[7]
Perona, J.S.; Garcia-Rodrigue, S.; Castellano, J.M. Plants as alternative sources of n-3 polyunsaturated fatty acids.Polyunsaturated fatty acids (PUFAs): Food sources, health effects and significance in biochemistry; Nova Science Publishers, Inc., 2018, pp. 187-228.
[9]
de Melo, M. M.R.; Sapatinha, M.; Pinheiro, J.; Lemos, M.F.L.; Bandarra, N.M.; Batista, I.; Paulo, M.C.; Coutinho, J.; Saraiva, J.A.; Portugal, I.; Silva, C.M. Supercritical CO2 extraction of Aurantiochytrium sp. biomass for the enhanced recovery of omega-3 fatty acids and phenolic compounds. J CO2 Util, 2020, 38, 24-31.
[12]
Zaeri, Hossein; Moghadas, Bahareh Kamyab; Honarvar, Bijan; Rad, Ali Shokuhi Response Surface Methodology Towards Optimization of Calotropis Procera Essential Oil Extraction by Using Supercritical CO2. Nat Prod J, 2020.
[13]
AOAC. AOAC, Official Method 969.33. Fatty acids in oils and fats. Preparation of methyl esters. Boron triflfluoride method. Official Methods of Analysis of AOAC International, (19th ed. ), AOAC International, Gaithersburg, MD, USA2012.
[16]
Md kamal Uddin, SM Shamsuzzaman, LO Qiau zi, Mohdselamat Medom and Mahmudul Hasan. Effects of salinity on growth, antioxidant contents and proximate compositions of Sabah snake grass (Clinacanthus nutans (Burm. F.) lindau). Bangladesh J. Bot., 2017, 46(1), 263-269.
[17]
Zaleha Abd. Aziz, Hasmadi Mamat, Mohd. Fadzelly Abu Bakar. (2015). Nutritional Composition and Trace Elements Contents of Unfermented and Fermented Clinacanthus nutans L. Herbal Tea. J Trop Resour Sustain Sci, 2015, 3, 16-29.
[18]
Kong, H.S.; Abdullah Sani, N. Nutritional Values and Amino Acid Profiles of Clinacanthus nutans (Belalai Gajah/ Sabah Snake Grass) from Two Farms in Negeri Sembilan, Malaysia. Pertanika, J. Trop. Agric. Sci., 2017, 40(4), 639-652.
[20]
Adnan, M.; Hussain, J.; Shah, M.T.; Shinwari, Z.K.; Ullah, F. Bahader, Ali., Khan, N., Khan, A. L. and Watanabe, T. Proximate and nutrient composition of medicinal plants of humid and sub-humid regions in North-west Pakistan. J. Med. Plants Res., 2010, 4, 339-345.
[21]
Ayuba, V.O.; Ojobe, T.O.; Ayuba, S.A. Phytochemical and proximate composition of Datura innoxia leaf, seed, stem, pod and root. J. Med. Plants Res., 2011, 5(14), 2952-2955.
[22]
Idris, S.; Iyaka, Y.A.; Ndamitso, M.M.; Paiko, Y.B. Nutritional Composition of the Leaves and Stems of Ocimum gratissimum. J Emer Trends Energ Appl Sci, 2011, 2(5), 801-805.
[26]
Okenwa, U.I.; Donatus, E.O. Investigation of the chemical composition of Brachystegia eurycoma harms plant parts used in herbal medicine. Int. J. Pharm. Sci. Rev. Res., 2013, 3(6), 51-55.
[31]
Aftab, A.K.; Mahesar, S.A.; Khaskheli, A.R.; Sherazi, S.T.H.; Sofia, Q.; Zakia, K. Gas chromatographic coupled mass spectroscopic study of fatty acids composition of Nigella sativa L. (Kalonji) oil commercially available in Pakistan. Int. Food Res. J., 2014, 21(4), 1533-1537.
[35]
Goswami, S.; Chatterjee, B.; Mallik, M. Proof of presence of unusually naturally occurring homologous series of fifteen saturated odd and even fatty acids in Acanthus ilicifolius L. (Acanthaceae). J. Indian Chem. Soc., 2004, 81, 696-706.
[40]
Harborne, J.B.; Baxter, H. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants; Taylor and Francis Ltd: London, 1993, pp. 34-38.