, Herculano AM, Morato S, Gouveia A Jr. Measuring anxiety in zebrafish: a critical review. Behav Brain Res 2010; 214(2): 157-71.
[http://dx.doi.org/10.1016/j.bbr.2010.05.031] [PMID: 20510300]
[33]
Gerlai R, Lahav M, Guo S, Rosenthal A. Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 2000; 67(4): 773-82.
[http://dx.doi.org/10.1016/S0091-3057(00)00422-6] [PMID: 11166068]
[34]
Levin ED, Bencan Z, Cerutti DT. Anxiolytic effects of nicotine in zebrafish. Physiol Behav 2007; 90(1): 54-8.
[http://dx.doi.org/10.1016/j.physbeh.2006.08.026] [PMID: 17049956]
[35]
Bencan Z, Sledge D, Levin ED. Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 2009; 94(1): 75-80.
[http://dx.doi.org/10.1016/j.pbb.2009.07.009] [PMID: 19643124]
[36]
Rosemberg DB, Rico EP, Mussulini BHM, et al. Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLoS One 2011; 6(5): e19397.
[http://dx.doi.org/10.1371/journal.pone.0019397] [PMID: 21559304]
[37]
Blank M, Guerim LD, Cordeiro RF, Vianna MR. A one-trial inhibitory avoidance task to zebrafish: rapid acquisition of an NMDA-dependent long-term memory. Neurobiol Learn Mem 2009; 92(4): 529-34.
[http://dx.doi.org/10.1016/j.nlm.2009.07.001] [PMID: 19591953]
[38]
Magno LDP, Fontes A, Gonçalves BMN, Gouveia A Jr. Pharmacological study of the light/dark preference test in zebrafish (Danio rerio): Waterborne administration. Pharmacol Biochem Behav 2015; 135: 169-76.
[http://dx.doi.org/10.1016/j.pbb.2015.05.014] [PMID: 26026898]
[39]
López-Rubalcava C, Saldívar A, Fernández-Guasti A. Interaction of GABA and serotonin in the anxiolytic action of diazepam and serotonergic anxiolytics. Pharmacol Biochem Behav 1992; 43(2): 433-40.
[http://dx.doi.org/10.1016/0091-3057(92)90173-D] [PMID: 1359576]
[40]
Millan MJ. The neurobiology and control of anxious states. Prog Neurobiol 2003; 70(2): 83-244.
[http://dx.doi.org/10.1016/S0301-0082(03)00087-X] [PMID: 12927745]
[41]
Vasconcelos SMM, Lima SR, Soares PM, et al. Central action of Araucaria angustifolia seed lectin in mice. Epilepsy Behav 2009; 15(3): 291-3.
[http://dx.doi.org/10.1016/j.yebeh.2009.05.002] [PMID: 19446042]
[42]
Arvanov VL, Chou HC, Chen YH, Chen RC, Chang YC, Tsai MC. Effects of concanavalin A on desensitization kinetics of GABA responses in Achatina fulica neurons. Cell Biol Toxicol 1995; 11(2): 113-8.
[http://dx.doi.org/10.1007/BF00767496] [PMID: 7583871]
[43]
Mulligan KA, van Brederode JFM, Hendrickson AE. The lectin Vicia villosa labels a distinct subset of GABAergic cells in macaque visual cortex. Vis Neurosci 1989; 2(1): 63-72.
[http://dx.doi.org/10.1017/S0952523800004338] [PMID: 2487638]
[44]
Kosaka T, Heizmann CW. Selective staining of a population of parvalbumin-containing GABAergic neurons in the rat cerebral cortex by lectins with specific affinity for terminal N-acetylgalactosamine. Brain Res 1989; 483(1): 158-63.
[http://dx.doi.org/10.1016/0006-8993(89)90048-6] [PMID: 2565147]
[45]
Charney DS, Woods SW, Goodman WK, Heninger GR. Serotonin function in anxiety. II. Effects of the serotonin agonist MCPP in panic disorder patients and healthy subjects. Psychopharmacology (Berl) 1987; 92(1): 14-24.
[http://dx.doi.org/10.1007/BF00215473] [PMID: 3110824]
[46]
Johnson PL, Molosh AI, Federici LM, et al. Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels. Transl Psychiatry 2019; 9(1): 33.
[http://dx.doi.org/10.1038/s41398-019-0368-y] [PMID: 30670681]
[47]
Nowicki M, Tran S, Muraleetharan A, Markovic S, Gerlai R. Serotonin antagonists induce anxiolytic and anxiogenic-like behavior in zebrafish in a receptor-subtype dependent manner. Pharmacol Biochem Behav 2014; 126: 170-80.
[http://dx.doi.org/10.1016/j.pbb.2014.09.022] [PMID: 25284132]
[48]
Cobb BA, Kasper DL. Coming of age: carbohydrates and immunity. Eur J Immunol 2005; 35(2): 352-6.
[http://dx.doi.org/10.1002/eji.200425889] [PMID: 15682450]
[49]
Kariya Y, Gu J. N-glycosylation of ß4 integrin controls the adhesion and motility of keratinocytes. PLoS One 2011; 6(11): e27084.
[http://dx.doi.org/10.1371/journal.pone.0027084] [PMID: 22073258]
[50]
Nowycky MC, Wu G, Ledeen RW. Glycobiology of ion transport in the nervous system.Glycobiology of the nervous system: Advances in Neurobiology. New York: Springer 2014; Vol. 9: pp. 321-42.
[http://dx.doi.org/10.1007/978-1-4939-1154-7_15]
[51]
Choi JY, Seo J, Park M, Kim MH, Kang K, Choi IS. Multiplexed metabolic labeling of glycoconjugates in polarized primary cerebral cortical neurons. Chem–An. Chem Asian J 2018; 13(22): 3480-4.
[http://dx.doi.org/10.1002/asia.201800996] [PMID: 30204301]
[52]
Gerlai R. High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 2010; 15(4): 2609-22.
[http://dx.doi.org/10.3390/molecules15042609] [PMID: 20428068]
[53]
Norton W, Bally-Cuif L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci 2010; 11(1): 90.
[http://dx.doi.org/10.1186/1471-2202-11-90] [PMID: 20678210]