Merging DNA Probes with Nanotechnology for RNA Imaging In vivo

Page: [622 - 629] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Imaging of RNA in vivo is of great significance for elucidating their biological functions, revealing mechanisms behind the disease, and for further diagnosis and treatment. Over the past decade, a variety of DNA-based molecular imaging techniques have been developed for RNA imaging in living cells. Nevertheless, non-invasive imaging of RNA in animals is still limited.

Methods: An overview of the literature involving RNA imaging in vivo based on the integration of DNA probes with nanotechnology has been reviewed.

Results: Attributed to DNA’s designability of sequences and specificity of recognition, molecular beacon, strand displacement and hybridization chain reaction would confer quick, efficient and specific response to target RNA. Multifunctional nanomaterials provide powerful support for the intracellular delivery of such DNA probes with spatiotemporal control over their sensing function, thereby achieving RNA imaging in vivo.

Conclusion: Merging DNA probes with nanotechnology has gained substantial prospects for RNA imaging in vivo, which not only helps us to better elucidate biological functions of RNA, but also provides valuable information for further disease diagnosis and treatment.

Keywords: RNA imaging, DNA-based probe, nanotechnology, sensor, in vivo, miRNA.

Graphical Abstract

[1]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[2]
Ambros, V. The functions of animal microRNAs. Nature, 2004, 431(7006), 350-355.
[http://dx.doi.org/10.1038/nature02871] [PMID: 15372042]
[3]
Bramham, C.R.; Wells, D.G. Dendritic mRNA: transport, translation and function. Nat. Rev. Neurosci., 2007, 8(10), 776-789.
[http://dx.doi.org/10.1038/nrn2150] [PMID: 17848965]
[4]
Rinn, J.L.; Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem., 2012, 81, 145-166.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[5]
Schwarzenbach, H.; Hoon, D.S.; Pantel, K. Cell-free nucleic acids as biomarkers in cancer patients. Nat. Rev. Cancer, 2011, 11(6), 426-437.
[http://dx.doi.org/10.1038/nrc3066] [PMID: 21562580]
[6]
Buxbaum, A.R.; Haimovich, G.; Singer, R.H. In the right place at the right time: visualizing and understanding mRNA localization. Nat. Rev. Mol. Cell Biol., 2015, 16(2), 95-109.
[http://dx.doi.org/10.1038/nrm3918] [PMID: 25549890]
[7]
Khorasgania, M.A.; Nejad, P.M.; Bashi, M.M.M.; Hedayati, M. Increased expression of miR-377-3p in patients with relapsing remitting multiple sclerosis. SciMedicine Journal, 2019, 1(2), 48-54.
[http://dx.doi.org/10.28991/SciMedJ-2019-0102-2]
[8]
Yavari, K. Anti-angiogenesis therapy of cancer cells using 153Sm-Bevasesomab. Emerging Science Journal, 2018, 2(3), 130-139.
[http://dx.doi.org/10.28991/esj-2018-01136]
[9]
Zare, H. Effects of salvia officinalis extract on the breast cancer cell line. SciMedicine Journal, 2019, 1(1), 25-29.
[http://dx.doi.org/10.28991/SciMedJ-2019-0101-4]
[10]
Bustin, S.A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol., 2002, 29(1), 23-39.
[http://dx.doi.org/10.1677/jme.0.0290023] [PMID: 12200227]
[11]
Li, W.; Ruan, K. MicroRNA detection by microarray. Anal. Bioanal. Chem., 2009, 394(4), 1117-1124.
[http://dx.doi.org/10.1007/s00216-008-2570-2] [PMID: 19132354]
[12]
Femino, A.M.; Fay, F.S.; Fogarty, K.; Singer, R.H. Visualization of single RNA transcripts in situ. Science, 1998, 280(5363), 585-590.
[http://dx.doi.org/10.1126/science.280.5363.585] [PMID: 9554849]
[13]
Tutucci, E.; Livingston, N.M.; Singer, R.H.; Wu, B. Imaging mRNA in vivo, from birth to death. Annu. Rev. Biophys., 2018, 47, 85-106.
[http://dx.doi.org/10.1146/annurev-biophys-070317-033037] [PMID: 29345990]
[14]
Peng, H.; Newbigging, A.M.; Reid, M.S.; Uppal, J.S.; Xu, J.; Zhang, H.; Le, X.C. Signal amplification in living cells: a review of microRNA detection. Anal. Chem., 2020, 92(1), 292-308.
[http://dx.doi.org/10.1021/acs.analchem.9b04752] [PMID: 31693332]
[15]
Qing, Z.; Xu, J.; Zheng, J. He, l.; Zou, Z.; Yang, S.; Tan, W.; Yang, R. In situ amplification imaging of RNA in living cells. Angew. Chem. Int. Ed. Engl., 2019, 58(34), 11574-11585.
[http://dx.doi.org/10.1002/anie.201812449] [PMID: 30707484]
[16]
Deng, R.; Zhang, K.; Li, J. Isothermal amplification for microRNA detection: from the test tube to the cell. Acc. Chem. Res., 2017, 50(4), 1059-1068.
[http://dx.doi.org/10.1021/acs.accounts.7b00040] [PMID: 28355077]
[17]
Smith, B.R.; Gambhir, S.S. Nanomaterials for in vivo imaging. Chem. Rev., 2017, 117(3), 901-986.
[http://dx.doi.org/10.1021/acs.chemrev.6b00073] [PMID: 28045253]
[18]
Zhao, Y.; Dai, X.; Wang, F.; Zhang, X.; Fan, C.; Liu, X. Nanofabrication based on DNA nanotechnology. Nano Today, 2019, 26, 123-148.
[http://dx.doi.org/10.1016/j.nantod.2019.03.004]
[19]
Theingi, M.; Tun, K.T.; Aung, N.N. Preparation, characterization and optical property of LaFeO3 nanoparticles via sol-gel combustion method. SciMedicine Journal, 2019, 1(3), 151-157.
[http://dx.doi.org/10.28991/SciMedJ-2019-0103-5]
[20]
Zheng, J.; Yang, R.; Shi, M.; Wu, C.; Fang, X.; Li, Y.; Li, J.; Tan, W. Rationally designed molecular beacons for bioanalytical and biomedical applications. Chem. Soc. Rev., 2015, 44(10), 3036-3055.
[http://dx.doi.org/10.1039/C5CS00020C] [PMID: 25777303]
[21]
Tyagi, S.; Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol., 1996, 14(3), 303-308.
[http://dx.doi.org/10.1038/nbt0396-303] [PMID: 9630890]
[22]
Kuang, T.; Chang, L.; Peng, X.; Hu, X.; Gallego-Perez, D. Molecular beacon nano-sensors for probing living cancer cells. Trends Biotechnol., 2017, 35(4), 347-359.
[http://dx.doi.org/10.1016/j.tibtech.2016.09.003] [PMID: 27692896]
[23]
Sokol, D.L.; Zhang, X.; Lu, P.; Gewirtz, A.M. Real time detection of DNA.RNA hybridization in living cells. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 11538-11543.
[http://dx.doi.org/10.1073/pnas.95.20.11538] [PMID: 9751701]
[24]
Chen, T.; Wu, C.S.; Jimenez, E.; Zhu, Z.; Dajac, J.G.; You, M.; Han, D.; Zhang, X.; Tan, W. DNA micelle flares for intracellular mRNA imaging and gene therapy. Angew. Chem. Int. Ed. Engl., 2013, 52(7), 2012-2016.
[http://dx.doi.org/10.1002/anie.201209440] [PMID: 23319350]
[25]
Lin, L-S.; Cong, Z-X.; Cao, J-B.; Ke, K-M.; Peng, Q-L.; Gao, J.; Yang, H-H.; Liu, G.; Chen, X. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano, 2014, 8(4), 3876-3883.
[http://dx.doi.org/10.1021/nn500722y] [PMID: 24654734]
[26]
Tay, C.Y.; Yuan, L.; Leong, D.T. Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. ACS Nano, 2015, 9(5), 5609-5617.
[http://dx.doi.org/10.1021/acsnano.5b01954] [PMID: 25906327]
[27]
Qiao, G.; Gao, Y.; Li, N.; Yu, Z.; Zhuo, L.; Tang, B. Simultaneous detection of intracellular tumor mRNA with bi-color imaging based on a gold nanoparticle/molecular beacon. Chemistry, 2011, 17(40), 11210-11215.
[http://dx.doi.org/10.1002/chem.201100658] [PMID: 21850725]
[28]
Choi, C.K.; Li, J.; Wei, K.; Xu, Y.J.; Ho, L.W.; Zhu, M.; To, K.K.; Choi, C.H.; Bian, L. A gold@polydopamine core-shell nanoprobe for long-term intracellular detection of microRNAs in differentiating stem cells. J. Am. Chem. Soc., 2015, 137(23), 7337-7346.
[http://dx.doi.org/10.1021/jacs.5b01457] [PMID: 25996312]
[29]
Li, H.; Mu, Y.; Lu, J.; Wei, W.; Wan, Y.; Liu, S. Target-cell-specific fluorescence silica nanoprobes for imaging and theranostics of cancer cells. Anal. Chem., 2014, 86(7), 3602-3609.
[http://dx.doi.org/10.1021/ac500173d] [PMID: 24576151]
[30]
Li, L.; Feng, J.; Liu, H.; Li, Q.; Tong, L.; Tang, B. Two-color imaging of microRNA with enzyme-free signal amplification via hybridization chain reactions in living cells. Chem. Sci. (Camb.), 2016, 7(3), 1940-1945.
[http://dx.doi.org/10.1039/C5SC03909F] [PMID: 29899918]
[31]
Li, M.; Zhao, J.; Chu, H.; Mi, Y.; Zhou, Z.; Di, Z.; Zhao, M.; Li, L. Light-activated nanoprobes for biosensing and imaging. Adv. Mater., 2019, 31(45)e1804745
[http://dx.doi.org/10.1002/adma.201804745] [PMID: 30276873]
[32]
Zhao, J.; Gao, J.; Xue, W.; Di, Z.; Xing, H.; Lu, Y.; Li, L. Upconversion luminescence-activated DNA nanodevice for ATP sensing in living cells. J. Am. Chem. Soc., 2018, 140(2), 578-581.
[http://dx.doi.org/10.1021/jacs.7b11161] [PMID: 29281270]
[33]
Zhao, J.; Li, Y.; Yu, M.; Gu, Z.; Li, L.; Zhao, Y. Time-resolved activation of pH sensing and imaging in vivo by a remotely controllable DNA nanomachine. Nano Lett., 2020, 20(2), 874-880.
[http://dx.doi.org/10.1021/acs.nanolett.9b03471] [PMID: 31873031]
[34]
Chu, H.; Zhao, J.; Mi, Y.; Di, Z.; Li, L. NIR-light-mediated spatially selective triggering of anti-tumor immunity via upconversion nanoparticle-based immunodevices. Nat. Commun., 2019, 10(1), 2839.
[http://dx.doi.org/10.1038/s41467-019-10847-0] [PMID: 31253798]
[35]
Di, Z.; Liu, B.; Zhao, J.; Gu, Z.; Zhao, Y.; Li, L. An orthogonally regulatable DNA nanodevice for spatiotemporally controlled biorecognition and tumor treatment. Sci. Adv., 2020, 6(25)eaba9381
[http://dx.doi.org/10.1126/sciadv.aba9381] [PMID: 32596466]
[36]
Zhao, J.; Chu, H.; Zhao, Y.; Lu, Y.; Li, L. A NIR light gated DNA nanodevice for spatiotemporally controlled imaging of microRNA in cells and animals. J. Am. Chem. Soc., 2019, 141(17), 7056-7062.
[http://dx.doi.org/10.1021/jacs.9b01931] [PMID: 30929430]
[37]
Zhang, D.Y.; Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem., 2011, 3(2), 103-113.
[http://dx.doi.org/10.1038/nchem.957] [PMID: 21258382]
[38]
Lizardi, P.M.; Huang, X.; Zhu, Z.; Bray-Ward, P.; Thomas, D.C.; Ward, D.C. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat. Genet., 1998, 19(3), 225-232.
[http://dx.doi.org/10.1038/898] [PMID: 9662393]
[39]
Yurke, B.; Turberfield, A.J.; Mills, A.P., Jr; Simmel, F.C.; Neumann, J.L. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406(6796), 605-608.
[http://dx.doi.org/10.1038/35020524] [PMID: 10949296]
[40]
Seelig, G.; Soloveichik, D.; Zhang, D.Y.; Winfree, E. Enzyme-free nucleic acid logic circuits. Science, 2006, 314(5805), 1585-1588.
[http://dx.doi.org/10.1126/science.1132493] [PMID: 17158324]
[41]
Tang, W.; Zhong, W.; Tan, Y.; Wang, G.A.; Li, F.; Liu, Y. DNA strand displacement reaction: a powerful tool for discriminating single nucleotide variants. Top. Curr. Chem. (Cham), 2020, 378(1), 10.
[http://dx.doi.org/10.1007/s41061-019-0274-z] [PMID: 31894426]
[42]
Peng, H.; Li, X.F.; Zhang, H.; Le, X.C. A microRNA-initiated DNAzyme motor operating in living cells. Nat. Commun., 2017, 8, 14378.
[http://dx.doi.org/10.1038/ncomms14378] [PMID: 28262725]
[43]
Zhang, D.Y.; Turberfield, A.J.; Yurke, B.; Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 2007, 318(5853), 1121-1125.
[http://dx.doi.org/10.1126/science.1148532] [PMID: 18006742]
[44]
Zhang, C.; Zhao, Y.; Xu, X.; Xu, R.; Li, H.; Teng, X.; Du, Y.; Miao, Y.; Lin, H.C.; Han, D. Cancer diagnosis with DNA molecular computation. Nat. Nanotechnol., 2020, 15(8), 709-715.
[http://dx.doi.org/10.1038/s41565-020-0699-0] [PMID: 32451504]
[45]
Xue, C.; Zhang, S.X.; Ouyang, C.H.; Chang, D.; Salena, B.J.; Li, Y.; Wu, Z.S. Target-induced catalytic assembly of Y-Shaped DNA and its application for in situ imaging of microRNAs. Angew. Chem. Int. Ed. Engl., 2018, 57(31), 9739-9743.
[http://dx.doi.org/10.1002/anie.201804741] [PMID: 29901854]
[46]
Qu, A.; Sun, M.; Xu, L.; Hao, C.; Wu, X.; Xu, C.; Kotov, N.A.; Kuang, H. Quantitative zeptomolar imaging of miRNA cancer markers with nanoparticle assemblies. Proc. Natl. Acad. Sci. USA, 2019, 116(9), 3391-3400.
[http://dx.doi.org/10.1073/pnas.1810764116] [PMID: 30808736]
[47]
Zhang, K.; Meng, X.; Yang, Z.; Cao, Y.; Cheng, Y.; Wang, D.; Lu, H.; Shi, Z.; Dong, H.; Zhang, X. Cancer cell membrane camouflaged nanoprobe for catalytic ratiometric photoacoustic imaging of microRNA in living mice. Adv. Mater., 2019, 31(12)e1807888
[http://dx.doi.org/10.1002/adma.201807888] [PMID: 30730070]
[48]
Dirks, R.M.; Pierce, N.A. Triggered amplification by hybridization chain reaction. Proc. Natl. Acad. Sci. USA, 2004, 101(43), 15275-15278.
[http://dx.doi.org/10.1073/pnas.0407024101] [PMID: 15492210]
[49]
Zhao, Y.; Chen, F.; Li, Q.; Wang, L.; Fan, C. Isothermal amplification of nucleic acids. Chem. Rev., 2015, 115(22), 12491-12545.
[http://dx.doi.org/10.1021/acs.chemrev.5b00428] [PMID: 26551336]
[50]
Bi, S.; Yue, S.; Zhang, S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev., 2017, 46(14), 4281-4298.
[http://dx.doi.org/10.1039/C7CS00055C] [PMID: 28573275]
[51]
Wu, Z.; Liu, G.Q.; Yang, X.L.; Jiang, J.H. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J. Am. Chem. Soc., 2015, 137(21), 6829-6836.
[http://dx.doi.org/10.1021/jacs.5b01778] [PMID: 25969953]
[52]
Chu, H.; Zhao, J.; Mi, Y.; Zhao, Y.; Li, L. Near-infrared light-initiated hybridization chain reaction for spatially and temporally resolved signal amplification. Angew. Chem. Int. Ed. Engl., 2019, 58(42), 14877-14881.
[http://dx.doi.org/10.1002/anie.201906224] [PMID: 31373118]
[53]
Wei, J.; Wang, H.; Wu, Q.; Gong, X.; Ma, K.; Liu, X.; Wang, F. A smart, autocatalytic, DNAzyme biocircuit for in vivo, amplified, microRNA imaging. Angew. Chem. Int. Ed. Engl., 2020, 59(15), 5965-5971.
[http://dx.doi.org/10.1002/anie.201911712] [PMID: 31961985]
[54]
Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G.J.; Han, J.Y.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol., 2018, 36(3), 258-264.
[http://dx.doi.org/10.1038/nbt.4071] [PMID: 29431737]