Development of Lipid Nanocarriers for Tuberculosis Treatment: Evaluation of Suitable Excipients and Nanocarriers

Page: [770 - 778] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Lipid nanocarriers have been widely tested as drug delivery systems to treat diseases due to their bioavailability, controlled release, and low toxicity. For the pulmonary route, the Food and Drug Administration favors the use of substances generally recognized as safe, as well as biodegradable and biocompatible to minimize the possibility of toxicity. Tuberculosis (TB) remains a public health threat worldwide, mainly due to the long treatment duration and adverse effects. Therefore, new drug delivery systems for treating TB are needed.

Objective: Physicochemical characterization of different lipid-based nanocarriers was used to optimize carrier properties. Optimized systems were incubated with Mycobacterium tuberculosis to assess whether lipid-based systems act as the energy source for the bacteria, which could be counterproductive to therapy.

Methods: Several excipients and surfactants were evaluated to prepare different types of nanocarriers using high-pressure homogenization.

Results: A mixture of trimyristin with castor oil was chosen as the lipid matrix after differential scanning calorimetry analysis. A mixture of egg lecithin and PEG-660 stearate was selected as an optimal surfactant system, as this mixture formed the most stable formulations. Three types of lipid nanocarriers, solid lipid nanoparticles, nanostructured lipid carriers (NLC), and nanoemulsions, were prepared, with the NLC systems showing the most suitable properties for further evaluation. It may provide the advantages of increasing the entrapment efficiency, drug release, and the ability to be lyophilized, producing powder for pulmonary administration as an alternative to entrap poor water-soluble molecules.

Conclusion: Furthermore, the NLC system can be considered for use as a platform for the treatment of TB through the pulmonary route.

Keywords: Biotechnology, drug delivery, nanobioscience, nanomedicine, pharmaceuticals, microbiology.

Graphical Abstract

[1]
World Health Organization, Global Tuberculosis Report. Available From: https://www.who.int/teams/global-tuberculosis-programme/tb-reports
[2]
Nasiruddin, M.; Neyaz, M.K.; Das, S. Nanotechnology-based approach in tuberculosis treatment. Tuberc. Res. Treat., 2017, 2017, 4920209.
[http://dx.doi.org/10.1155/2017/4920209] [PMID: 28210505]
[3]
Quintanar-Guerrero, D.; Allémann, E.; Fessi, H.; Doelker, E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm., 1998, 24(12), 1113-1128.
[http://dx.doi.org/10.3109/03639049809108571] [PMID: 9876569]
[4]
Puri, A.; Loomis, K.; Smith, B.; Lee, J-H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10] [PMID: 20402623]
[5]
Mannucci, S.; Boschi, F.; Cisterna, B.; Esposito, E.; Cortesi, R.; Nastruzzi, C.; Cappellozza, E.; Bernardi, P.; Sbarbati, A.; Malatesta, M.; Calderan, L. A correlative imaging study of in vivo and ex vivo biodistribution of solid lipid nanoparticles. Int. J. Nanomedicine, 2020, 15, 1745-1758.
[http://dx.doi.org/10.2147/IJN.S236968] [PMID: 32214808]
[6]
Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.E.; Benoit, J.P. Physico-chemical stability of colloidal lipid particles. Biomaterials, 2003, 24(23), 4283-4300.
[http://dx.doi.org/10.1016/S0142-9612(03)00331-4] [PMID: 12853260]
[7]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[8]
Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm., 2010, 392(1-2), 1-19.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.017] [PMID: 20223286]
[9]
Hädrich, G.; Boschero, R.A.; Appel, A.S.; Falkembach, M.; Monteiro, M.; da Silva, P.E.A.; Dailey, L.A.; Dora, C.L. Tuberculosis treatment facilitated by lipid nanocarriers: Can inhalation improve the regimen? Assay Drug Dev. Technol., 2020, 18(7), 298-307.
[http://dx.doi.org/10.1089/adt.2020.998] [PMID: 33054379]
[10]
Patel, A.; Redinger, N.; Richter, A.; Woods, A.; Neumann, P.R.; Keegan, G.; Childerhouse, N.; Imming, P.; Schaible, U.E.; Forbes, B.; Dailey, L.A. In vitro and in vivo antitubercular activity of benzothiazinone-loaded human serum albumin nanocarriers designed for inhalation. J. Control. Release, 2020, 328, 339-349.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.022] [PMID: 32827612]
[11]
Müller, R.; Lucks, S. Arzneistoffträger aus festen li pidteilchen (feste lipidnanosphären (sln)). Eur. Patentschrift, 1996.
[12]
Palomino, J.C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2002, 46(8), 2720-2722.
[http://dx.doi.org/10.1128/AAC.46.8.2720-2722.2002] [PMID: 12121966]
[13]
Von Groll, A.; Martin, A.; Portaels, F.; da Silva, P.E.A.; Palomino, J.C. Growth kinetics of Mycobacterium tuberculosis measured by quantitative resazurin reduction assay: A tool for fitness studies. Braz. J. Microbiol., 2010, 41(2), 300-303.
[http://dx.doi.org/10.1590/S1517-83822010000200006] [PMID: 24031495]
[14]
Peñuelas-Urquides, K.; Villarreal-Treviño, L.; Silva-Ramírez, B.; Rivadeneyra-Espinoza, L.; Said-Fernández, S.; de León, M.B. Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units. Braz. J. Microbiol., 2013, 44(1), 287-289.
[http://dx.doi.org/10.1590/S1517-83822013000100042] [PMID: 24159318]
[15]
Grotz, E.; Tateosian, N.; Amiano, N.; Cagel, M.; Bernabeu, E.; Chiappetta, D.A.; Moretton, M.A. Nanotechnology in tuberculosis: state of the art and the challenges ahead. Pharm. Res., 2018, 35(11), 213.
[http://dx.doi.org/10.1007/s11095-018-2497-z] [PMID: 30238168]
[16]
Nassimi, M.; Schleh, C.; Lauenstein, H-D.; Hussein, R.; Lübbers, K.; Pohlmann, G.; Switalla, S.; Sewald, K.; Müller, M.; Krug, N.; Müller-Goymann, C.C.; Braun, A. Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal. Toxicol., 2009, 21(Suppl. 1), 104-109.
[http://dx.doi.org/10.1080/08958370903005769] [PMID: 19558241]
[17]
Beloqui, A.; Solinís, M.Á.; Rodríguez-Gascón, A.; Almeida, A.J.; Préat, V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond.), 2016, 12(1), 143-161.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[18]
Hoogevest, P.; Van, ; Wendel, A. The use of natural and synthetic phospholipids as pharmaceutical excipients Ã. Eur. J. Lipid Sci. Technol., 2014, 1088-1107.
[19]
Jones, M.C.; Jones, S.A.; Riffo-Vasquez, Y.; Spina, D.; Hoffman, E.; Morgan, A.; Patel, A.; Page, C.; Forbes, B.; Dailey, L.A. Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. J. Control. Release, 2014, 183, 94-104.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.022] [PMID: 24657808]
[20]
Patel, A.; Woods, A.; Riffo-Vasquez, Y.; Babin-Morgan, A.; Jones, M.C.; Jones, S.; Sunassee, K.; Clark, S.; T M de Rosales, R.; Page, C.; Spina, D.; Forbes, B.; Dailey, L.A. Lung inflammation does not affect the clearance kinetics of lipid nanocapsules following pulmonary administration. J. Control. Release, 2016, 235, 24-33.
[http://dx.doi.org/10.1016/j.jconrel.2016.05.024] [PMID: 27180635]
[21]
Fenaroli, F.; Westmoreland, D.; Benjaminsen, J.; Kolstad, T.; Skjeldal, F.M.; Meijer, A.H.; van der Vaart, M.; Ulanova, L.; Roos, N.; Nyström, B.; Hildahl, J.; Griffiths, G. Nanoparticles as drug delivery system against tuberculosis in zebrafish embryos: direct visualization and treatment. ACS Nano, 2014, 8(7), 7014-7026.
[http://dx.doi.org/10.1021/nn5019126] [PMID: 24945994]
[22]
Pandey, R.; Khuller, G.K. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb.), 2005, 85(4), 227-234.
[http://dx.doi.org/10.1016/j.tube.2004.11.003] [PMID: 15922668]
[23]
Fang, M.; Jin, Y.; Bao, W.; Gao, H.; Xu, M.; Wang, D.; Wang, X.; Yao, P.; Liu, L. In vitro characterization and in vivo evaluation of nanostructured lipid curcumin carriers for intragastric administration. Int. J. Nanomedicine, 2012, 7, 5395-5404.
[http://dx.doi.org/10.2147/IJN.S36257] [PMID: 23091382]
[24]
Ingle, A.P.; Shende, S.; Pandit, R.; Paralikar, P. Nanotechnological applications for the control of pulmonary infections. University of Texas Medical Branch at Galveston, 2016, 223-235.
[http://dx.doi.org/10.1016/B978-0-12-804543-5.00015-4]
[25]
Mali, P.C.; Meena, L.S. Triacylglycerol: nourishing molecule in endurance of Mycobacterium tuberculosis. J. Biosci., 2018, 43(1), 149-154.
[http://dx.doi.org/10.1007/s12038-018-9729-6] [PMID: 29485123]
[26]
Dodd, C.; Pyle, C.J.; Glowinski, R.; Rajaram, M.V.S. CD36-mediated uptake of surfactant lipids by human macrophages promotes intracellular growth of Mycobacterium tuberculosis. Physiol. Behav., 2017, 176, 139-148.
[27]
Zhang, Y.; Yang, Y.; Woods, A.; Cotter, R.J.; Sun, Z. Resuscitation of dormant Mycobacterium tuberculosis by phospholipids or specific peptides. Biochem. Biophys. Res. Commun., 2001, 284(2), 542-547.
[http://dx.doi.org/10.1006/bbrc.2001.4993] [PMID: 11394916]
[28]
Halicki, P.C.B.; Hädrich, G.; Boschero, R.; Ferreira, L.A.; von Groll, A.; da Silva, P.E.A.; Dora, C.L.; Ramos, D.F. Alternative pharmaceutical formulation for oral administration of rifampicin. Assay Drug Dev. Technol., 2018, 16(8), 456-461.
[http://dx.doi.org/10.1089/adt.2018.874] [PMID: 30325673]