Formulations for Effective Detoxification Derived from Three Medicinal Plants: Thunbergia laurifolia, Clerodendrum disparifolium and Rotheca serrata

Page: [140 - 147] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Based on the long history of the medicinal use of Thunbergia laurifolia, Clerodendrum disparifolium and Rotheca serrata, the extract formulations of these species: T. laurifolia and C. disparifolium; T. laurifolia and R. serrata; and T. laurifolia, C. disparifolium and R. serrata, called formulas 1, 2 and 3, were created for detoxification testing to take more advantage of each species.

Objective: The objective of this study is to estimate the detoxifying effects of studied extract formulations on human cell and tissue culture as a preclinical trial.

Methods: The major phytochemicals were derived by GC-MS. The detoxification efficacy of these formulations in cells and DNA levels were derived by MTT and comet assays in toxic PBMCs (incubated with rice whisky or bathroom cleaner).

Results: The phytochemical constituents were detected at 23.48% phytol and 43.03% oleamide in T. laurifolia; 12.88% oleamide, 20.93% 9,12,15-octadecatrien, 25.52% squalene, 22.19% butylated hydroxy toluene and 15.36% vitamin E in C. disparifolium; and 30.41% phytol, 32.78% oleamide, and 12.20%, 9,12,15-octadecatrien-1-ol in R. serrata. The toxic cells treated with the plant formulas 1, 2 and 3 showed no IC50 values, but formulas 1 and 2 displayed higher efficacies than formula 3 did. The comet assay indicated that the experiments (the treatment on toxic cells with the plant formulas) induced significant (p < 0.05) DNA damage compared to the negative control due to poisoning occurring before administration of the plant formulas. The OTM of the controls was significantly (p < 0.05) longer than the experimental samples showing significantly reduce the toxicity of the created formulations.

Conclusion: The formulas showed high detoxification efficacies and formulations 1 and 2 resulted in higher levels of detoxification than formulation 3, especially in immediate treatment after receiving toxic substances.

Keywords: Thunbergia laurifolia, Clerodendrum disparifolium, Rotheca serrata, detoxification, OTM, phytochemical constituents.

Graphical Abstract

[1]
Chan, E.W.C.; Eng, S.Y.; Tan, Y.P.; Wong, Z.C. Phytochemistry and pharmacological properties of Thunbergia laurifolia: A review. Pharmacogn. Rev., 2011, 3(24), 1-6.
[http://dx.doi.org/10.5530/pj.2011.24.1]
[2]
Chivapat, S.; Chvalittumrong, P.; Attawish, A.; Bansiddhi, J.; Padungpat, S. Chronic toxicity of Thunbergia laurifolia Lindl. extract. J. Thai. Trad. Alt. Med., 2009, 7(1), 17-24.
[3]
Phyu, M.P.; Tangpong, J. Protective effect of Thunbergia laurifolia (Linn.) on lead induced acetylcholinesterase dysfunction and cognitive impairment in mice. BioMed Res. Int., 2013, 2013186098
[http://dx.doi.org/10.1155/2013/186098 ] [PMID: 24455676]
[4]
Ruangyuttikarn, W.; Chattaviriya, P.; Morkmek, N.; Chuncharunee, S.; Lertprasertsuke, N. Thunbergia laurifolia leaf extract mitigates cadmium toxicity in rats. Sci. Asia, 2013, 39, 19-25.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39.019]
[5]
Kosai, P.; Jiraungkooskul, K.; Jiraungkooskul, W. Review of antidiabetic activity of “Rang Jeud” Thunbergia laurifolia. J. Appl. Pharm. Sci., 2015, 5(Suppl. 2), 99-103.
[6]
Junsi, M.; Siripongvutikorn, S. Thunbergia laurifolia, a traditional herbal tea of Thailand: Botanical, chemical composition, biological properties and processing influence. Int. Food Res. J., 2016, 23(3), 923-927.
[7]
Shrivastava, N.; Patel, T. Clerodendrum and Healthcare: An overview. Med. Aromat. Plant Sci. Biotechnol., 2007, 1(1), 142-150.
[8]
Phosrithonga, N.; Nuchtavornb, N. Antioxidant and anti-inflammatory activites of Clerodendrum leaf extracts collected in Thailand. Eur. J. Integr. Med., 2016, 8, 281-285.
[http://dx.doi.org/10.1016/j.eujim.2015.10.002]
[9]
Singh, M.K.; Khare, G.; Iyer, S.K.; Sharwan, G.; Tripathi, D.K. Clerodendrum serratum: A clinical approach. J. Pharm. Sci., 2012, 2(2), 11-15.
[10]
Kumar, A.P.; Nishteswar, K. Phyto-chemical and pharmacological profiles of Clerodendrum serratum Linn. (Bharngi): A review. Int. J. Res. Ayurveda Pharm., 2013, 4(2), 276-278.
[http://dx.doi.org/10.7897/2277-4343.04239]
[11]
Patel, J.J.; Acharya, S.R.; Acharya, N.S. Clerodendrum serratum (L.) Moon. - a review on traditional uses, phytochemistry and pharmacological activities. J. Ethnopharmacol., 2014, 154(2), 268-285.
[http://dx.doi.org/10.1016/j.jep.2014.03.071 ] [PMID: 24727551]
[12]
Rollin, B.E. Toxicology and new social ethics for animals. Toxicol. Pathol., 2003, 31(Suppl.), 128-131.
[http://dx.doi.org/10.1080/01926230390175011 ] [PMID: 12597441]
[13]
Physicians Committee for Responsible Medicine Wisconsin, Washington DC. Problems Associated with Animal Experimentation.. http//www.pcrm.org/sites/default/files/pdfs/research/research/Problems-Associated-with-Animal-Experimentation.pdf
[14]
Doke, S.K.; Dhawale, S.C. Alternatives to animal testing: A review. Saudi Pharm. J., 2015, 23(3), 223-229.
[http://dx.doi.org/10.1016/j.jsps.2013.11.002 ] [PMID: 26106269]
[15]
Sirikhansaeng, P.; Tanee, T.; Sudmoon, R.; Chaveerach, A. Major phytochemical as γ-sitosterol disclosing and toxicity testing in Lagerstroemia species.Evid.-Based Complement. Altern. Med., 2017, Article ID 7209851.,
[16]
Chan, E.W.C.; Eng, S.Y.; Tan, Y.P.; Wong, Z.C. Phytochemistry and pharmacological properties of Thunbergia laurifolia: A review. Pharmacogn. J., 2011, 3(24), 1-6.
[http://dx.doi.org/10.5530/pj.2011.24.1]
[17]
Suwanchaikasem, P.; Phadungcharoen, T.; Sukrong, S. Authentication of the Thai medicinal plants sharing the same common name ‘Rang Chuet’: Thunbergia laurifolia, Crotalaria spectabilis, and Curcuma aff. amada by combined techniques of TLC, PCR-RFLP fingerprints, and antioxidant activities. Sci. Asia, 2013, 39, 124-133.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2013.39.124]
[18]
Mohamed, I.; Shuid, A.; Borhanuddin, B.; Fozi, N. The application of phytomedicine in modern drug development. Int. J. Herb. Med., 2012, 1, 1-9.
[19]
Anand, U.; Jacobo-Herrera, N.; Altemimi, A.; Lakhssassi, N. A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 2019, 9(11), 258.
[http://dx.doi.org/10.3390/metabo9110258 ] [PMID: 31683833]
[20]
Lozano-Grande, M.A.; Gorinstein, S.; Espitia-Rangel, E.; Da’vila-Ortiz, G.; Mart’ınez-Ayala, A.L. Plant sources, extraction methods, and uses of squalene. Int. J. Agron., 2018.Article ID 1829160
[http://dx.doi.org/10.1155/2018/1829160]
[21]
Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The role of vitamin E in human health and some diseases. Sultan Qaboos Univ. Med. J., 2014, 14(2), e157-e165.
[PMID: 24790736]
[22]
Islam, M.T.; Ali, E.S.; Uddin, S.J.; Shaw, S.; Islam, M.A.; Ahmed, M.I.; Chandra Shill, M.; Karmakar, U.K.; Yarla, N.S.; Khan, I.N.; Billah, M.M.; Pieczynska, M.D.; Zengin, G.; Malainer, C.; Nicoletti, F.; Gulei, D.; Berindan-Neagoe, I.; Apostolov, A.; Banach, M.; Yeung, A.W.K.; El-Demerdash, A.; Xiao, J.; Dey, P.; Yele, S.; Jóźwik, A.; Strzałkowska, N.; Marchewka, J.; Rengasamy, K.R.R.; Horbańczuk, J.; Kamal, M.A.; Mubarak, M.S.; Mishra, S.K.; Shilpi, J.A.; Atanasov, A.G. Phytol: A review of biomedical activities. Food Chem. Toxicol., 2018, 121, 82-94.
[http://dx.doi.org/10.1016/j.fct.2018.08.032 ] [PMID: 30130593]
[23]
Oh, Y.T.; Lee, J.Y.; Lee, J.; Lee, J.H.; Kim, J.E.; Ha, J.; Kang, I. Oleamide suppresses lipopolysaccharide-induced expression of iNOS and COX-2 through inhibition of NF-kappaB activation in BV2 murine microglial cells. Neurosci. Lett., 2010, 474(3), 148-153.
[http://dx.doi.org/10.1016/j.neulet.2010.03.026 ] [PMID: 20298753]
[24]
Moon, S.M.; Lee, S.A.; Hong, J.H.; Kim, J.S.; Kim, D.K.; Kim, C.S. Oleamide suppresses inflammatory responses in LPS-induced RAW264.7 murine macrophages and alleviates paw edema in a carrageenan-induced inflammatory rat model. Int. Immunopharmacol., 2018, 56, 179-185.
[http://dx.doi.org/10.1016/j.intimp.2018.01.032 ] [PMID: 29414648]
[25]
Kita, M.; Ano, Y.; Inoue, A.; Aoki, J. Identification of P2Y receptors involved in oleamide-suppressing inflammatory responses in murine microglia and human dendritic cells. Sci. Rep., 2019, 9(1), 3135.
[http://dx.doi.org/10.1038/s41598-019-40008-8 ] [PMID: 30816271]
[26]
Martínez-González, D.; Bonilla-Jaime, H.; Morales-Otal, A.; Henriksen, S.J.; Velázquez-Moctezuma, J.; Prospéro-García, O. Oleamide and anandamide effects on food intake and sexual behavior of rats. Neurosci. Lett., 2004, 364(1), 1-6.
[http://dx.doi.org/10.1016/j.neulet.2004.03.080 ] [PMID: 15193744]
[27]
Hachisu, M.; Konishi, K.; Hosoi, M.; Tani, M.; Tomioka, H.; Inamoto, A.; Minami, S.; Izuno, T.; Umezawa, K.; Horiuchi, K.; Hori, K. Beyond the hypothesis of serum anticholinergic activity in Alzheimer’s disease: Acetylcholine neuronal activity modulates brain-derived neurotrophic factor production and inflammation in the brain. Neurodegener. Dis., 2015, 15(3), 182-187.
[http://dx.doi.org/10.1159/000381531 ] [PMID: 26138497]
[28]
Kumar, P.R.; Seshadri, M.; Jaikrishan, G.; Das, B. Effect of chronic low dose natural radiation in human peripheral blood mononuclear cells: Evaluation of DNA damage and repair using the alkaline comet assay. Mutat. Res., 2015, 775, 59-65.,
[http://dx.doi.org/10.1016/j.mrfmmm.2015.03.011] [PMID: 25879710]