[6]
Vincent P, Larochelle H, Lajoie I. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 2010; 11: 3371-408.
[8]
Bengio Y, Lamblin P, Popovici D, et al. Greedy layer-wise training of deep networks. Adv Neural Inf Process Syst 2006; 19: 153-60.
[12]
Makhzani A, Frey B. k-Sparse Autoencoders 2013.
[14]
Guo X, Liu X, Zhu E, Yin J. Deep clustering with convolutional autoencoders. International Conference on Neural Information Processing. 373-82.
[15]
Kingma DP, Welling M. Auto-encoding variational bayes. CoRRabs 2013.
[17]
Ilse M, Tomczak JM, Louizos C, Welling M. Domain invariant variational autoencoders. Medical Imaging with Deep Learning 2020; 322-48.
[18]
Rifai S, Vincent P, Muller X, et al. Contractive auto-encoders: explicit invariance during feature extraction.Proceedings of the 28th International Conference on International Conference on Machine Learning (ICML 2011). 833-40.
[19]
Ballard DH. Modular Learning in Neural Networks. AAAI 1987; pp. 279-84.
[20]
Pinaya WHL, Sandra V, Rafael G-D, et al. Autoencoders machine learning academic press. 2020; 193-208.
[22]
Goodfellow I, Lee H, Le Q, et al. Measuring invariances in deep networks. Adv Neural Inf Process Syst 2009; 22: 646-54.
[23]
Gallinari P, LeCun Y, Thiria S, et al. Memoires associative distributes. Proceedings of COGNITIVA. 87: Paris.
[35]
Payan A, Montana G. Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. arXiv preprin 2015.
[44]
Su H, Xing F, Kong X, et al. Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. Lect Notes Comput Sci 2018; 2018: 9351.
[53]
Hosseini-Asl E, Gimelfarb G, El-Baz A. Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. arxiv 2016.
[55]
Sital C, Brosch T, Tio D, Raaijmakers A, Weese J. 3D medical image segmentation with labeled and unlabeled data using autoencoders at the example of liver segmentation in CT images. arXiv preprint 2020.
[56]
Hinton G. A practical guide to training restricted boltzmann machines. Momentum 2010; 9(1): 926.
[60]
Jaumard-Hakoun A, Xu K, Roussel-Ragot P, et al. Tongue contour extraction from ultrasound images based on deep neural network. arxiv 2016.
[66]
Nahid A-A, Mikaelian A, Kong Y. Histopathological breast-image classification with restricted Boltzmann machine along with backpropagation. Biomed Res (Aligarh) 2018; 29(10): 2068-77.
[83]
Salakhutdinov R, Hinton G. Deep Boltzmann machines. Artificial Intelligence and Statistics PMLR 2009; 448-55.
[86]
Goodfellow I, Mirza M, Courville A, Bengio Y. Multi-prediction deep Boltzmann machines. Adv Neural Inf Process Syst 2013; 26: 548-56.
[87]
Dinggang S, Wu G. SukHeung-Il. Deep Learning in Medical Image Analysis. Annu Rev Biomed Eng 2017; 19: 221-48.
[92]
Goodfellow JP-A, Mirza M, Xu B, Warde-Farley D. Generative adversarial nets. Adv Neural Inf Process Syst 2014; 63: 2672-80.
[104]
Mondal AK, Dolz J, Desrosiers C. Few-shot 3D multi-modal medical image segmentation using generative adversarial learning. arXiv preprint 2018.
[106]
Madani A, Moradi M, Karargyris A, et al. Semi-Supervised Learning with Generative Adversarial Networks for Chest X-Ray Classification with Ability of Data Domain Adaptation. 2018 15th IEEE Int Symp Biomed Imaging (ISBI 2018) Washington, DC 2018; 1038-42.
[107]
Baur C, Albarqouni S, Navab N. MelanoGANs : High resolution skin lesion synthesis with GANs. arXiv preprint 2018.
[118]
Singh NK, Raza K. Medical image generation using generative adversarial networks. Stud Comput Intell 2021; 932: 77-96.
[120]
Wolterink JM, Kamnitsas K, Ledig C, Išgum I. Generative adversarial networks and adversarial methods in biomedical image analysis. arXiv preprint 2018.