[1]
D. Reinsel, J. Gantz, and J. Rydning, The digitization of the world: from edge to core., Whitepaper, 2019.
[3]
A. Abd El-Sattar, A Survey Machine Learning Techniques on Big-Data Clustering The 54 th Annual Conference on Statistics, Computer Sciences and Operations Research., Cairo, Egypt, 2019, p. 131.
[4]
S. Chakraborty, N.K. Nagwani, and L. Dey, Performance comparison of incremental k-means and incremental dbscan algorithms arXiv preprint arXiv:1406.4751, 2014.
[5]
M.T. Elbatta, and W.M. Ashour, "“A dynamic method for discovering density varied clusters”,Int. J. Signal Proces", Image Proces. Patt. Recognit., vol. 6, no. 1, pp. 123-134, 2013.
[6]
J. Yadav, and M. Sharma, A Review of K-mean Algorithm Int. J. eng. trends technol., vol. 4, no. 7, pp. 2972-2976, 2013.
[10]
K. Khan, S.U. Rehman, K. Aziz, S. Fong, and S. Sarasvady, DBSCAN: Past, present and futureThe fifth international conference on the applications of digital information and web technologies,, 2014, pp. 232-238.
[13]
V. Vinodhini, and M.H.M. Hemalatha, "Comparative Evaluation of Crime Incidence using Enhanced Density based Spatial (Dbscan) Clus-tering", Int. J. Comput. Appl., vol. 122, pp. 16-19, 2015.
[15]
Y. Zhang, Lecture Notes in Computer Science including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-ics.vol. 9652 Springer Verlag LNAI, 2016, pp. 245-256.
[17]
E. Giacoumidis, “A blind nonlinearity compensator using DBSCAN clustering for coherent optical transmission systems.”, Appl. Sci., Swit-zerland, 2019, p. 9.
[18]
P. Wang, and M. Govindarasu, 2018 North American Power Symposium, NAPS, 2019.
[21]
D. Arthur, and S. Vassilvitskii, k-means++: The advantages of careful seedingProceedings of the Eighteenth Annual ACM-SIAM Sym-posium on Discrete Algorithms New Orleans, Louisiana, 2007, pp. 1027-1035.
[22]
O.K. Ekseth, Ekseth: hpLysis: a high-performance softwarelibrary for big-data machine-learning.https://bitbucket.org/oekseth/hplysis-cluster-analysis-software/
[23]
O.K. Ekseth, and S.O. Hvasshovd, "How an optimized DBSCAN implementation reduces execution-time and memory-requirements for large data-sets", Proceedings of the Patterns, 2019
[28]
G. Chen, S.A. Jaradat, N. Banerjee, T. Tanaka, S. Ko, and M.Q. Zhang, "Evaluation and comparison of clustering algorithms in ana-lyzing ES cell gene expression data", Stat. Sin., pp. 241-262, 2002.
[29]
M.R. Feizi-Derakhshi, and E. Zafarani, "Review and comparison between clustering algorithms with duplicate entities detection purpose", Int. J. Comput. Sci. Emerg. Technol, vol. 3, no. 3, 2012.
[30]
A.B. Ayed, M.B. Halima, and A.M. Alimi, Survey on clustering methods: Towards fuzzy clustering for big dataSoft Computing and Pattern Recognition (SoCPaR), 2014 6th International Conference of IEEE., Tunis, Tunisia,, 2014, pp. 331-336.
[36]
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, and O. Grisel, "Scikit-learn: Machine learning in Python", J. Mach. Learn. Res., vol. 12, pp. 2825-2830, 2011.
[37]
L.V.D. Maaten, and G. Hinton, "Visualizing data using t-SNE", J. Mach. Learn. Res., vol. 9, no. Nov, pp. 2579-2605, 2008.
[39]
L. Van Der Maaten, "Accelerating t-SNE using tree-based algorithms", J. Mach. Learn. Res., vol. 15, no. 1, pp. 3221-3245, 2014.