The Prospect for Type 2 Diabetes Mellitus Combined with Exercise and Synbiotics: A Perspective

Article ID: e012821190875 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Change in gut microbiome diversity (the so-called dysbiosis) is correlated with insulin resistance conditions. Exercise is typically the first management for people with type 2 diabetes mellitus (T2DM), which is generally well-known for improving glucose regulation. The new prebiotics and probiotics, like synbiotics, designed to target specific diseases, require additional studies. While the effectiveness of exercise combined with synbiotics seems promising, this review discusses these agents’ possibility of increasing the gut microbiota’s diversity. Therefore, they could enhance short-chain fatty acids (SCFA). In particular, the synbiotic interaction on gut microbiota, the exercise mechanism in improving gut microbiota, and the prospect of the synergistic effect of the combination of synbiotic and exercise to improve insulin sensitivity are addressed.

Keywords: Exercise, gut microbiota, insulin sensitivity, short-chain fatty acid, synbiotic, T2DM.

[1]
MoH. Main Outcome of Basic Health Research, (Indonesia) 2018. https://www.kemkes.go.id/resources/download/info-terkini/hasil-riskesdas-2018.pdf
[2]
International Diabetes F. Ninth edition 2019. IDF Diabetes Atlas 2019.
[3]
Dewi L, Sulchan M. Kisdjamiatun. Potency of cape gooseberry (physalis peruviana) juice in improving antioxidant and adiponectin level of high fat diet streptozotocin rat model. Rom J Diabetes Nutr Metab Dis 2018; 25(3): 253-60.
[http://dx.doi.org/10.2478/rjdnmd-2018-0029]
[4]
Mendes R, Sousa N, Almeida A, et al. Exercise prescription for patients with type 2 diabetes-a synthesis of international recommendations: Narrative review. Br J Sports Med 2016; 50(22): 1379-81.
[http://dx.doi.org/10.1136/bjsports-2015-094895] [PMID: 26719499]
[5]
Thiering E, Heinrich J. Epidemiology of air pollution and diabetes. Trends Endocrinol Metab 2015; 26(7): 384-94.
[http://dx.doi.org/10.1016/j.tem.2015.05.002] [PMID: 26068457]
[6]
Santos-Marcos JA, Perez-Jimenez F, Camargo A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J Nutr Biochem 2019; 70: 1-27.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.017] [PMID: 31082615]
[7]
Dalton A, Mermier C, Zuhl M. Exercise influence on the microbiome-gut-brain axis. Gut Microbes 2019; 10(5): 555-68.
[http://dx.doi.org/10.1080/19490976.2018.1562268] [PMID: 30704343]
[8]
Mach N, Fuster-Botella D. Endurance exercise and gut microbiota: A review. J Sport Health Sci 2017; 6(2): 179-97.
[http://dx.doi.org/10.1016/j.jshs.2016.05.001] [PMID: 30356594]
[9]
Hills RD Jr, Pontefract BA, Mishcon HR, Black CA, Sutton SC, Theberge CR. Gut microbiome: Profound implications for diet and disease. Nutrients 2019; 11(7): 1-40.
[http://dx.doi.org/10.3390/nu11071613] [PMID: 31315227]
[10]
Yu B, Yu B, Yu L. Commentary: Reconciling hygiene and cleanliness: A new perspective from human microbiome. Indian J Microbiol 2020; 60(2): 259-61.
[http://dx.doi.org/10.1007/s12088-020-00863-w] [PMID: 32255860]
[11]
McFall-Ngai M, Hadfield MG, Bosch TC, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 2013; 110(9): 3229-36.
[http://dx.doi.org/10.1073/pnas.1218525110] [PMID: 23391737]
[12]
Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis 2020; 134: 104621.
[http://dx.doi.org/10.1016/j.nbd.2019.104621] [PMID: 31628992]
[13]
Velikonja A, Lipoglavšek L, Zorec M, Orel R, Avguštin G. Alterations in gut microbiota composition and metabolic parameters after dietary intervention with barley beta glucans in patients with high risk for metabolic syndrome development. Anaerobe 2019; 55: 67-77.
[http://dx.doi.org/10.1016/j.anaerobe.2018.11.002] [PMID: 30396006]
[14]
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7(1): 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[15]
Aydin Ö, Nieuwdorp M, Gerdes V. The Gut Microbiome as a Target for the Treatment of Type 2 Diabetes. Curr Diab Rep 2018; 18(8): 55.
[http://dx.doi.org/10.1007/s11892-018-1020-6] [PMID: 29931613]
[16]
Dewi L. Modalities of exercise intervention for type 2 diabetes mellitus: Narrative review. 2019.
[17]
O’Sullivan O, Cronin O, Clarke SF, et al. Exercise and the microbiota. Gut Microbes 2015; 6(2): 131-6.
[http://dx.doi.org/10.1080/19490976.2015.1011875] [PMID: 25800089]
[18]
Clark A, Mach N. The crosstalk between the gut microbiota and mitochondria during exercise. Front Physiol 2017; 8: 319.
[http://dx.doi.org/10.3389/fphys.2017.00319] [PMID: 28579962]
[19]
Clarke SF, Murphy EF, O’Sullivan O, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014; 63(12): 1913-20.
[http://dx.doi.org/10.1136/gutjnl-2013-306541] [PMID: 25021423]
[20]
Qu L, Ren J, Huang L, et al. Antidiabetic effects of lactobacillus casei fermented yogurt through reshaping gut microbiota structure in type 2 diabetic rats. J Agric Food Chem 2018; 66(48): 12696-705.
[http://dx.doi.org/10.1021/acs.jafc.8b04874] [PMID: 30398060]
[21]
Ho J, Reimer RA, Doulla M, Huang C. Effect of prebiotic intake on gut microbiota, intestinal permeability and glycemic control in children with type 1 diabetes: Study protocol for a randomized controlled trial. Trials 2016; 17(1): 347.
[http://dx.doi.org/10.1186/s13063-016-1486-y] [PMID: 27456494]
[22]
van Niekerk G, du Toit A, Loos B, Engelbrecht AM. Nutrient excess and autophagic deficiency: Explaining metabolic diseases in obesity. Metabolism 2018; 82: 14-21.
[http://dx.doi.org/10.1016/j.metabol.2017.12.007] [PMID: 29289514]
[23]
Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8(4): 325-32.
[http://dx.doi.org/10.1016/j.cmet.2008.08.009] [PMID: 18840363]
[24]
Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[25]
Ji J, Petropavlovskaia M, Khatchadourian A, et al. Type 2 diabetes is associated with suppression of autophagy and lipid accumulation in β-cells. J Cell Mol Med 2019; 23(4): 2890-900.
[http://dx.doi.org/10.1111/jcmm.14172] [PMID: 30710421]
[26]
Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. MetaHIT Consortium.Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 2016; 535(7612): 376-81.
[http://dx.doi.org/10.1038/nature18646] [PMID: 27409811]
[27]
Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. Engineering 2017; 3(1): 71-82.
[http://dx.doi.org/10.1016/J.ENG.2017.01.008]
[28]
Colberg SR, Sigal RJ, Yardley JE, et al. Physical activity/exercise and diabetes: A position statement of the American Diabetes Association. Diabetes Care 2016; 39(11): 2065-79.
[http://dx.doi.org/10.2337/dc16-1728] [PMID: 27926890]
[29]
Colberg SR, Sigal RJ, Fernhall B, Regensteiner JG, Blissmer BJ, Rubin RR, et al. Exercise and type 2 diabetes: The American College of Sports Medicine and the American Diabetes Association: Joint position statement. Diabetes Care 2010; 33(12)
[http://dx.doi.org/10.2337/dc10-1548]
[30]
Schwingshackl L, Missbach B, Dias S, König J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetologia 2014; 57(9): 1789-97.
[http://dx.doi.org/10.1007/s00125-014-3303-z] [PMID: 24996616]
[31]
Zadeh-Tahmasebi M, Duca FA, Rasmussen BA, et al. Activation of short and long chain fatty acid sensing machinery in the ileum lowers glucose production in vivo. J Biol Chem 2016; 291(16): 8816-24.
[http://dx.doi.org/10.1074/jbc.M116.718460] [PMID: 26896795]
[32]
Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis 2016; 15(1): 108.
[http://dx.doi.org/10.1186/s12944-016-0278-4] [PMID: 27317359]
[33]
Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for human health American College of Sports Medicine 2019; p. 47..
[34]
Li C, Li X, Han H, Cui H, Peng M, Wang G, et al. Effect of probiotics on metabolic profiles in type 2 diabetes mellitus. Medicine (United States) 2016; 95(26)
[http://dx.doi.org/10.1097/MD.0000000000004088]
[35]
Codella R, Luzi L, Terruzzi I. Exercise has the guts: How physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis 2018; 50(4): 331-41.
[http://dx.doi.org/10.1016/j.dld.2017.11.016] [PMID: 29233686]
[36]
Lancaster GI, Febbraio MA. The immunomodulating role of exercise in metabolic disease. Trends Immunol 2014; 35(6): 262-9.
[http://dx.doi.org/10.1016/j.it.2014.02.008] [PMID: 24680647]
[37]
DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The Claude Bernard Lecture 2009. Diabetologia 2010; 53(7): 1270-87.
[http://dx.doi.org/10.1007/s00125-010-1684-1] [PMID: 20361178]
[38]
Yang L, Lin H, Lin W, Xu X. Exercise Ameliorates Insulin Resistance of type 2 Diabetes through Motivating Short-chain Fatty Acid-mediated Skeletal Muscle Cell Autophagy. Biology (Basel) 2020; 9(8): E203.
[http://dx.doi.org/10.3390/biology9080203] [PMID: 32756447]
[39]
Denou E, Marcinko K, Surette MG, Steinberg GR, Schertzer JD. High-intensity exercise training increases the diversity and metabolic capacity of the mouse distal gut microbiota during diet-induced obesity. Am J Physiol Endocrinol Metab 2016; 310(11): E982-93.
[http://dx.doi.org/10.1152/ajpendo.00537.2015] [PMID: 27117007]
[40]
Carbajo-Pescador S, Porras D, Garcia-Mediavilla MV, Martinez-Florez S, Juarez-Fernandez M, Cuevas MJ, et al. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease. DMM Disease Models and Mechanisms 2019; 12(5)
[http://dx.doi.org/10.1242/dmm.039206]
[41]
Allen JM, Mailing LJ, Cohrs J, et al. Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 2018; 9(2): 115-30.
[http://dx.doi.org/10.1080/19490976.2017.1372077] [PMID: 28862530]
[42]
Allen JM, Berg Miller ME, Pence BD, Whitlock K, Nehra V, Gaskins HR, et al. Voluntary and forced exercise differentially alters the gut microbiome in C57BL/6J mice. J Appl Physiol 2015; 118(8): 1059-66.
[43]
Brandt N, Kotowska D, Kristensen CM, et al. The impact of exercise training and resveratrol supplementation on gut microbiota composition in high-fat diet fed mice. Physiol Rep 2018; 6(20): e13881.
[http://dx.doi.org/10.14814/phy2.13881] [PMID: 30370643]
[44]
Campbell SC, Wisniewski PJ, Noji M, et al. The effect of diet and exercise on intestinal integrity and microbial diversity in mice. PLoS One 2016; 11(3): e0150502.
[http://dx.doi.org/10.1371/journal.pone.0150502] [PMID: 26954359]
[45]
Nagano T, Yano H. Effect of dietary cellulose nanofiber and exercise on obesity and gut microbiota in mice fed a high-fat-diet. Biosci Biotechnol Biochem 2020; 84(3): 613-20.
[http://dx.doi.org/10.1080/09168451.2019.1690975] [PMID: 31718523]
[46]
Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol 2018; 9 (APR): 765.
[http://dx.doi.org/10.3389/fmicb.2018.00765] [PMID: 29731746]
[47]
Taniguchi H, Tanisawa K, Sun X, et al. Effects of short-term endurance exercise on gut microbiota in elderly men. Physiol Rep 2018; 6(23): e13935.
[http://dx.doi.org/10.14814/phy2.13935] [PMID: 30536648]
[48]
Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7(1): E14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]
[49]
Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, et al. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. 2018; 747-57.
[http://dx.doi.org/10.1249/MSS.0000000000001495]
[50]
Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab 2014; 1-15.
[PMID: 25962839]
[51]
Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017; 9(9): E1021.
[http://dx.doi.org/10.3390/nu9091021] [PMID: 28914794]
[52]
Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: Current evidence and perspectives. Curr Obes Rep 2019; 8(3): 317-32.
[http://dx.doi.org/10.1007/s13679-019-00352-2] [PMID: 31175629]
[53]
Kim YA, Keogh JB, Clifton PM. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr Res Rev 2017 1-17.
[PMID: 29037268]
[54]
Mahboobi S, Rahimi F, Jafarnejad S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: A meta-analysis of randomized controlled trials. Adv Pharm Bull 2018; 8(4): 565-74.
[http://dx.doi.org/10.15171/apb.2018.065] [PMID: 30607329]
[55]
Zheng HJ, Guo J, Jia Q, et al. The effect of probiotic and synbiotic supplementation on biomarkers of inflammation and oxidative stress in diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 2019 142(February):; 303-13.
[http://dx.doi.org/10.1016/j.phrs.2019.02.016] [PMID: 30794924]
[56]
Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trials. Int J Mol Sci 2016; 17(6): 1-15.
[http://dx.doi.org/10.3390/ijms17060928] [PMID: 27304953]
[57]
Tabrizi R, Moosazadeh M, Lankarani KB, et al. The Effects of Synbiotic Supplementation on Glucose Metabolism and Lipid Profiles in Patients with Diabetes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Probiotics Antimicrob Proteins 2018; 10(2): 329-42.
[http://dx.doi.org/10.1007/s12602-017-9299-1] [PMID: 28677046]
[58]
Tabrizi R, Ostadmohammadi V, Lankarani KB, et al. The effects of probiotic and synbiotic supplementation on inflammatory markers among patients with diabetes: A systematic review and meta-analysis of randomized controlled trials. Eur J Pharmacol 2019; 852 (April): 254-64.
[http://dx.doi.org/10.1016/j.ejphar.2019.04.003] [PMID: 30959049]
[59]
Roshan H, Ghaedi E, Rahmani J, et al. Effects of probiotics and synbiotic supplementation on antioxidant status: A meta-analysis of randomized clinical trials. Clin Nutr ESPEN 2019; 30: 81-8.
[http://dx.doi.org/10.1016/j.clnesp.2019.02.003] [PMID: 30904233]
[60]
Barengolts E. Gut microbiota, prebiotics, probiotics, and synbiotics in management of obesity and prediabetes: Review of randomized controlled trials. Endocr Pract 2016; 22(10): 1224-34.
[http://dx.doi.org/10.4158/EP151157.RA] [PMID: 27409822]
[61]
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11(10): 577-91.
[http://dx.doi.org/10.1038/nrendo.2015.128] [PMID: 26260141]
[62]
Mandaliya DK, Seshadri S. Erratum: Short Chain Fatty Acids, pancreatic dysfunction and type 2 diabetes. Pancreatology 2019; 19(4): 617-22.
[63]
Im DS. FFA4 (GPR120) as a fatty acid sensor involved in appetite control, insulin sensitivity and inflammation regulation. Mol Aspects Med 2018; 64: 92-108.
[http://dx.doi.org/10.1016/j.mam.2017.09.001] [PMID: 28887275]
[64]
Müller M, Hernández MAG, Goossens GH, et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep 2019; 9(1): 12515.
[http://dx.doi.org/10.1038/s41598-019-48775-0] [PMID: 31467327]
[65]
Hutchison AT, Regmi P, Manoogian ENC, et al. Time-restricted Feeding Improves Glucose Tolerance IN Men at Risk for Type 2 Diabetes: A Randomized Crossover Trial. Obesity (Silver Spring) 2019; 27(5): 724-32.
[http://dx.doi.org/10.1002/oby.22449] [PMID: 31002478]
[66]
Chaix A, Manoogian ENC, Melkani GC, Panda S. Time-restricted Eating to Prevent and Manage Chronic Metabolic Diseases. Annu Rev Nutr 2019; 39: 291-315.
[http://dx.doi.org/10.1146/annurev-nutr-082018-124320] [PMID: 31180809]
[67]
Sutton EF, Beyl R, Early KS, Cefalu WT, Ravussin E, Peterson CM. Early Time-restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab 2018; 27(6): 1212-21.
[68]
Liu H, Javaheri A, Godar RJ, et al. Intermittent fasting preserves beta-cell mass in obesity-induced diabetes via the autophagy-lysosome pathway. Autophagy 2017; 13(11): 1952-68.
[http://dx.doi.org/10.1080/15548627.2017.1368596] [PMID: 28853981]
[69]
Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, Reimer RA. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab 2015; 40(7): 749-52.
[http://dx.doi.org/10.1139/apnm-2014-0452] [PMID: 25962839]
[70]
Palareti G, Legnani C, Cosmi B, et al. DULCIS (D-dimer-Ultrasonography in Combination Italian Study) Investigators (See Appendix)DULCIS (D-dimer-ULtrasonography in Combination Italian Study) Investigators. Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int J Lab Hematol 2016; 38(1): 42-9.
[http://dx.doi.org/10.1111/ijlh.12426] [PMID: 26362346]
[71]
Lai ZL, Tseng CH, Ho HJ, et al. Fecal microbiota transplantation confers beneficial metabolic effects of diet and exercise on diet-induced obese mice. Sci Rep 2018; 8(1): 15625.
[http://dx.doi.org/10.1038/s41598-018-33893-y] [PMID: 30353027]
[72]
Ribeiro FM, Ribeiro CFA, G ACM, et al. Limited effects of low- to-moderate aerobic exercise on the gut microbiota of mice subjected to a high-fat diet. Nutrients 2019; 11(1): E149.
[http://dx.doi.org/10.3390/nu11010149] [PMID: 30641996]
[73]
Asemi Z, Khorrami-Rad A, Alizadeh SA, Shakeri H, Esmaillzadeh A. Effects of synbiotic food consumption on metabolic status of diabetic patients: a double-blind randomized cross-over controlled clinical trial. Clin Nutr 2014; 33(2): 198-203.
[http://dx.doi.org/10.1016/j.clnu.2013.05.015] [PMID: 23786900]
[74]
Akram Kooshki A, Tofighiyan T, Rakhshani MH. Effects of Synbiotics on Inflammatory Markers in Patients With Type 2 Diabetes Mellitus. Glob J Health Sci 2015; 7(7 Spec No): 1-5.
[http://dx.doi.org/10.5539/gjhs.v7n7p1] [PMID: 26153197]
[75]
Kooshki A, Tofighian T, Akbarzadeh R. Effect of synbiotic supplementation on weight, body mass index and blood sugar in type II diabetic patients. J ournal of Reserach & Health 2017; 7(2): 771-6.
[76]
Tajabadi-Ebrahimi M, Sharifi N, Farrokhian A, et al. A randomized controlled clinical trial investigating the effect of synbiotic administration on markers of insulin metabolism and lipid profiles in overweight type 2 diabetic patients with coronary heart disease. Exp Clin Endocrinol Diabetes 2017; 125(1): 21-7.
[PMID: 27219886]
[77]
Tunapong W, Apaijai N, Yasom S, et al. Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur J Nutr 2018; 57(6): 2091-104.
[http://dx.doi.org/10.1007/s00394-017-1482-3] [PMID: 28608320]
[78]
Horvath A, Leber B, Feldbacher N, et al. Effects of a multispecies synbiotic on glucose metabolism, lipid marker, gut microbiome composition, gut permeability, and quality of life in diabesity: a randomized, double-blind, placebo- controlled pilot study. Eur J Nutr 2019.
[79]
Kassaian N, Feizi A, Aminorroaya A, Amini M. Probiotic and synbiotic supplementation could improve metabolic syndrome in prediabetic adults: A randomized controlled trial. Diabetes Metab Syndr 2019; 13(5): 2991-6.
[http://dx.doi.org/10.1016/j.dsx.2018.07.016] [PMID: 30076087]
[80]
Soleimani A, Motamedzadeh A, Zarrati Mojarrad M, et al. The effects of synbiotic supplementation on metabolic status in diabetic patients undergoing hemodialysis: A randomized, double-blinded, placebo-controlled trial. Probiotics Antimicrob Proteins 2019; 11(4): 1248-56.
[http://dx.doi.org/10.1007/s12602-018-9499-3] [PMID: 30560426]
[81]
Ban Q, Cheng J, Sun X, et al. Effects of a synbiotic yogurt using monk fruit extract as sweetener on glucose regulation and gut microbiota in rats with type 2 diabetes mellitus. J Dairy Sci 2020; 103(4): 2956-68.
[http://dx.doi.org/10.3168/jds.2019-17700] [PMID: 32089310]
[82]
Morshedi M, Saghafi-Asl M, Hosseinifard ES. The potential therapeutic effects of the gut microbiome manipulation by synbiotic containing-Lactobacillus plantarum on neuropsychological performance of diabetic rats. J Transl Med 2020; 18(1): 18.
[http://dx.doi.org/10.1186/s12967-019-02169-y] [PMID: 31924200]