Advances in the Synthesis of Polyolefin Elastomers with “Chain-walking” Catalysts and Electron Spin Resonance Research of Related Catalytic Systems

Page: [935 - 949] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

In recent years, polyolefin elastomers play an increasingly important role in industry. The late transition metal complex catalysts, especially α-diimine Ni(II) and α-diimine Pd(II) complex catalysts, are popular “chain-walking” catalysts. They can prepare polyolefin with various structures, ranging from linear configuration to highly branched configuration. Combining the “chain-walking” characteristic with different polymerization strategies, polyolefins with good elasticity can be obtained. Among them, olefin copolymer is a common way to produce polyolefin elastomers. For instance, strictly defined diblock or triblock copolymers with excellent elastic properties were synthesized by adding ethylene and α-olefin in sequence. As well as the incorporation of polar monomers may lead to some unexpected improvement. Chain shuttling polymerization can generate multiblock copolymers in one pot due to the interaction of the catalysts with chain shuttling agent. Furthermore, when regarding ethylene as the sole feedstock, owing to the “oscillation” of the ligands of the asymmetric catalysts, polymers with stereo-block structures can be generated. Generally, the elasticity of these polyolefins mainly comes from the alternately crystallineamorphous block structures, which is closely related to the characteristic of the catalytic system. To improve performance of the catalysts and develop excellent polyolefin elastomers, research on the catalytic mechanism is of great significance. Electron spin resonance (ESR), as a precise method to detect unpaired electron, can be applied to study transition metal active center. Therefore, the progress on the exploration of the valence and the proposed configuration of catalyst active center in the catalytic process by ESR is also reviewed.

Keywords: Polyolefin elastomer, "chain-walking” catalyst, copolymerization, chain shuttling polymerization, “oscillating” catalyst, electron spin resonance.

Graphical Abstract

[1]
Lien, T.; Jansens, K.J.A.; Verpoest, I.; Delcour, J.A.; Puyvelde, P.V.; Goderis, B. Wheat gluten/LDPE based thermoplastic vulcanizates containing LDPE-g-MA as compatibilizer. Ind. Crops Prod., 2015, 74, 824-838.
[http://dx.doi.org/10.1016/j.indcrop.2015.06.005]
[2]
Qiao, J.; Guo, M.; Wang, L.; Liu, D.; Zhang, X.; Yu, L.; Song, W.; Liu, Y. Recent advances in polyolefin technology. Polym. Chem., 2011, 2(8), 1611-1623.
[http://dx.doi.org/10.1039/c0py00352b]
[3]
Pierro, I.; Leone, G.; Zanchin, G.; Canetti, M.; Ricci, G.; Bertini, F. Polyolefin thermoplastic elastomers from 1-octene copolymerization with 1-decene and cyclopentene. Eur. Polym. J., 2017, 93, 200-211.
[http://dx.doi.org/10.1016/j.eurpolymj.2017.05.044]
[4]
Deplace, F.; Scholz, A.K.; Fredrickson, G.H.; Kramer, E.J.; Shin, Y.W.; Shimizu, F.; Zuo, F.; Rong, L.; Hsiao, B.S.; Coates, G.W. Tough and elastic thermoplastic organogels and elastomers made of semicrystalline polyolefin-based block copolymers. Macromolecules, 2012, 45(13), 5604-5618.
[http://dx.doi.org/10.1021/ma300808n]
[5]
Poon, B.C.; Dias, P.; Ansems, P.; Chum, S.P.; Hiltner, A.; Baer, E. Structure and deformation of an elastomeric propylene–ethylene copolymer. J. Appl. Polym. Sci., 2007, 104(1), 489-499.
[http://dx.doi.org/10.1002/app.25243]
[6]
Bueche, F. Mechanical properties of natural and synthetic rubbers. J. Polym. Sci., Polym. Phys. Ed., 1958, 25(110), 305-324.
[http://dx.doi.org/10.1002/pol.1957.1202511005]
[7]
Geoffrey, H.; Ralph, M. Block polymers of monovinyl aromatic hydrocarbons and conjugated dienes. U.S.Patent3265765, 1966.
[8]
Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. Crystalline high polymers of α-olefins. J. Am. Chem. Soc., 1955, 77(6), 1708-1710.
[http://dx.doi.org/10.1021/ja01611a109]
[9]
Bialek, M.; Czaja, K. The effect of the comonomer on the copolymerization of ethylene with long chain α-olefins using Ziegler-Natta catalysts supported on MgCl2(THF)2. Polymer (Guildf.), 2000, 41, 7899-7904.
[http://dx.doi.org/10.1016/S0032-3861(00)00153-1]
[10]
Chien, J.C.W.; Wu, J.C. Magnesium-chloride-supported high-mileage catalysts for olefin polymerization. III. Electron paramagnetic resonance studies. J. Polym. Sci., Polym. Phys. Ed., 1982, 20, 2461-2476.
[http://dx.doi.org/10.1002/pol.1982.170200909]
[11]
Wang, S.; Feng, N.; Zheng, J.; Yoon, K-B.; Lee, D.; Qu, M.; Zhang, X.; Zhang, H. Preparation of polyethylene/lignin nanocomposites from hollow spherical lignin-supported vanadium-based ziegler-natta catalyst. Polym. Adv. Technol., 2016, 27(10), 1351-1354.
[http://dx.doi.org/10.1002/pat.3803]
[12]
Kaminsky, W. New polymers by metallocene catalysis. Macromol. Chem. Phys., 1996, 197(12), 3907-3945.
[http://dx.doi.org/10.1002/macp.1996.021971201]
[13]
Alt, H.G.; Köppl, A. Effect of the nature of metallocene complexes of group IV metals on their performance in catalytic ethylene and propylene polymerization. Chem. Rev., 2000, 100(4), 1205-1222.
[http://dx.doi.org/10.1021/cr9804700] [PMID: 11749264]
[14]
Cobzaru, C.; Hild, S.; Boger, A.; Troll, C.; Rieger, B. “Dual-side” catalysts for high and ultrahigh molecular weight homopolypropylene elastomers and plastomers. Coord. Chem. Rev., 2006, 250(1-2), 189-211.
[http://dx.doi.org/10.1016/j.ccr.2005.06.007]
[15]
De Rosa, C.; Auriemma, F.; Vinti, V. On the form II of syndiotactic polypropylene. Macromolecules, 1998, 31(21), 7430-7435.
[http://dx.doi.org/10.1021/ma980789m]
[16]
Alt, H.G.; Licht, E.H.; Licht, A.I.; Schneider, K.J. Metallacyclic metallocene complexes as catalysts for olefin polymerization. Coord. Chem. Rev., 2006, 250(1-2), 2-17.
[http://dx.doi.org/10.1016/j.ccr.2005.01.016]
[17]
Zhang, K.; Liu, P.; Wang, W.J.; Li, B.G.; Liu, W.; Zhu, S. Preparation of comb-shaped polyolefin elastomers having ethylene/1-octene copolymer backbone and long chain polyethylene branches via a tandem metallocene catalyst system. Macromolecules, 2018, 51(21), 8790-8799.
[http://dx.doi.org/10.1021/acs.macromol.8b01711]
[18]
Domski, G.J.; Rose, J.M.; Coates, G.W.; Bolig, A.D.; Brookhart, M. Living alkene polymerization: New methods for the precision synthesis of polyolefins. Prog. Polym. Sci., 2007, 32(1), 30-92.
[http://dx.doi.org/10.1016/j.progpolymsci.2006.11.001]
[19]
Zhong, H.A.; Labinger, J.A.; Bercaw, J.E. C [bond] H activation by cationic platinum(II) complexes: ligand electronic and steric effects. J. Am. Chem. Soc., 2002, 124(7), 1378-1399.
[http://dx.doi.org/10.1021/ja011189x] [PMID: 11841307]
[20]
Carrow, B.P.; Nozaki, K. Transition-metal-catalyzed functional polyolefin synthesis: Effecting control through chelating ancillary ligand design and mechanistic insights. Macromolecules, 2014, 47(8), 2541-2555.
[http://dx.doi.org/10.1021/ma500034g]
[21]
Guo, L.; Kong, W.; Xu, Y.; Yang, Y.; Ma, R.; Cong, L.; Dai, S.; Liu, Z. Large-scale synthesis of novel sterically hindered acenaphthene-based α-diimine ligands and their application in coordination chemistry. J. Org. Chem., 2018, 859, 58-67.
[http://dx.doi.org/10.1016/j.jorganchem.2018.01.055]
[22]
He, F.; Wang, D.; Jiang, B.; Zhang, Z.; Cheng, Z.; Fu, Z.; Zhang, Q.; Fan, Z. Introducing electron-donating substituents on ligand backbone of α-diimine nickel complex and the effects on catalyst thermal stability in ethylene polymerization. Inorg. Chim. Acta, 2019, 486, 704-710.
[http://dx.doi.org/10.1016/j.ica.2018.08.048]
[23]
Wang, F.; Chen, C. A continuing legend: The Brookhart-type α-diimine nickel and palladium catalysts. Polym. Chem., 2019, 10(19), 2354-2369.
[http://dx.doi.org/10.1039/C9PY00226J]
[24]
Zhang, Q.; Zhang, R.; Ma, Y.; Solan, G.A.; Liang, T.; Sun, W.H. Branched polyethylenes attainable using thermally enhanced bis(imino)acenaphthene-nickel catalysts: Exploring the effects of temperature and pressure. Appl. Catal. A Gen., 2019, 573, 73-86.
[http://dx.doi.org/10.1016/j.apcata.2019.01.016]
[25]
Lanza, G.; Fragalà, I.L.; Marks, T.J. Ligand substituent, anion, and solvation effects on ion pair structure, thermodynamic stability, and structural mobility in “constrained geometry” olefin polymerization catalysts: An ab initio quantum chemical investigation. J. Am. Chem. Soc., 2000, 122(51), 12764-12777.
[http://dx.doi.org/10.1021/ja000571r]
[26]
Scherer, W.; McGrady, G.S. Agostic interactions in d0 metal alkyl complexes. Angew. Chem. Int. Ed. Engl., 2004, 43(14), 1782-1806.
[http://dx.doi.org/10.1002/anie.200200548] [PMID: 15054779]
[27]
Zada, M.; Guo, L.; Zhang, R.; Zhang, W.; Ma, Y.; Solan, G.A.; Sun, Y.; Sun, W.H. Moderately branched ultrahigh molecular weight polyethylene by using N,N′-nickel catalysts adorned with sterically hindered dibenzocycloheptyl groups. Appl. Org. Chem., 2019, 33(5)e4749
[http://dx.doi.org/10.1002/aoc.4749]
[28]
Pei, L.; Liu, F.; Liao, H.; Gao, J.; Zhong, L.; Gao, H.; Wu, Q. Synthesis of polyethylenes with controlled branching with α-diimine nickel catalysts and revisiting formation of long-chain branching. ACS Catal., 2018, 8(2), 1104-1113.
[http://dx.doi.org/10.1021/acscatal.7b03282]
[29]
Rhinehart, J.L.; Brown, L.A.; Long, B.K. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization. J. Am. Chem. Soc., 2013, 135(44), 16316-16319.
[http://dx.doi.org/10.1021/ja408905t] [PMID: 24164257]
[30]
Liu, J.; Chen, D.; Wu, H.; Xiao, Z.; Gao, H.; Zhu, F.; Wu, Q. Polymerization of α-olefins using a camphyl α-diimine nickel catalyst at elevated temperature. Macromolecules, 2014, 47(10), 3325-3331.
[http://dx.doi.org/10.1021/ma5004634]
[31]
Wang, Z.; Liu, Q.; Solan, G.A.; Sun, W.H. Recent advances in ni-mediated ethylene chain growth: Nimine-donor ligand effects on catalytic activity, thermal stability and oligo-/polymer structure. Coord. Chem. Rev., 2017, 350, 68-83.
[http://dx.doi.org/10.1016/j.ccr.2017.06.003]
[32]
Xing, Y.; Wang, L.; Yu, H.; Khan, A.; Haq, F.; Zhu, L. Recent progress in preparation of branched polyethylene with nickel, titanium, vanadium and chromium catalytic systems and EPR study of related catalytic systems. Eur. Polym. J., 2019.121109339
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109339]
[33]
Walsh, D.J.; Su, E.; Guironnet, D. Catalytic synthesis of functionalized (polar and non-polar) polyolefin block copolymers. Chem. Sci. (Camb.), 2018, 9(20), 4703-4707.
[http://dx.doi.org/10.1039/C8SC00450A] [PMID: 29899965]
[34]
Goring, P.D.; Morton, C.; Scott, P. End-functional polyolefins for block copolymer synthesis. Dalton Trans., 2019, 48(11), 3521-3530.
[http://dx.doi.org/10.1039/C9DT00087A] [PMID: 30762061]
[35]
Mahmood, Q.; Sun, W.H.N.N. N-chelated nickel catalysts for highly branched polyolefin elastomers: a survey. R. Soc. Open Sci., 2018, 5(7)180367
[http://dx.doi.org/10.1098/rsos.180367] [PMID: 30109091]
[36]
Guo, Y.; Cheng, Z.; Song, S.; Weng, Y.; Wu, A.; Xu, J.; Fu, Z.; Fan, Z. Synthesis of multiblock ethylene/long-chain α-olefin copolymer via chain walking polymerization using thermostable α-diimine nickel catalyst. J. Polym. Sci. A Polym. Chem., 2017, 55(17), 2725-2729.
[http://dx.doi.org/10.1002/pola.28692]
[37]
Christopher, M. Killian, Daniel, J., Tempel, Lynda, K., Johnson, Maurice. Living polymerization of α-olefins using Ni(II)-α-diimine catalysts. Synthesis of new block polymers based on α-olefins. J. Am. Chem. Soc., 1996, 118(46), 11664-11665.
[http://dx.doi.org/10.1021/ja962516h]
[38]
Leone, G.; Mauri, M.; Bertini, F.; Canetti, M.; Piovani, D.; Ricci, G. Ni(II) α-diimine-catalyzed α-olefins polymerization: Thermoplastic elastomers of block copolymers. Macromolecules, 2015, 48(5), 1304-1312.
[http://dx.doi.org/10.1021/ma502427u]
[39]
Leone, G.; Mauri, M.; Pierro, I.; Ricci, G.; Canetti, M.; Bertini, F. Polyolefin thermoplastic elastomers from 1-octene chain-walking polymerization. Polymer (Guildf.), 2016, 100, 37-44.
[http://dx.doi.org/10.1016/j.polymer.2016.08.009]
[40]
O’connor, K.S.; Watts, A.; Vaidya, T.; Lapointe, A.M.; Hillmyer, M.A.; Coates, G.W. Controlled chain walking for the synthesis of thermoplastic polyolefin elastomers: Synthesis, structure, and properties. Macromolecules, 2016, 49(18), 6743-6751.
[http://dx.doi.org/10.1021/acs.macromol.6b01567]
[41]
Franssen, N.M.; Reek, J.N.; de Bruin, B. Synthesis of functional ‘polyolefins’: state of the art and remaining challenges. Chem. Soc. Rev., 2013, 42(13), 5809-5832.
[http://dx.doi.org/10.1039/c3cs60032g] [PMID: 23598658]
[42]
Xiang, P.; Ye, Z. Alternating, gradient, block, and block-gradient copolymers of ethylene and norbornene by Pd-diimine-catalyzed “living” copolymerization. J. Polym. Sci. A Polym. Chem., 2013, 51(3), 672-686.
[http://dx.doi.org/10.1002/pola.26419]
[43]
Wang, H.; Yang, Y.; Nishiura, M.; Higaki, Y.; Takahara, A.; Hou, Z. Synthesis of self-healing polymers by scandium-catalyzed copolymerization of ethylene and anisylpropylenes. J. Am. Chem. Soc., 2019, 141(7), 3249-3257.
[http://dx.doi.org/10.1021/jacs.8b13316] [PMID: 30727726]
[44]
Boffa, L.S.; Novak, B.M. Copolymerization of polar monomers with olefins using transition-metal complexes. Chem. Rev., 2000, 100(4), 1479-1494.
[http://dx.doi.org/10.1021/cr990251u] [PMID: 11749273]
[45]
Keyes, A.; Basbug Alhan, H.E.; Ordonez, E.; Ha, U.; Beezer, D.B.; Dau, H.; Liu, Y.S.; Tsogtgerel, E.; Jones, G.R.; Harth, E. Olefins and vinyl polar monomers: Bridging the gap for next generation materials. Angew. Chem. Int. Ed. Engl., 2019, 58(36), 12370-12391.
[http://dx.doi.org/10.1002/anie.201900650] [PMID: 30791191]
[46]
Zou, C.; Chen, C. Polar-functionalized, crosslinkable, self-healing, and photoresponsive polyolefins. Angew. Chem. Int. Ed. Engl., 2020, 59(1), 395-402.
[http://dx.doi.org/10.1002/anie.201910002] [PMID: 31602746]
[47]
Johnson, L.K.; Mecking, S.; Brookhart, M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J. Am. Chem. Soc., 1996, 118(1), 267-268.
[http://dx.doi.org/10.1021/ja953247i]
[48]
Huo, P.; Liu, W.; He, X.; Wang, H.; Chen, Y. Nickel(II) complexes with three-dimensional geometry alpha-diimine ligands: Synthesis and catalytic activity toward copolymerization of norbornene. Organometallics, 2013, 32(8), 2291-2299.
[http://dx.doi.org/10.1021/om300883h]
[49]
Dai, S.; Chen, C. Direct synthesis of functionalized high-molecular-weight polyethylene by copolymerization of ethylene with polar monomers. Angew. Chem. Int. Ed. Engl., 2016, 55(42), 13281-13285.
[http://dx.doi.org/10.1002/anie.201607152] [PMID: 27633148]
[50]
Dai, S.; Chen, C. Palladium-catalyzed direct synthesis of various branched, carboxylic acid-functionalized polyolefins: Characterization, derivatization, and properties. Macromolecules, 2018, 51(17), 6818-6824.
[http://dx.doi.org/10.1021/acs.macromol.8b01261]
[51]
Dai, S.; Li, S.; Xu, G.; Chen, C. Direct synthesis of polar functionalized polyethylene thermoplastic elastomer. Macromolecules, 2020, 53(7), 2539-2546.
[http://dx.doi.org/10.1021/acs.macromol.0c00083]
[52]
Zhang, Y.; Wang, C.; Mecking, S.; Jian, Z. Ultrahighly branched main-chain-functionalized polyethylenes via inverted insertion selectivity. Angew. Chem. Int. Ed., 2020, 59, 1-8.
[53]
Amin, S.B.; Marks, T.J. Versatile pathways for in situ polyolefin functionalization with heteroatoms: catalytic chain transfer. Angew. Chem. Int. Ed. Engl., 2008, 47(11), 2006-2025.
[http://dx.doi.org/10.1002/anie.200703310] [PMID: 18203235]
[54]
Zinck, P.; Valente, A.; Mortreux, A.; Visseaux, M. In situ generated half-lanthanidocene based catalysts for the controlled oligomerisation of styrene: Selectivity, block copolymerisation and chain transfer. Polymer (Guildf.), 2007, 48(16), 4609-4614.
[http://dx.doi.org/10.1016/j.polymer.2007.06.014]
[55]
Zintl, M.; Rieger, B. Novel olefin block copolymers through chain-shuttling polymerization. Angew. Chem. Int. Ed. Engl., 2007, 46(3), 333-335.
[http://dx.doi.org/10.1002/anie.200602889] [PMID: 17154201]
[56]
Arriola, D.J.; Carnahan, E.M.; Hustad, P.D.; Kuhlman, R.L.; Wenzel, T.T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science, 2006, 312(5774), 714-719.
[http://dx.doi.org/10.1126/science.1125268] [PMID: 16675694]
[57]
Zinck, P. Unexpected reactivities in chain shuttling copolymerizations. Polym. Int., 2016, 65(1), 11-15.
[http://dx.doi.org/10.1002/pi.5026]
[58]
Saeb, M.R.; Mohammadi, Y.; Kermaniyan, T.S.; Zinck, P.; Stadler, F.J. Unspoken aspects of chain shuttling reactions: Patterning the molecular landscape of olefin multi-block copolymers. Polymer (Guildf.), 2017, 116, 55-75.
[http://dx.doi.org/10.1016/j.polymer.2017.03.033]
[59]
Xiao, A.; Wang, L.; Liu, Q.; Ding, J. Propylene polymerization catalyzed by rac-Et(Ind)2ZrCl2/Cp2ZrCl2 in the presence of ZnEt2. Des. Monomers Polym., 2009, 12(5), 425-431.
[http://dx.doi.org/10.1163/138577209X12486896623490]
[60]
Galotto, N.; Galotto, B.; Laura, S.; Giulia, T.; Incoronata, S. Novel norbornene copolymers with transition metal catalysts. J. Org. Chem., 2015, 798(2), 367-374.
[http://dx.doi.org/10.1016/j.jorganchem.2015.05.021]
[61]
Pan, L.; Zhang, K.; Nishiura, M.; Hou, Z. Chain-shuttling polymerization at two different scandium sites: regio- and stereospecific “one-pot” block copolymerization of styrene, isoprene, and butadiene. Angew. Chem. Int. Ed. Engl., 2011, 50(50), 12012-12015.
[http://dx.doi.org/10.1002/anie.201104011] [PMID: 22025484]
[62]
Kuhlman, R.L.; Wenzel, T.T. Investigations of chain shuttling olefin polymerization using deuterium labeling. Macromolecules, 2008, 41(12), 4090-4094.
[http://dx.doi.org/10.1021/ma8004313]
[63]
Vaidya, T.; Klimovica, K.; LaPointe, A.M.; Keresztes, I.; Lobkovsky, E.B.; Daugulis, O.; Coates, G.W. Secondary alkene insertion and precision chain-walking: a new route to semicrystalline “polyethylene” from α-olefins by combining two rare catalytic events. J. Am. Chem. Soc., 2014, 136(20), 7213-7216.
[http://dx.doi.org/10.1021/ja502130w] [PMID: 24773453]
[64]
Zhang, M. Modeling of α-olefin copolymerization with chain-shuttling chemistry using dual catalysts in stirred-tank reactors: Molecular weight distributions and copolymer composition. Ind. Eng. Chem. Res., 2010, 49, 8135-8146.
[http://dx.doi.org/10.1021/ie100530p]
[65]
Zhang, M.; Karjala, T.W.; Jain, P.; Villa, C. Theoretical modeling of average block structure in chain-shuttling α–olefin copolymerization using dual catalysts. Macromolecules, 2013, 46(12), 4847-4853.
[http://dx.doi.org/10.1021/ma4004902]
[66]
Saeb, M.R.; Khorasani, M.M.; Ahmadi, M.; Mohammadi, Y.; Stadler, F.J. A unified picture of hard-soft segmental development along olefin chain shuttling copolymerization. Polymer (Guildf.), 2015, 76, 245-253.
[http://dx.doi.org/10.1016/j.polymer.2015.08.059]
[67]
Tongtummachat, T.; Anantawaraskul, S.; Soares, J.B.P. Dynamic Monte Carlo simulation of olefin block copolymers (OBCs) produced via chain-shuttling polymerization: Effect of kinetic rate constants on chain microstructure. Macromol. React. Eng., 2018, 12(4)1800021
[http://dx.doi.org/10.1002/mren.201800021]
[68]
Vittoria, A.; Busico, V.; Cannavacciuolo, F.D.; Cipullo, R. Molecular kinetic study of “chain shuttling” olefin copolymerization. ACS Catal., 2018, 8(6), 5051-5061.
[http://dx.doi.org/10.1021/acscatal.8b00841]
[69]
Xiao, A.; Li, W.; Liu, Q.; Yu, H.; Amin, A.M. A novel linear-hyperbranched multiblock polyethylene produced from ethylene monomer alone via chain walking and chain shuttling polymerization. Macromolecules, 2009, 42(6), 1834-1837.
[http://dx.doi.org/10.1021/ma802352t]
[70]
Jandaghian, M.H.; Soleimannezhad, A.; Ahmadjo, S.; Mortazavi, S.M.M.; Ahmadi, M. Synthesis and characterization of isotactic poly(1-hexene)/branched polyethylene multiblock copolymer via chain shuttling polymerization technique. Ind. Eng. Chem. Res., 2018, 57(14), 4807-4814.
[http://dx.doi.org/10.1021/acs.iecr.7b05339]
[71]
Martins, R.; Quinello, L.; Souza, G.; Marques, M. Polymerization of ethylene with catalyst mixture in the presence of chain shuttling agent. Chem. Chem. Technol., 2012, 6(2), 153-162.
[http://dx.doi.org/10.23939/chcht06.02.153]
[72]
Xiao, A.G.; Zhou, S.B.; Liu, Q.Q. A novel branched–hyperbranched block polyolefin produced via chain shuttling polymerization from ethylene alone. Polym. Plast. Technol. Eng., 2014, 53(17), 1832-1837.
[http://dx.doi.org/10.1080/03602559.2014.935409]
[73]
Kaminsky, W.; Brintzinger, H.H.; Wild, F.R.W.P. Polymerization of propene and butene with a chiral zirconocene and methylalumoxane as cocatalyst. Angew. Chem. Int. Ed. Engl., 1985, 24(6), 507-508.
[http://dx.doi.org/10.1002/anie.198505071]
[74]
Van Reenen, A.J.; Sultan, O. The effect of catalyst isomerization on polypropylene properties. Z. Naturforsch. B, 2007, 62(3), 362-366.
[http://dx.doi.org/10.1515/znb-2007-0309]
[75]
Wang, B.; Daugulis, O.; Brookhart, M. Ethylene polymerization with Ni(II) diimine complexes generated from 8-halo-1-naphthylamines: The role of equilibrating syn/anti diastereomers in determining polymer properties. Organometallics, 2019, 38(24), 4658-4668.
[http://dx.doi.org/10.1021/acs.organomet.9b00649]
[76]
Pappalardo, D.; Mazzeo, M.; Antinucci, S.; Pellecchia, C. Some evidence of a dual stereodifferentiation mechanism in the polymerization of propene by α-diimine nickel catalysts. Macromolecules, 2000, 33(26), 9483-9487.
[http://dx.doi.org/10.1021/ma000982s]
[77]
Gao, H.; Liu, F.; Hu, H. Synthesis of bimodal polyethylene with unsymmetrical α-diimine nickel complexes: Influence of ligand backbone andunsym-substituted aniline moiety. Chin. J. Polym. Sci., 2013, 31(4), 563-573.
[http://dx.doi.org/10.1007/s10118-013-1251-6]
[78]
Sui, X.; Hong, C.; Pang, W.; Chen, C. Unsymmetrical α-diimine palladium catalysts and their properties in olefin (co)polymerization. Mater. Chem. Front., 2017, 1(5), 967-972.
[http://dx.doi.org/10.1039/C6QM00235H]
[79]
Lian, K.; Zhu, Y.; Li, W.; Dai, S.; Chen, C. Direct synthesis of thermoplastic polyolefin elastomers from nickel-catalyzed ethylene polymerization. Macromolecules, 2017, 50(16), 6074-6080.
[http://dx.doi.org/10.1021/acs.macromol.7b01087]
[80]
Zhai, F.; Jordan, R.F. (α-Diimine)nickel complexes that contain menthyl substituents: Synthesis, conformational behavior, and olefin polymerization catalysis. Organometallics, 2017, 36(15), 2784-2799.
[http://dx.doi.org/10.1021/acs.organomet.7b00283]
[81]
Xu, Y.; Xiang, P.; Ye, Z.; Wang, W.J. Hyperbranched−linear polyethylene block polymers constructed with chain blocks of hybrid chain topologies via one-pot stagewise chain walking ethylene “living” polymerization. Macromolecules, 2010, 43(19), 8026-8038.
[http://dx.doi.org/10.1021/ma101490x]
[82]
Lenton, T.N.; Bercaw, J.E.; Panchenko, V.N.; Zakharov, V.A.; Babushkin, D.E.; Soshnikov, I.E.; Talsi, E.P.; Brintzinger, H.H. Formation of trivalent zirconocene complexes from ansa-zirconocene-based olefin-polymerization precatalysts: an EPR- and NMR-spectroscopic study. J. Am. Chem. Soc., 2013, 135(29), 10710-10719.
[http://dx.doi.org/10.1021/ja403170u] [PMID: 23745750]
[83]
Zavoisky, E. Spin-magnetic resonance in paramagnetics. J Phys Ussr, 1945, 9, 211-245.
[84]
Cheng, D.; Zheng, Y.; Lin, J.; Xu, D.; Xu, Y. A binuclear manganese(II) complex, decaaqua(μ-1,2,4,5-benzenetetracarboxylato-O1:O4)dimanganese(II) hydrate. Acta Crystallogr. C, 2000, 56(Pt 5), 523-524.
[PMID: 10851601]
[85]
Xu, D.; Gu, J.; Xu, L.; Liang, K.; Xu, Y. Synthesis and crystal structure of a polyheteronuclear complex, [Co(III)(HDMG)2(NH3)2Cu(II)CCl3]. Polyhedron, 1998, 17(2-3), 231-233.
[http://dx.doi.org/10.1016/S0277-5387(97)00329-X]
[86]
Khusniyarov, M.M.; Harms, K.; Burghaus, O.; Sundermeyer, J. Molecular and electronic structures of homoleptic nickel and cobalt complexes with non-innocent bulky diimine ligands derived from fluorinated 1,4-diaza-1,3-butadiene (DAD) and bis(arylimino)acenaphthene (BIAN). Eur. J. Inorg. Chem., 2006, 2006(15), 2985-2996.
[http://dx.doi.org/10.1002/ejic.200600236]
[87]
Dong, Q.; Su, J-H.; Gong, S.; Li, Q.S.; Zhao, Y.; Wu, B.; Yang, X.J. Nickel complexes with two types of noninnocent ligands: α-diimine and phenazine. Organometallics, 2013, 32(9), 2866-2869.
[http://dx.doi.org/10.1021/om400130m]
[88]
Soshnikov, I.E.; Semikolenova, N.V.; Bryliakov, K.P.; Antonov, A.A.; Zakharov, V.A.; Talsi, E.P. NMR spectroscopic identification of Ni(ii) species formed upon activation of (α-diimine)NiBr2 polymerization catalysts with MAO and MMAO. Dalton Trans., 2018, 47(14), 4968-4974.
[http://dx.doi.org/10.1039/C8DT00483H] [PMID: 29557471]
[89]
Soshnikov, I.E.; Semikolenova, N.V.; Bryliakov, K.P.; Antonov, A.A.; Sun, W.H.; Talsi, E.P. EPR spectroscopic study of Ni(I) species in the catalyst system for ethylene polymerization based on α-diimine Ni(II) complex activated by MAO. J. Org. Chem., 2019, 880, 267-271.
[http://dx.doi.org/10.1016/j.jorganchem.2018.11.021]
[90]
Soshnikov, I.E.; Semikolenova, N.V.; Bryliakov, K.P.; Antonov, A.A.; Sun, W.H.; Talsi, E.P. The nature of nickel species formed upon the activation of α-diimine Nickel(II) pre-catalyst with alkylaluminum sesquichlorides. J. Org. Chem., 2020, •••907121063
[http://dx.doi.org/10.1016/j.jorganchem.2019.121063]
[91]
Gao, W.; Xin, L.; Hao, Z.; Li, G.; Su, J.H.; Zhou, L.; Mu, Y. The ligand redox behavior and role in 1,2-bis[(2,6-diisopropylphenyl)imino]-acenaphthene nickel-TMA(MAO) systems for ethylene polymerization. Chem. Commun. (Camb.), 2015, 51(32), 7004-7007.
[http://dx.doi.org/10.1039/C5CC00582E] [PMID: 25800670]
[92]
Chen, M.; Yang, B.; Chen, C. Redox-controlled olefin (co)polymerization catalyzed by ferrocene-bridged phosphine-sulfonate palladium complexes. Angew. Chem. Int. Ed. Engl., 2015, 54(51), 15520-15524.
[http://dx.doi.org/10.1002/anie.201507274] [PMID: 26768533]
[93]
Anderson, W.C.; Long, B.K. Modulating polyolefin copolymer composition via redox-active olefin polymerization catalysts. ACS Macro Lett., 2016, 5(9), 1029-1033.
[http://dx.doi.org/10.1021/acsmacrolett.6b00528]
[94]
Gurinovich, N.S.; Petrovsky, S.K.; Saliy, I.V.; Saraev, V.V. Influence of α-diimine ligand and an activator on the processes taking place in Brookhart-type nickel catalytic systems. Res. Chem. Intermed., 2017, 44(3), 1935-1944.
[http://dx.doi.org/10.1007/s11164-017-3207-x]
[95]
Vernon, C. Gibson, Nicholas J. Long, Philip J. Oxford, Andrew J. P. White, Williams D.J. Ferrocene-substituted bis(imino)pyridine iron and cobalt complexes: Toward redox-active catalysts for the polymerization of ethylene. Organometallics, 2006, 25, 1932-1939.
[http://dx.doi.org/10.1021/om0509589]
[96]
Zhao, M.; Chen, C. Accessing multiple catalytically active states in redox-controlled olefin polymerization. ACS Catal., 2017, 7(11), 7490-7494.
[http://dx.doi.org/10.1021/acscatal.7b02564]
[97]
Kaiser, J.M.; Anderson, W.C.; Long, B.K. Photochemical regulation of a redox-active olefin polymerization catalyst: Controlling polyethylene microstructure with visible light. Polym. Chem., 2018, 9(13), 1567-1570.
[http://dx.doi.org/10.1039/C7PY01836C]
[98]
Khrizanforova, V.V.; Fayzullin, R.R.; Morozov, V.I.; Gilmutdinov, I.F.; Lukoyanov, A.N.; Kataeva, O.N.; Gerasimova, T.P.; Katsyuba, S.A.; Fedushkin, I.L.; Lyssenko, K.A.; Budnikova, Y.H. One-electron reduction of acenaphthene-1,2-diimine nickel(II) complexes. Chem. Asian J., 2019, 14(17), 2979-2987.
[http://dx.doi.org/10.1002/asia.201900677] [PMID: 31298502]
[99]
Anderson, W.C., Jr; Rhinehart, J.L.; Tennyson, A.G.; Long, B.K. Redox-active ligands: An advanced tool to modulate polyethylene microstructure. J. Am. Chem. Soc., 2016, 138(3), 774-777.
[http://dx.doi.org/10.1021/jacs.5b12322] [PMID: 26722675]
[100]
Xiao, A.G.; Zhou, S.B.; Li, F.; Liu, P.; Liu, H. Active site selectivity of 2,3-bis[(2,6-diisopropylphenylimino)butane] nickel/MAO/ZnEt2 system toward ethylene polymerization for modulating polyethylene microstructure. Catal. Commun., 2019, 123, 23-26.
[http://dx.doi.org/10.1016/j.catcom.2019.02.004]