[6]
Liu Y, Hou T, Wang K, Liu F. Attribute Reduction of gene signal based on Improved OTSU discretization method. Chinese Automation Congress (CAC). 983-7.
[11]
Al-Ani A. Ant Colony Optimization for Feature Subset Selection. WEC 2005; (2): 35-8.
[17]
Cervante L, Xue B, Zhang M, Shang L. Binary particle swarm optimization for feature selection: A filter based approach. 2012 IEEE Congress on Evolutionary Computation. 2012 June 1-8; Brisbane, QLD, Australia: IEEE 2012.
[26]
Nguyen TT, Nguyen PK. Reducing attributes in rough set theory with the view-point of mining frequent patterns. Editorial Preface 2013; 4(4): 1.
[28]
Sun L, Xu J, Xue Z, Zhang L. Rough entropy-based feature selection and its application. J Inf Comput Sci 2011; 8(9): 1525-32.
[35]
Vieira SM, Sousa JM, Kaymak U. Fuzzy criteria for feature selection. In: 2010 Second WRI Global Congress on Intelligent Systems. IEEE 2010; 189: pp. (1)1-18.
[36]
Min H, Fangfang W. Filter-wrapper hybrid method on feature selection. In: 2010 Second WRI Global Congress on Intelligent Systems. IEEE 2011; 3: pp. 98-101.
[41]
Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003; 3: 1157-82.
[42]
Xing EP, Jordan MI, Karp RM, et al. Feature selection for high-dimensional genomic microarray data. ICML 2001; 1: 601-8.
[44]
Hong X, Haozhong C, Dongxiao N. Rough set continuous attributes discretization algorithm based on information entropy. Chinese J Computers 2005; 28(9): 1570-3.
[48]
Zaffalon M, Hutter M. Robust feature selection using distributions of mutual information. Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence (UAI-2002). 577-84.
[51]
Fleuret F. Fast binary feature selection with conditional mutual information. J Mach Learn Res 2004; 5(Nov): 1531-55.
[53]
Brown G. A new perspective for information theoretic feature selection. Artificial intelligence and statistics 2009; 49-56.
[55]
Gu Q, Li Z, Han J. Generalized fisher score for feature selection. arXiv preprint 2012; 2012: 1-8.
[58]
Guyon I, Elisseeff A. An introduction to variable and feature selection. Machine Learning Research 2003; 3: 1157-82.
[60]
Roffo G. Ranking to learn and learning to rank: On the role of ranking in pattern recognition applications. arXiv preprint 2017.
[63]
Friedlander A, Neshatian K, Zhang M. Meta-learning and feature ranking using genetic programming for classification: Variable terminal weighting. Evolutionary Computation (CEC); 2011 July; 941-8. China: IEEE 2011
[64]
Stoppiglia H, Dreyfus G, Dubois R, Oussar Y. Ranking a random feature for variable and feature selection. J Mach Learn Res 2003; 3(Mar): 1399-414.
[67]
Karegowda AG, Manjunath A, Jayaram M. Comparative study of attribute selection using gain ratio and correlation based feature selection. Int J Info Technol Know Manag 2010; 2(2): 271-7.
[71]
Simon D. Evolutionary optimization algorithms. John Wiley & Sons 2013.
[72]
Price K, Storn RM, Lampinen JA. Differential evolution: a practical approach to global optimization. Springer Science & Business Media 2006.
[80]
Slezak D. Rough sets and few-objects-many-attributes problem: the
case study of analysis of gene expression data sets. 2007 Frontiers
in the Converg Biosci InfoTechnol 2007; 2007: 437-2.
[87]
Liu R, Yang N, Ding X, Ma L.
An unsupervised feature selection
274 algorithm: Laplacian score combined with distance-based entropy
275 measure. 2009 Third International Symposium on Intelligent Information Technology Application 2009 Nov 65-8; Nanchang,
276 China: IEEE 2009.
277 http ://dx.doi.org/10.1109/IITA.2009.390
[88]
Zhu L, Miao L, Zhang D. Iterative Laplacian score for feature selection.
[89]
Forman G. An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 2003; 3(Mar): 1289-305.
[90]
Lin D, Tang X. Conditional infomax learning: an integrated framework for feature extraction and fusion.
European conference
283 on computer vision. Springer 2006; 3971:68-82.
284 http ://dx.doi.org/10.1007/11744023_6
[91]
Pawlak Z, Skowron A. Rudiments of rough sets 2007.
Info sci 2007;
286 177(1): 3-27.
[94]
Wang G. Algebra view and information view of rough sets theory 2001.
[95]
Zhang Q, Zhao F, Yubin X, Yang J. Constructing the optimal approximation sets of rough sets in multi-granularity spaces. Int Joint Conference on Rough Sets. 341-55.
2010 July 341-55; Barcelona, Spain:
298 IEEE 2010.
299 http ://dx.doi.org/10.1007/978-3-030-22815-6_27
[98]
Mardani N, Mardani A, Nilashi M. Evaluating the knowledge management practices in state welfare organization (Behzisti): Application of fuzzy MCDM approach. J Soft Comput Dec Support Sys 2017; 4(3): 1-20.
[100]
Shannon CE, Weaver W. The mathematical theory of communication. Baltimore, MD: University of Illinois Press 1949.
[102]
Yang Z, Yao X, He J. Making a difference to differential evolution Advances in metaheuristics for hard optimization. Springer 2007; pp. 397-414.
[109]
Devijver PA, Kittler J. Pattern recognition: A statistical approach. Prentice hall 1982.
[110]
Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces 1997.
Global
345 optimization 1997; 11(4): 341-59.
[113]
Liu R, Li Y, Zhang W, Jiao L. Stochastic ranking based differential evolution algorithm for constrained optimization problem.
Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation 2009 June 887-90; Shanghai, China: Association
353 for Computing Machinery 2009.
354 http ://dx.doi.org/10.1145/1543834.1543967
[115]
Gong MG, Jiao LC, Du HF, Ma WP. Novel evolutionary strategy based on artificial immune response for constrained optimizations. Jisuanji Xuebao/Chinese. J Comput (Taipei) 2007; 30(1): 37-47.
[116]
Jian L, Peng C, Zhiming L.
Solving constrained optimization via
363 dual particle swarm optimization with stochastic ranking. 2008 International conference on computer science and software engineering; 2008 Dec 1215-8; Wuhan, China: IEEE 2008.
364 http ://dx.doi.org/10.1109/CSSE.2008.1054
[117]
Chen P, Zhao C, Li J, Liu Z. Solving the economic dispatch in power system via a modified genetic particle swarm optimization. International Joint Conference on Computational Sciences and Optimization. vol. 1: 201-4.
http ://dx.doi.org/10.1109/CSO.2009.475
[118]
Meyer B. Constraint handling and stochastic ranking in ACO. 2005 IEEE Congress on Evolutionary Computation. 2683-90.
2005; 3: 2683-90.
372 http ://dx.doi.org/10.1109/CEC.2005.1555031
[120]
Fu H, Mei Y, Tang K, Zhu Y. Memetic algorithm with heuristic candidate list strategy for capacitated arc routing problem. IEEE Congress on Evolutionary Computation. 2010 July 1-8; Barcelona, Spain.
IEEE 2010.
382 http ://dx.doi.org/10.1109/CEC.2010.5586042
[123]
Fan Z, Liu J, Sorensen T, Wang P. Improved differential evolution based on stochastic ranking for robust layout synthesis of MEMS components. IEEE Trans Ind Electron 2008; 56(4): 937-48.
[124]
Khushaba RN, Al-Ani A, AlSukker A, Al-Jumaily A. A combined ant colony and differential evolution feature selection algorithm. International Conference on Ant Colony Optimization and Swarm Intelligence. 1-12.
ttp ://dx.doi.org/10.1007/978-3-540-87527-7_1
[126]
Purshouse RC, Fleming PJ. Conflict, harmony, and independence: Relationships in evolutionary multi-criterion optimisation. International Conference on Evolutionary Multi-Criterion Optimization. 16-30.
http ://dx.doi.org/10.1007/3-540-36970-8_2
[130]
Vas P. Artificial-intelligence-based electrical machines and drives: application of fuzzy, neural, fuzzy-neural, and genetic-algorithm-based techniques. Oxford university press 1999; Vol. 45.
[133]
Xue B, Cervante L, Shang L, Browne WN, Zhang M. Binary PSO and rough set theory for feature selection: A multi-objective filter based approach. 2014.
Int J Comput Intell Appl 2014; 13(02):12.
425 http ://dx.doi.org/10.1142/S1469026814500096