Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds

Page: [1097 - 1179] Pages: 83

  • * (Excluding Mailing and Handling)

Abstract

Historically, medicinal chemistry has been concerned with the approach of organic chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities, the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since the 19th century, notoriously applying isolated and characterized plant-derived compounds in modern drug discovery and various stages of clinical development highlight its viability and significance. Natural products influence a broad range of biological processes, covering transcription, translation, and post-translational modification, being effective modulators of most basic cellular processes. The research of new chemical entities through “click chemistry” continuously opens up a map for the remarkable exploration of chemical space towards leading natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.

Keywords: Triazole, heterocyclic, natural products, semisynthesis, lead compounds, drug discovery.

Graphical Abstract

[1]
Choi, K.W. Analogues of Natural Product-like Scaffolds: Synthesis of Spiroacetal Derivatives.. PhD Thesis. The University of Auckland: Auckland,, 2008.
[2]
Newman, D.J.; Cragg, G.M.; Holbeck, S.; Sausville, E.A. Natural products and derivatives as leads to cell cycle pathway targets in cancer chemotherapy. Curr. Cancer Drug Targets, 2002, 2(4), 279-308.
[http://dx.doi.org/10.2174/1568009023333791] [PMID: 12470208]
[3]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[4]
Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep., 2000, 17(3), 215-234.
[http://dx.doi.org/10.1039/a902202c] [PMID: 10888010]
[5]
Koch, M.A.; Wittenberg, L-O.; Basu, S.; Jeyaraj, D.A.; Gourzoulidou, E.; Reinecke, K.; Odermatt, A.; Waldmann, H. Compound library development guided by protein structure similarity clustering and natural product structure. Proc. Natl. Acad. Sci. USA, 2004, 101(48), 16721-16726.
[http://dx.doi.org/10.1073/pnas.0404719101] [PMID: 15548605]
[6]
Clardy, J.; Walsh, C. Lessons from natural molecules. Nature, 2004, 432(7019), 829-837.
[http://dx.doi.org/10.1038/nature03194] [PMID: 15602548]
[7]
Bock, V.D.; Hiemstra, H.; van Maarseveen, J.H. CuI-Catalyzed alkyne–azide “Click” cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem., 2006, 2006(1), 51-68.
[http://dx.doi.org/10.1002/ejoc.200500483]
[8]
Breinbauer, R.; Vetter, I.R.; Waldmann, H. From protein domains to drug candidates-natural products as guiding principles in the design and synthesis of compound libraries. Angew. Chem. Int. Ed. Engl., 2002, 41(16), 2879-2890.
[http://dx.doi.org/10.1002/1521-3773(20020816)41:16<2878:AID-ANIE2878>3.0.CO;2-B] [PMID: 12203413]
[9]
Kerns, E.H.; Di, L. Pharmaceutical profiling in drug discovery. Drug Discov. Today, 2003, 8(7), 316-323.
[http://dx.doi.org/10.1016/S1359-6446(03)02649-7] [PMID: 12654544]
[10]
Tan, D.S. Current progress in natural product-like libraries for discovery screening. Comb. Chem. High Throughput Screen., 2004, 7(7), 631-643.
[http://dx.doi.org/10.2174/1386207043328418] [PMID: 15578925]
[11]
Paterson, I.; Anderson, E.A. The renaissance of natural products as drug candidates. Science, 2005, 310(5747), 451-453.
[http://dx.doi.org/10.1126/science.1116364] [PMID: 16239465]
[12]
Mickel, S.J.; Sedelmeier, G.H.; Niederer, D.; Daeffler, R.; Osmani, A.; Schreiner, K.; Seeger-Weibel, M.; Bérod, B.; Schaer, K.; Gamboni, R. Large-scale synthesis of the anti-cancer marine natural product (+)-discodermolide. Part 1: synthetic strategy and preparation of a common precursor. Org. Process Res. Dev., 2004, 8(1), 92-100.
[http://dx.doi.org/10.1021/op034130e]
[13]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[14]
D’Souza, D.M.; Müller, T.J. Multi-component syntheses of heterocycles by transition-metal catalysis. Chem. Soc. Rev., 2007, 36(7), 1095-1108.
[http://dx.doi.org/10.1039/B608235C] [PMID: 17576477]
[15]
McGrath, N.A.; Brichacek, M.; Njardarson, J.T. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Educ., 2010, 87(12), 1348-1349.
[http://dx.doi.org/10.1021/ed1003806]
[16]
DeSimone, R.W.; Currie, K.S.; Mitchell, S.A.; Darrow, J.W.; Pippin, D.A. Privileged structures: applications in drug discovery. Comb. Chem. High Throughput Screen., 2004, 7(5), 473-494.
[http://dx.doi.org/10.2174/1386207043328544] [PMID: 15320713]
[17]
Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov., 2007, 6(11), 881-890.
[http://dx.doi.org/10.1038/nrd2445] [PMID: 17971784]
[18]
Aragão-Leoneti, V.; Campo, V.L.; Gomes, A.S.; Field, R.A.; Carvalho, I. Application of copper (I)-catalysed azide/alkyne cycloaddition (CuAAC) ‘Click chemistry’ in carbohydrate drug and neoglycopolymer synthesis. Tetrahedron, 2010, 66(49), 9475-9492.
[http://dx.doi.org/10.1016/j.tet.2010.10.001]
[19]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[20]
Liu, P.; Zhu, S.; Li, P.; Xie, W.; Jin, Y.; Sun, Q.; Wu, Q.; Sun, P.; Zhang, Y.; Yang, X.; Jiang, Y.; Zhang, D. Synthesis and SAR studies of biaryloxy-substituted triazoles as antifungal agents. Bioorg. Med. Chem. Lett., 2008, 18(11), 3261-3265.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.056] [PMID: 18467095]
[21]
Sheng, C.; Zhang, W.; Ji, H.; Zhang, M.; Song, Y.; Xu, H.; Zhu, J.; Miao, Z.; Jiang, Q.; Yao, J.; Zhou, Y.; Zhu, J.; Lü, J. Structure-based optimization of azole antifungal agents by CoMFA, CoMSIA, and molecular docking. J. Med. Chem., 2006, 49(8), 2512-2525.
[http://dx.doi.org/10.1021/jm051211n] [PMID: 16610794]
[22]
Horne, W.S.; Yadav, M.K.; Stout, C.D.; Ghadiri, M.R. Heterocyclic peptide backbone modifications in an alpha-helical coiled coil. J. Am. Chem. Soc., 2004, 126(47), 15366-15367.
[http://dx.doi.org/10.1021/ja0450408] [PMID: 15563148]
[23]
Tiwari, V.K.; Mishra, B.B.; Mishra, K.B.; Mishra, N.; Singh, A.S.; Chen, X. Cu-catalyzed Click reaction in carbohydrate chemistry. Chem. Rev., 2016, 116(5), 3086-3240.
[http://dx.doi.org/10.1021/acs.chemrev.5b00408] [PMID: 26796328]
[24]
Gholampour, M.; Ranjbar, S.; Edraki, N.; Mohabbati, M.; Firuzi, O.; Khoshneviszadeh, M. Click chemistry-assisted synthesis of novel aminonaphthoquinone-1,2,3-triazole hybrids and investigation of their cytotoxicity and cancer cell cycle alterations. Bioorg. Chem., 2019, 88, 102967.
[http://dx.doi.org/10.1016/j.bioorg.2019.102967] [PMID: 31078767]
[25]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[26]
Dalvie, D.K.; Kalgutkar, A.S.; Khojasteh-Bakht, S.C.; Obach, R.S.; O’Donnell, J.P. Biotransformation reactions of five-membered aromatic heterocyclic rings. Chem. Res. Toxicol., 2002, 15(3), 269-299.
[http://dx.doi.org/10.1021/tx015574b] [PMID: 11896674]
[27]
Motahari, K.; Badali, H.; Hashemi, S.M.; Fakhim, H.; Mirzaei, H.; Vaezi, A.; Shokrzadeh, M.; Emami, S. Discovery of benzylthio analogs of fluconazole as potent antifungal agents. Future Med. Chem., 2018, 10(9), 987-1002.
[http://dx.doi.org/10.4155/fmc-2017-0295] [PMID: 29683339]
[28]
Brandão, G.C.; Rocha Missias, F.C.; Arantes, L.M.; Soares, L.F.; Roy, K.K.; Doerksen, R.J.; Braga de Oliveira, A.; Pereira, G.R. Antimalarial naphthoquinones. Synthesis via Click chemistry, in vitro activity, docking to PfDHODH and SAR of lapachol-based compounds. Eur. J. Med. Chem., 2018, 145, 191-205.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.051] [PMID: 29324340]
[29]
Phillips, O.A.; Udo, E.E.; Abdel-Hamid, M.E.; Varghese, R. Synthesis and antibacterial activity of novel 5-(4-methyl-1H-1,2,3-triazole) methyl oxazolidinones. Eur. J. Med. Chem., 2009, 44(8), 3217-3227.
[http://dx.doi.org/10.1016/j.ejmech.2009.03.024] [PMID: 19376613]
[30]
Pokhodylo, N.; Shyyka, O.; Matiychuk, V. Synthesis and anticancer activity evaluation of new 1, 2, 3-triazole-4-carboxamide derivatives. Med. Chem. Res., 2014, 23(5), 2426-2438.
[http://dx.doi.org/10.1007/s00044-013-0841-8]
[31]
Kharb, R.; Yar, M.S.; Sharma, P.C. New insights into chemistry and anti-infective potential of triazole scaffold. Curr. Med. Chem., 2011, 18(21), 3265-3297.
[http://dx.doi.org/10.2174/092986711796391615] [PMID: 21671862]
[32]
Yunus, U.; Bhatti, M.H.; Rahman, N.; Mussarat, N.; Asghar, S.; Masood, B. Synthesis, characterization, and biological activity of novel schiff and Mannich bases of 4-amino-3-(N-phthalimidomethyl)-1,2,4-triazole-5-thione. J. Chem., 2013, 2013, 1-8.
[http://dx.doi.org/10.1155/2013/638520]
[33]
Melo, J.O.; Donnici, C.L.; Augusti, R.; Ferreira, V.F.; de Souza, M.C.B.; Ferreira, M.L.G.; Cunha, A.C. Heterociclos 1, 2, 3-triazólicos: histórico, métodos de preparação, aplicações e atividades farmacológicas. Quim. Nova, 2006, 29(3), 569-579.
[http://dx.doi.org/10.1590/S0100-40422006000300028]
[34]
Silva, B.N.; Silva, B.V.; Silva, F.C.; Gonzaga, D.T.; Ferreira, V.F.; Pinto, A.C. Synthesis of novel isatin-type 5¢-(4-Alkyl/Aryl-1H-1, 2, 3-triazoles) via 1, 3-dipolar cycloaddition reactions. J. Braz. Chem. Soc., 2013, 24(2), 179-183.
[http://dx.doi.org/10.5935/0103-5053.20130023]
[35]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: a recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[36]
Freitas, L.B.O.; Ruela, F.A.; Pereira, G.R.; Alves, R.B.; Freitas, R.P.; Santos, L.J. A reação “Click” na síntese de 1, 2, 3-triazóis: aspectos químicos e aplicações. Quim. Nova, 2011, 34(10), 1791-1804.
[http://dx.doi.org/10.1590/S0100-40422011001000012]
[37]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[38]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[39]
Bechara, W.S.; Khazhieva, I.S.; Rodriguez, E.; Charette, A.B. One-pot synthesis of 3,4,5-trisubstituted 1,2,4-triazoles via the addition of hydrazides to activated secondary amides. Org. Lett., 2015, 17(5), 1184-1187.
[http://dx.doi.org/10.1021/acs.orglett.5b00128] [PMID: 25700199]
[40]
Castanedo, G.M.; Seng, P.S.; Blaquiere, N.; Trapp, S.; Staben, S.T. Rapid synthesis of 1,3,5-substituted 1,2,4-triazoles from carboxylic acids, amidines, and hydrazines. J. Org. Chem., 2011, 76(4), 1177-1179.
[http://dx.doi.org/10.1021/jo1023393] [PMID: 21235245]
[41]
Gogoi, A.; Guin, S.; Rajamanickam, S.; Rout, S.K.; Patel, B.K. Synthesis of 1, 2, 4-triazoles via oxidative heterocyclization: selective C–N bond over C–S bond formation. J. Org. Chem., 2015, 80(18), 9016-9027.
[http://dx.doi.org/10.1021/acs.joc.5b00956] [PMID: 26332253]
[42]
Kashyap, A.; Silakari, O. Triazoles: Multidimensional 5-membered nucleus for designing multitargeting agents. In: Key Heterocycle Cores for Designing Multitargeting Molecules; Elsevier, 2018; pp. 323-342.
[http://dx.doi.org/10.1016/B978-0-08-102083-8.00009-1]
[43]
Shelke, G.M.; Rao, V.K.; Jha, M.; Cameron, T.S.; Kumar, A. Microwave-assisted catalyst-free synthesis of substituted 1, 2, 4-triazoles. Synlett, 2015, 26(03), 404-407.
[http://dx.doi.org/10.1055/s-0034-1379734]
[44]
Ueda, S.; Nagasawa, H. Facile synthesis of 1,2,4-triazoles via a copper-catalyzed tandem addition-oxidative cyclization. J. Am. Chem. Soc., 2009, 131(42), 15080-15081.
[http://dx.doi.org/10.1021/ja905056z] [PMID: 19799379]
[45]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[46]
Huang, H.; Guo, W.; Wu, W.; Li, C-J.; Jiang, H. Copper-catalyzed oxidative C(sp3)-H functionalization for facile synthesis of 1,2,4-triazoles and 1,3,5-triazines from amidines. Org. Lett., 2015, 17(12), 2894-2897.
[http://dx.doi.org/10.1021/acs.orglett.5b00995] [PMID: 26023708]
[47]
Singh, M.S.; Chowdhury, S.; Koley, S. Progress in 1, 3-dipolar cycloadditions in the recent decade: an update to strategic development towards the arsenal of organic synthesis. Tetrahedron, 2016, 13(72), 1603-1644.
[http://dx.doi.org/10.1016/j.tet.2016.02.031]
[48]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: the privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[49]
Francisco, C.S.; Francisco, C.S.; Constantino, A.F.; Neto, Á.C.; Lacerda, V. Synthetic methods applied in the preparation of coumarin-based compounds. Curr. Org. Chem., 2019, 23(24), 2722-2750.
[http://dx.doi.org/10.2174/1385272823666191121150047]
[50]
Gadakh, S.K.; Dey, S.; Sudalai, A. Rh-Catalyzed synthesis of coumarin derivatives from phenolic acetates and acrylates via C-H bond activation. J. Org. Chem., 2015, 80(22), 11544-11550.
[http://dx.doi.org/10.1021/acs.joc.5b01713] [PMID: 26509478]
[51]
Francisco, C.S.; Rodrigues, L.R.; Cerqueira, N.M.; Oliveira-Campos, A.M.; Rodrigues, L.M.; Esteves, A.P. Synthesis of novel psoralen analogues and their in vitro antitumor activity. Bioorg. Med. Chem., 2013, 21(17), 5047-5053.
[http://dx.doi.org/10.1016/j.bmc.2013.06.049] [PMID: 23886808]
[52]
Francisco, C.S.; Rodrigues, L.R.; Cerqueira, N.M.; Oliveira-Campos, A.M.; Esteves, A.P. Novel benzopsoralen analogues: synthesis, biological activity and molecular docking studies. Eur. J. Med. Chem., 2014, 87, 298-305.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.066] [PMID: 25262050]
[53]
Francisco, C.S.; Javarini, C.L. de S Barcelos, I.; Morais, P.A.B.; de Paula, H.; de S Borges, W.; Neto, Á.C.; Lacerda, V. Synthesis of coumarin derivatives as versatile scaffolds for GSK-3β enzyme inhibition. Curr. Top. Med. Chem., 2020, 20(2), 153-160.
[http://dx.doi.org/10.2174/1568026619666191019105349] [PMID: 31648640]
[54]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[55]
Chu, X-M.; Wang, C.; Wang, W-L.; Liang, L-L.; Liu, W.; Gong, K-K.; Sun, K-L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[56]
Yadav, N.; Agarwal, D.; Kumar, S.; Dixit, A.K.; Gupta, R.D.; Awasthi, S.K. In vitro antiplasmodial efficacy of synthetic coumarin-triazole analogs. Eur. J. Med. Chem., 2018, 145, 735-745.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.017] [PMID: 29366931]
[57]
Xu, M.; Peng, Y.; Zhu, L.; Wang, S.; Ji, J.; Rakesh, K.P. Triazole derivatives as inhibitors of Alzheimer’s disease: current developments and structure-activity relationships. Eur. J. Med. Chem., 2019, 180, 656-672.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.059] [PMID: 31352246]
[58]
Anand, A.; Naik, R.J.; Revankar, H.M.; Kulkarni, M.V.; Dixit, S.R.; Joshi, S.D. A click chemistry approach for the synthesis of mono and bis aryloxy linked coumarinyl triazoles as anti-tubercular agents. Eur. J. Med. Chem., 2015, 105, 194-207.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.019] [PMID: 26491982]
[59]
Anand, A.; Kulkarni, M.V.; Joshi, S.D.; Dixit, S.R. One pot click chemistry: a three component reaction for the synthesis of 2-mercaptobenzimidazole linked coumarinyl triazoles as anti-tubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(19), 4709-4713.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.045] [PMID: 27595420]
[60]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1, 2, 3-triazole hybrids bearing alkyl spacer: design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct., 2018, 1157, 312-321.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.080]
[61]
Sanduja, M.; Gupta, J.; Singh, H.; Pagare, P.P.; Rana, A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. J. Saudi Chem. Soc., 2020, 24(2), 251-266.
[http://dx.doi.org/10.1016/j.jscs.2019.12.001]
[62]
Kraljević, T.G.; Harej, A.; Sedić, M.; Pavelić, S.K.; Stepanić, V.; Drenjančević, D.; Talapko, J.; Raić-Malić, S. Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur. J. Med. Chem., 2016, 124, 794-808.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.062] [PMID: 27639370]
[63]
Khanapurmath, N.; Kulkarni, M.V.; Joshi, S.D.; Anil Kumar, G.N. A click chemistry approach for the synthesis of cyclic ureido tethered coumarinyl and 1-aza coumarinyl 1,2,3-triazoles as inhibitors of Mycobacterium tuberculosis H37Rv and their in silico studies. Bioorg. Med. Chem., 2019, 27(20), 115054.
[http://dx.doi.org/10.1016/j.bmc.2019.115054] [PMID: 31471101]
[64]
Kushwaha, K.; Kaushik, N. Lata; Jain, S.C. Design and synthesis of novel 2H-chromen-2-one derivatives bearing 1,2,3-triazole moiety as lead antimicrobials. Bioorg. Med. Chem. Lett., 2014, 24(7), 1795-1801.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.027] [PMID: 24594353]
[65]
Shaikh, M.H.; Subhedar, D.D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. 1,2,3-Triazole incorporated coumarin derivatives as potential antifungal and antioxidant agents. Chin. Chem. Lett., 2016, 27(2), 295-301.
[http://dx.doi.org/10.1016/j.cclet.2015.11.003]
[66]
Shi, Y.; Zhou, C-H. Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg. Med. Chem. Lett., 2011, 21(3), 956-960.
[http://dx.doi.org/10.1016/j.bmcl.2010.12.059] [PMID: 21215620]
[67]
Srivastava, S.; Bimal, D.; Bohra, K.; Singh, B.; Ponnan, P.; Jain, R.; Varma-Basil, M.; Maity, J.; Thirumal, M.; Prasad, A.K. Synthesis and antimycobacterial activity of 1-(β-d-Ribofuranosyl)-4-coumarinyloxymethyl-/-coumarinyl-1,2,3-triazole. Eur. J. Med. Chem., 2018, 150, 268-281.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.067] [PMID: 29529504]
[68]
Sutar, S.M.; Savanur, H.M.; Patil, C.; Pawashe, G.M.; Aridoss, G.; Kim, K.M.; Kalkhambkar, R.G. Synthesis, molecular modelling studies and antimicrobial activity of coumarin and 1-azacoumarin linked 1,2,3- triazole. Chem. Data Collect., 2020, 28, 100480.
[http://dx.doi.org/10.1016/j.cdc.2020.100480]
[69]
Britto, K.B.; Francisco, C.S.; Ferreira, D.; Borges, B.J.; Conti, R.; Profeti, D.; Rodrigues, L.R.; Lacerda, V., Jr; Morais, P.A.; Borges, W.S. Identifying new isatin derivatives with GSK-3β inhibition capacity through molecular docking and bioassays. J. Braz. Chem. Soc., 2020, 31(3), 476-487.
[http://dx.doi.org/10.21577/0103-5053.20190206]
[70]
Zhao, J.W.; Wu, Z.H.; Guo, J.W.; Huang, M.J.; You, Y.Z.; Liu, H.M.; Huang, L.H. Synthesis and anti-gastric cancer activity evaluation of novel triazole nucleobase analogues containing steroidal/coumarin/quinoline moieties. Eur. J. Med. Chem., 2019, 181, 111520.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.023] [PMID: 31404863]
[71]
Chekir, S.; Debbabi, M.; Regazzetti, A.; Dargère, D.; Laprévote, O.; Ben Jannet, H.; Gharbi, R. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorg. Chem., 2018, 80, 189-194.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.005] [PMID: 29940340]
[72]
Rehman, S.; Rahman, M.; Tripathi, V.K.; Singh, J.; Ara, T.; Koul, S.; Farooq, S.; Kaul, A.; Shakeel, U. Synthesis and biological evaluation of novel isoxazoles and triazoles linked 6-hydroxycoumarin as potent cytotoxic agents. Bioorg. Med. Chem. Lett., 2014, 24(17), 4243-4246.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.031] [PMID: 25088398]
[73]
Singh, H.; Kumar, M.; Nepali, K.; Gupta, M.K.; Saxena, A.K.; Sharma, S.; Bedi, P.M.S. Triazole tethered C5-curcuminoid-coumarin based molecular hybrids as novel antitubulin agents: design, synthesis, biological investigation and docking studies. Eur. J. Med. Chem., 2016, 116, 102-115.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.050] [PMID: 27060762]
[74]
Soumya, T.V.; Muhammed Ajmal, C.; Bahulayan, D. Synthesis of bioactive and fluorescent pyridine-triazole-coumarin peptidomimetics through sequential click-multicomponent reactions. Bioorg. Med. Chem. Lett., 2017, 27(3), 450-455.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.044] [PMID: 28062094]
[75]
Koparde, S.; Hosamani, K.M.; Kulkarni, V.; Joshi, S.D. Synthesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chem. Data Collect., 2018, 15-16, 197-206.
[http://dx.doi.org/10.1016/j.cdc.2018.06.001]
[76]
Stefani, H.A.; Gueogjan, K.; Manarin, F.; Farsky, S.H.; Zukerman-Schpector, J.; Caracelli, I.; Pizano Rodrigues, S.R.; Muscará, M.N.; Teixeira, S.A.; Santin, J.R.; Machado, I.D.; Bolonheis, S.M.; Curi, R.; Vinolo, M.A. Synthesis, biological evaluation and molecular docking studies of 3-(triazolyl)-coumarin derivatives: effect on inducible nitric oxide synthase. Eur. J. Med. Chem., 2012, 58, 117-127.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.010] [PMID: 23123728]
[77]
Özil, M.; Balaydın, H.T.; Şentürk, M. Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorg. Chem., 2019, 86, 705-713.
[http://dx.doi.org/10.1016/j.bioorg.2019.02.045] [PMID: 30836234]
[78]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 125, 1200-1212.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.008] [PMID: 27863370]
[79]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sharifzadeh, M.; Khanavi, M.; Akbarzadeh, T. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorg. Chem., 2019, 83, 303-316.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.056] [PMID: 30396115]
[80]
Huang, Y.; Zhang, Y.; Yuan, Y.; Cao, W. Organogelators based on iodo 1, 2, 3-triazole functionalized with coumarin: properties and gelator-solvent interaction. Tetrahedron, 2015, 71(14), 2124-2133.
[http://dx.doi.org/10.1016/j.tet.2015.02.044]
[81]
Khan, I.; Khan, A.; Ahsan Halim, S.; Saeed, A.; Mehsud, S.; Csuk, R.; Al-Harrasi, A.; Ibrar, A. Exploring biological efficacy of coumarin clubbed thiazolo[3,2-b][1,2,4]triazoles as efficient inhibitors of urease: a biochemical and in silico approach. Int. J. Biol. Macromol., 2020, 142, 345-354.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.105] [PMID: 31593727]
[82]
Asgari, M.S.; Mohammadi-Khanaposhtani, M.; Kiani, M.; Ranjbar, P.R.; Zabihi, E.; Pourbagher, R.; Rahimi, R.; Faramarzi, M.A.; Biglar, M.; Larijani, B.; Mahdavi, M.; Hamedifar, H.; Hajimiri, M.H. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies. Bioorg. Chem., 2019, 92, 103206.
[http://dx.doi.org/10.1016/j.bioorg.2019.103206] [PMID: 31445191]
[83]
Tiwari, S.; Pathak, P.; Sagar, R. Efficient synthesis of new 2,3-dihydrooxazole-spirooxindoles hybrids as antimicrobial agents. Bioorg. Med. Chem. Lett., 2016, 26(10), 2513-2516.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.093] [PMID: 27040662]
[84]
Cane, A.; Tournaire, M-C.; Barritault, D.; Crumeyrolle-Arias, M. The endogenous oxindoles 5-hydroxyoxindole and isatin are antiproliferative and proapoptotic. Biochem. Biophys. Res. Commun., 2000, 276(1), 379-384.
[http://dx.doi.org/10.1006/bbrc.2000.3477] [PMID: 11006132]
[85]
Selvam, P.; Murugesh, N.; Chandramohan, M.; Debyser, Z.; Witvrouw, M. Design, synthesis and antiHIV activity of novel isatine-sulphonamides. Indian J. Pharm. Sci., 2008, 70(6), 779-782.
[http://dx.doi.org/10.4103/0250-474X.49121] [PMID: 21369440]
[86]
Verma, M.; Pandeya, S.N.; Singh, K.N.; Stables, J.P. Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharm., 2004, 54(1), 49-56.
[PMID: 15050044]
[87]
Sharma, P.K.; Balwani, S.; Mathur, D.; Malhotra, S.; Singh, B.K.; Prasad, A.K.; Len, C.; Van der Eycken, E.V.; Ghosh, B.; Richards, N.G.J.; Parmar, V.S. Synthesis and anti-inflammatory activity evaluation of novel triazolyl-isatin hybrids. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1520-1526.
[http://dx.doi.org/10.3109/14756366.2016.1151015] [PMID: 27146339]
[88]
Lastovka, A.V.; Fadeeva, V.P.; Il’Ina, I.V.; Kurbakova, S.Y.; Volcho, K.P.; Salakhutdinov, N.F. Study of physicochemical properties and development of the technique for quantitative determination of (2,4,4a,7,8a)-4,7-dimethyl-2-(thiophen-2-yl)octahydro-2-chromen-4-ol which exhibits high analgesic activity. Zavod. Lab., 2017, 83, 11-17.
[http://dx.doi.org/10.26896/1028-6861-2017-83-10-11-17]
[89]
Deswal, S. Naveen; Tittal, R. K.; Ghule Vikas, D.; Lal, K.; Kumar, A., 5-Fluoro-1H-indole-2,3-dione-triazoles- synthesis, biological activity, molecular docking, and DFT study. J. Mol. Struct., 2020, 1209, 127982.
[http://dx.doi.org/10.1016/j.molstruc.2020.127982]
[90]
Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - a review. J. Tradit. Complement. Med., 2016, 7(2), 205-233.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[91]
Kumar, P.; Kandi, S.K.; Manohar, S.; Mukhopadhyay, K.; Rawat, D.S. Monocarbonyl curcuminoids with improved stability as antibacterial agents against Staphylococcus aureus and their mechanistic studies. ACS Omega, 2019, 4(1), 675-687.
[http://dx.doi.org/10.1021/acsomega.8b02625]
[92]
Liang, G.; Shao, L.; Wang, Y.; Zhao, C.; Chu, Y.; Xiao, J.; Zhao, Y.; Li, X.; Yang, S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem., 2009, 17(6), 2623-2631.
[http://dx.doi.org/10.1016/j.bmc.2008.10.044] [PMID: 19243951]
[93]
Manohar, S.; Khan, S.I.; Kandi, S.K.; Raj, K.; Sun, G.; Yang, X.; Calderon Molina, A.D.; Ni, N.; Wang, B.; Rawat, D.S. Synthesis, antimalarial activity and cytotoxic potential of new monocarbonyl analogues of curcumin. Bioorg. Med. Chem. Lett., 2013, 23(1), 112-116.
[http://dx.doi.org/10.1016/j.bmcl.2012.11.004] [PMID: 23218718]
[94]
Liang, G.; Yang, S.; Jiang, L.; Zhao, Y.; Shao, L.; Xiao, J.; Ye, F.; Li, Y.; Li, X. Synthesis and anti-bacterial properties of mono-carbonyl analogues of curcumin. Chem. Pharm. Bull. (Tokyo), 2008, 56(2), 162-167.
[http://dx.doi.org/10.1248/cpb.56.162] [PMID: 18239300]
[95]
Singh, A.; Singh, J.V.; Rana, A.; Bhagat, K.; Gulati, H.K.; Kumar, R.; Salwan, R.; Bhagat, K.; Kaur, G.; Singh, N.; Kumar, R.; Singh, H.; Sharma, S.; Bedi, P.M.S. Monocarbonyl curcumin-based molecular hybrids as potent antibacterial agents. ACS Omega, 2019, 4(7), 11673-11684.
[http://dx.doi.org/10.1021/acsomega.9b01109] [PMID: 31460274]
[96]
Onyenwenyi, A.J.; Winterstein, A.G.; Hatton, R.C. An evaluation of the effects of gatifloxacin on glucose homeostasis. Pharm. World Sci., 2008, 30(5), 544-549.
[http://dx.doi.org/10.1007/s11096-008-9205-8] [PMID: 18297409]
[97]
Xu, Z.; Song, X-F.; Hu, Y-Q.; Qiang, M.; Lv, Z-S. Azide-alkyne cycloaddition towards 1H-1,2,3-triazole-tethered gatifloxacin and isatin conjugates: design, synthesis and in vitro anti-mycobacterial evaluation. Eur. J. Med. Chem., 2017, 138, 66-71.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.057] [PMID: 28646656]
[98]
Xu, Z.; Zhang, S.; Song, X.; Qiang, M.; Lv, Z. Design, synthesis and in vitro anti-mycobacterial evaluation of gatifloxacin-1H-1,2,3-triazole-isatin hybrids. Bioorg. Med. Chem. Lett., 2017, 27(16), 3643-3646.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.023] [PMID: 28720502]
[99]
Kumar, S.; Bains, T.; Won Kim, A.S.; Tam, C.; Kim, J.; Cheng, L.W.; Land, K.M.; Debnath, A.; Kumar, V. Highly potent 1H-1,2,3-triazole-tethered isatin-metronidazole conjugates against anaerobic foodborne, waterborne, and sexually-transmitted protozoal parasites. Front. Cell. Infect. Microbiol., 2018, 8, 380-380.
[http://dx.doi.org/10.3389/fcimb.2018.00380] [PMID: 30425970]
[100]
Jain, R.; Gahlyan, P.; Dwivedi, S.; Konwar, R.; Kumar, S.; Bhandari, M.; Arora, R.; Kakkar, R.; Kumar, R.; Prasad, A.K. Design, synthesis and evaluation of 1H-1,2,3-triazol-4-yl-methyl tethered 3-pyrrolylisatins as potent anti-breast cancer agents. ChemistrySelect, 2018, 3(19), 5263-5268.
[http://dx.doi.org/10.1002/slct.201800420]
[101]
Zhang, S.; Xu, Z.; Gao, C.; Ren, Q-C.; Chang, L.; Lv, Z-S.; Feng, L-S. Triazole derivatives and their anti-tubercular activity. Eur. J. Med. Chem., 2017, 138, 501-513.
[http://dx.doi.org/10.1016/j.ejmech.2017.06.051] [PMID: 28692915]
[102]
Yang, M.; Liu, H.; Zhang, Y.; Wang, X.; Xu, Z. Moxifloxacin-isatin hybrids tethered by 1,2,3-triazole and their anticancer activities. Curr. Top. Med. Chem., 2020, 20(16), 1461-1467.
[http://dx.doi.org/10.2174/1568026620666200128144825] [PMID: 31994464]
[103]
Singh, M.; Kaur, M.; Kukreja, H.; Chugh, R.; Silakari, O.; Singh, D. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Eur. J. Med. Chem., 2013, 70, 165-188.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.050] [PMID: 24148993]
[104]
Rodda, J.; Carter, J. Cholinesterase inhibitors and memantine for symptomatic treatment of dementia. BMJ, 2012, 344, e2986.
[http://dx.doi.org/10.1136/bmj.e2986] [PMID: 22550350]
[105]
Lan, T.T.; Anh, D.T.; Hai, P-T.; Dung, D.T.M.; Huong, L.T.T.; Park, E.J.; Jeon, H.W.; Kang, J.S.; Thuan, N.T.; Han, S-B.; Nam, N-H. Design, synthesis, and bioevaluation of novel oxoindolin-2-one derivatives incorporating 1-benzyl-1H-1,2,3-triazole. Med. Chem. Res., 2020, 29(3), 396-408.
[http://dx.doi.org/10.1007/s00044-019-02488-1]
[106]
Naz, F.; Anjum, F.; Islam, A.; Ahmad, F.; Hassan, M.I. Microtubule affinity-regulating kinase 4: structure, function, and regulation. Cell Biochem. Biophys., 2013, 67(2), 485-499.
[http://dx.doi.org/10.1007/s12013-013-9550-7] [PMID: 23471664]
[107]
Kato, T.; Satoh, S.; Okabe, H.; Kitahara, O.; Ono, K.; Kihara, C.; Tanaka, T.; Tsunoda, T.; Yamaoka, Y.; Nakamura, Y.; Furukawa, Y. Isolation of a novel human gene, MARKL1, homologous to MARK3 and its involvement in hepatocellular carcinogenesis. Neoplasia, 2001, 3(1), 4-9.
[http://dx.doi.org/10.1038/sj.neo.7900132] [PMID: 11326310]
[108]
Sampson, P.B.; Liu, Y.; Patel, N.K.; Feher, M.; Forrest, B.; Li, S-W.; Edwards, L.; Laufer, R.; Lang, Y.; Ban, F.; Awrey, D.E.; Mao, G.; Plotnikova, O.; Leung, G.; Hodgson, R.; Mason, J.; Wei, X.; Kiarash, R.; Green, E.; Qiu, W.; Chirgadze, N.Y.; Mak, T.W.; Pan, G.; Pauls, H.W. The discovery of polo-like kinase 4 inhibitors: design and optimization of spiro[cyclopropane-1,3¢[3H]indol]-2¢(1¢H)-ones as orally bioavailable antitumor agents. J. Med. Chem., 2015, 58(1), 130-146.
[http://dx.doi.org/10.1021/jm500537u] [PMID: 24867403]
[109]
Aneja, B.; Khan, N.S.; Khan, P.; Queen, A.; Hussain, A.; Rehman, M.T.; Alajmi, M.F.; El-Seedi, H.R.; Ali, S.; Hassan, M.I.; Abid, M. Design and development of isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. Eur. J. Med. Chem., 2019, 163, 840-852.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.026] [PMID: 30579124]
[110]
Embi, N.; Rylatt, D.B.; Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur. J. Biochem., 1980, 107(2), 519-527.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb06059.x] [PMID: 6249596]
[111]
Woodgett, J.R. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J., 1990, 9(8), 2431-2438.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07419.x] [PMID: 2164470]
[112]
Beurel, E.; Grieco, S.F.; Jope, R.S. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther., 2015, 148, 114-131.
[http://dx.doi.org/10.1016/j.pharmthera.2014.11.016] [PMID: 25435019]
[113]
Fadeel, B.; Orrenius, S. Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J. Intern. Med., 2005, 258(6), 479-517.
[http://dx.doi.org/10.1111/j.1365-2796.2005.01570.x] [PMID: 16313474]
[114]
Lee, H.; Shin, E.A.; Lee, J.H.; Ahn, D.; Kim, C.G.; Kim, J-H.; Kim, S-H. Caspase inhibitors: a review of recently patented compounds (2013-2015). Expert Opin. Ther. Pat., 2018, 28(1), 47-59.
[http://dx.doi.org/10.1080/13543776.2017.1378426] [PMID: 28885866]
[115]
Limpachayaporn, P.; Schäfers, M.; Haufe, G. Isatin sulfonamides: potent caspases-3 and -7 inhibitors, and promising PET and SPECT radiotracers for apoptosis imaging. Future Med. Chem., 2015, 7(9), 1173-1196.
[http://dx.doi.org/10.4155/fmc.15.52] [PMID: 26132525]
[116]
Jiang, Y.; Hansen, T.V. Isatin 1,2,3-triazoles as potent inhibitors against caspase-3. Bioorg. Med. Chem. Lett., 2011, 21(6), 1626-1629.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.110] [PMID: 21324681]
[117]
Lee, D.; Long, S.A.; Murray, J.H.; Adams, J.L.; Nuttall, M.E.; Nadeau, D.P.; Kikly, K.; Winkler, J.D.; Sung, C.M.; Ryan, M.D.; Levy, M.A.; Keller, P.M.; DeWolf, W.E. Jr Potent and selective nonpeptide inhibitors of caspases 3 and 7. J. Med. Chem., 2001, 44(12), 2015-2026.
[http://dx.doi.org/10.1021/jm0100537] [PMID: 11384246]
[118]
Palaska, E.; Şahin, G.; Kelicen, P.; Durlu, N.T.; Altinok, G. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco, 2002, 57(2), 101-107.
[http://dx.doi.org/10.1016/S0014-827X(01)01176-4] [PMID: 11902651]
[119]
Jarapula, R.; Gangarapu, K.; Manda, S.; Rekulapally, S. Synthesis, In vivo anti-inflammatory activity, and molecular docking studies of new isatin derivatives. Int. J. Med. Chem., 2016, 2016, 2181027.
[http://dx.doi.org/10.1155/2016/2181027] [PMID: 27022484]
[120]
López, L.I.; Leyva, E.; García de la Cruz, R.F. Las naftoquinonas: más que pigmentos naturales. Rev. Mex. Cienc. Farm., 2011, 42(1), 6-17.
[121]
Jali, B.R.; Behura, R.; Barik, S.R.; Parveen, S.; Mohanty, S.P.; Das, R. A brief review: biological implications of naphthoquinone derivatives. Res. J. Pharm. Technol., 2018, 11(8), 3698-3702.
[http://dx.doi.org/10.5958/0974-360X.2018.00679.0]
[122]
Qiu, H.Y.; Wang, P.F.; Lin, H.Y.; Tang, C.Y.; Zhu, H.L.; Yang, Y.H. Naphthoquinones: a continuing source for discovery of therapeutic antineoplastic agents. Chem. Biol. Drug Des., 2018, 91(3), 681-690.
[http://dx.doi.org/10.1111/cbdd.13141] [PMID: 29130595]
[123]
Manickam, M.; Boggu, P.R.; Cho, J.; Nam, Y.J.; Lee, S.J.; Jung, S-H. Investigation of chemical reactivity of 2-alkoxy-1,4-naphthoquinones and their anticancer activity. Bioorg. Med. Chem. Lett., 2018, 28(11), 2023-2028.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.060] [PMID: 29735338]
[124]
Tandon, V.K.; Kumar, S. Recent development on naphthoquinone derivatives and their therapeutic applications as anticancer agents. Expert Opin. Ther. Pat., 2013, 23(9), 1087-1108.
[http://dx.doi.org/10.1517/13543776.2013.798303] [PMID: 23651032]
[125]
Armendáriz-Vidales, G.; Hernández-Muñoz, L.S.; González, F.J.; de Souza, A.A.; de Abreu, F.C.; Jardim, G.A.; da Silva, E.N., Jr; Goulart, M.O.; Frontana, C. Nature of electrogenerated intermediates in nitro-substituted nor-β-lapachones: the structure of radical species during successive electron transfer in multiredox centers. J. Org. Chem., 2014, 79(11), 5201-5208.
[http://dx.doi.org/10.1021/jo500787q] [PMID: 24783985]
[126]
Hernández, D.M.; de Moura, M.A.B.; Valencia, D.P.; González, F.J.; González, I.; de Abreu, F.C.; da Silva Júnior, E.N.; Ferreira, V.F.; Pinto, A.V.; Goulart, M.O.; Frontana, C. Inner reorganization during the radical-biradical transition in a nor-β-lapachone derivative possessing two redox centers. Org. Biomol. Chem., 2008, 6(18), 3414-3420.
[http://dx.doi.org/10.1039/b806271d] [PMID: 18802650]
[127]
da Silva Júnior, E.N.; de Melo, I.M.; Diogo, E.B.; Costa, V.A.; de Souza Filho, J.D.; Valença, W.O.; Camara, C.A.; de Oliveira, R.N.; de Araujo, A.S.; Emery, F.S.; dos Santos, M.R.; de Simone, C.A.; Menna-Barreto, R.F.; de Castro, S.L. On the search for potential anti-Trypanosoma cruzi drugs: synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur. J. Med. Chem., 2012, 52, 304-312.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.039] [PMID: 22483633]
[128]
Devi Bala, B.; Muthusaravanan, S.; Choon, T.S.; Ashraf Ali, M.; Perumal, S. Sequential synthesis of amino-1,4-naphthoquinone-appended triazoles and triazole-chromene hybrids and their antimycobacterial evaluation. Eur. J. Med. Chem., 2014, 85, 737-746.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.009] [PMID: 25129868]
[129]
Guimarães, T.T. Pinto, Mdo.C.; Lanza, J.S.; Melo, M.N.; do Monte-Neto, R.L.; de Melo, I.M.; Diogo, E.B.; Ferreira, V.F.; Camara, C.A.; Valença, W.O.; de Oliveira, R.N.; Frézard, F.; da Silva, E.N. Potent naphthoquinones against antimony-sensitive and -resistant Leishmania parasites: synthesis of novel α- and nor-α-lapachone-based 1,2,3-triazoles by copper-catalyzed azide-alkyne cycloaddition. Eur. J. Med. Chem., 2013, 63, 523-530.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.038] [PMID: 23535320]
[130]
Diogo, E.B.; Dias, G.G.; Rodrigues, B.L.; Guimarães, T.T.; Valença, W.O.; Camara, C.A.; de Oliveira, R.N.; da Silva, M.G.; Ferreira, V.F.; de Paiva, Y.G.; Goulart, M.O.; Menna-Barreto, R.F.; de Castro, S.L.; da Silva Júnior, E.N. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety. Bioorg. Med. Chem., 2013, 21(21), 6337-6348.
[http://dx.doi.org/10.1016/j.bmc.2013.08.055] [PMID: 24074878]
[131]
da Silva, E.N., Jr; Menna-Barreto, R.F. Pinto, Mdo.C.; Silva, R.S.; Teixeira, D.V.; de Souza, M.C.B.; De Simone, C.A.; De Castro, S.L.; Ferreira, V.F.; Pinto, A.V. Naphthoquinoidal [1,2,3]-triazole, a new structural moiety active against Trypanosoma cruzi. Eur. J. Med. Chem., 2008, 43(8), 1774-1780.
[http://dx.doi.org/10.1016/j.ejmech.2007.10.015] [PMID: 18045742]
[132]
Aneja, B.; Azam, M.; Alam, S.; Perwez, A.; Maguire, R.; Yadava, U.; Kavanagh, K.; Daniliuc, C.G.; Rizvi, M.M.A.; Haq, Q.M.R.; Abid, M. Natural product-based 1, 2, 3-triazole/sulfonate analogues as potential chemotherapeutic agents for bacterial infections. ACS Omega, 2018, 3(6), 6912-6930.
[http://dx.doi.org/10.1021/acsomega.8b00582] [PMID: 30023966]
[133]
Chipoline, I.C.; da Fonseca, A.C.C.; da Costa, G.R.M.; de Souza, M.P.; Rabelo, V.W.; de Queiroz, L.N.; de Souza, T.L.F.; de Almeida, E.C.P.; Abreu, P.A.; Pontes, B.; Ferreira, V.F.; da Silva, F.; Robbs, B.K. Molecular mechanism of action of new 1,4-naphthoquinones tethered to 1,2,3-1H-triazoles with cytotoxic and selective effect against oral squamous cell carcinoma. Bioorg. Chem., 2020, 101, 103984.
[http://dx.doi.org/10.1016/j.bioorg.2020.103984] [PMID: 32554278]
[134]
Chipoline, I.C.; Alves, E.; Branco, P.; Costa-Lotufo, L.V.; Ferreira, V.F.; Silva, F.C.D. Synthesis and cytotoxic evaluation of 1H-1,2,3-Triazol-1-ylmethyl-2,3-dihydronaphtho[1,2-b]furan-4,5-diones. An. Acad. Bras. Cienc., 2018, 90(1), 1027-1033.
[http://dx.doi.org/10.1590/0001-3765201820170698] [PMID: 29451602]
[135]
da Cruz, E.H.; Hussene, C.M.; Dias, G.G.; Diogo, E.B.; de Melo, I.M.; Rodrigues, B.L.; da Silva, M.G.; Valença, W.O.; Camara, C.A.; de Oliveira, R.N.; de Paiva, Y.G.; Goulart, M.O.; Cavalcanti, B.C.; Pessoa, C.; da Silva, E.N. 1,2,3-triazole-, arylamino- and thio-substituted 1,4-naphthoquinones: potent antitumor activity, electrochemical aspects, and bioisosteric replacement of C-ring-modified lapachones. Bioorg. Med. Chem., 2014, 22(5), 1608-1619.
[http://dx.doi.org/10.1016/j.bmc.2014.01.033] [PMID: 24530030]
[136]
da Cruz, E.H.G.; Silvers, M.A.; Jardim, G.A.M.; Resende, J.M.; Cavalcanti, B.C.; Bomfim, I.S.; Pessoa, C.; de Simone, C.A.; Botteselle, G.V.; Braga, A.L.; Nair, D.K.; Namboothiri, I.N.N.; Boothman, D.A.; da Silva, E.N. Synthesis and antitumor activity of selenium-containing quinone-based triazoles possessing two redox centres, and their mechanistic insights. Eur. J. Med. Chem., 2016, 122, 1-16.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.019] [PMID: 27341379]
[137]
Cardoso, M.F.; Rodrigues, P.C.; Oliveira, M.E.I.; Gama, I.L.; da Silva, I.M.; Santos, I.O.; Rocha, D.R.; Pinho, R.T.; Ferreira, V.F.; de Souza, M.C.B. da Silva, Fde.C.; Silva, F.P. Synthesis and evaluation of the cytotoxic activity of 1,2-furanonaphthoquinones tethered to 1,2,3-1H-triazoles in myeloid and lymphoid leukemia cell lines. Eur. J. Med. Chem., 2014, 84, 708-717.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.079] [PMID: 25064348]
[138]
Costa, D.C.S.; de Almeida, G.S.; Rabelo, V.W-H.; Cabral, L.M.; Sathler, P.C.; Abreu, P.A.; Ferreira, V.F.; da Silva, L.C.R.P.; da Silva, F.C. Synthesis and evaluation of the cytotoxic activity of Furanaphthoquinones tethered to 1H-1,2,3-triazoles in Caco-2, Calu-3, MDA-MB231 cells. Eur. J. Med. Chem., 2018, 156, 524-533.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.018] [PMID: 30025347]
[139]
Jordão, A.K.; Ferreira, V.F.; Souza, T.M.; Faria, G.G.; Machado, V.; Abrantes, J.L.; de Souza, M.C.; Cunha, A.C. Synthesis and anti-HSV-1 activity of new 1,2,3-triazole derivatives. Bioorg. Med. Chem., 2011, 19(6), 1860-1865.
[http://dx.doi.org/10.1016/j.bmc.2011.02.007] [PMID: 21376603]
[140]
da Silva, I.F.; Martins, P.R.; da Silva, E.G.; Ferreira, S.B.; Ferreira, V.F.; da Costa, K.R.; de Vasconcellos, M.C.; Lima, E.S. da Silva, Fde.C. Synthesis of 1H-1,2,3-triazoles and study of their antifungal and cytotoxicity activities. Med. Chem., 2013, 9(8), 1085-1090.
[http://dx.doi.org/10.2174/1573406411309080010] [PMID: 23432315]
[141]
Boechat, N.; Ferreira, V.F.; Ferreira, S.B.; de Lourdes, G. Ferreira, M.; de C da Silva, F.; Bastos, M.M.; Dos S Costa, M.; Lourenço, M.C.S.; Pinto, A.C.; Krettli, A.U.; Aguiar, A.C.; Teixeira, B.M.; da Silva, N.V.; Martins, P.R.; Bezerra, F.A.; Camilo, A.L.; da Silva, G.P.; Costa, C.C. Novel 1,2,3-triazole derivatives for use against Mycobacterium tuberculosis H37Rv (ATCC 27294) strain. J. Med. Chem., 2011, 54(17), 5988-5999.
[http://dx.doi.org/10.1021/jm2003624] [PMID: 21776985]
[142]
Valença, W.O.; Baiju, T.V.; Brito, F.G.; Araujo, M.H.; Pessoa, C.; Cavalcanti, B.C.; de Simone, C.A.; Jacob, C.; Namboothiri, I.N.; da Silva Júnior, E.N. Synthesis of quinone-based N-sulfonyl-1, 2, 3-triazoles: chemical reactivity of Rh (II) azavinyl carbenes and antitumor activity. ChemistrySelect, 2017, 2(16), 4301-4308.
[http://dx.doi.org/10.1002/slct.201700885]
[143]
Coulidiati, T.H.; Dantas, B.B.; Faheina-Martins, G.V.; Gonçalves, J.C.; do Nascimento, W.S.; de Oliveira, R.N.; Camara, C.A.; Oliveira, E.J.; Lara, A.; Gomes, E.R.; Araújo, D.A. Distinct effects of novel naphtoquinone-based triazoles in human leukaemic cell lines. J. Pharm. Pharmacol., 2015, 67(12), 1682-1695.
[http://dx.doi.org/10.1111/jphp.12474] [PMID: 26256440]
[144]
Prasad, C.V.; Nayak, V.L.; Ramakrishna, S.; Mallavadhani, U.V. Novel menadione hybrids: synthesis, anticancer activity, and cell-based studies. Chem. Biol. Drug Des., 2018, 91(1), 220-233.
[http://dx.doi.org/10.1111/cbdd.13073] [PMID: 28734085]
[145]
Pacheco, P.A.F.; Galvão, R.M.S.; Faria, A.F.M.; Von Ranke, N.L.; Rangel, M.S.; Ribeiro, T.M.; Bello, M.L.; Rodrigues, C.R.; Ferreira, V.F.; da Rocha, D.R.; Faria, R.X. 8-Hydroxy-2-(1H-1,2,3-triazol-1-yl)-1,4-naphtoquinone derivatives inhibited P2X7 receptor-Induced dye uptake into murine macrophages. Bioorg. Med. Chem., 2019, 27(8), 1449-1455.
[http://dx.doi.org/10.1016/j.bmc.2018.11.036] [PMID: 30528164]
[146]
de Castro, S.L.; Emery, F.S.; da Silva, E.N. Synthesis of quinoidal molecules: strategies towards bioactive compounds with an emphasis on lapachones. Eur. J. Med. Chem., 2013, 69, 678-700.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.057] [PMID: 24095760]
[147]
Jardim, G.A.; Reis, W.J.; Ribeiro, M.F.; Ottoni, F.M.; Alves, R.J.; Silva, T.L.; Goulart, M.O.; Braga, A.L.; Menna-Barreto, R.F.; Salomão, K. On the investigation of hybrid quinones: synthesis, electrochemical studies and evaluation of trypanocidal activity. RSC Advances, 2015, 5(95), 78047-78060.
[http://dx.doi.org/10.1039/C5RA16213K]
[148]
MacGregor, K.A.; Abdel-Hamid, M.K.; Odell, L.R.; Chau, N.; Whiting, A.; Robinson, P.J.; McCluskey, A. Development of quinone analogues as dynamin GTPase inhibitors. Eur. J. Med. Chem., 2014, 85, 191-206.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.070] [PMID: 25084145]
[149]
Oliveira, R.N.d.; Silva, M.G.d.; Silva, M.T.d.; Melo, V.N.; Valença, W.O.; Paz, J.A.d.; Camara, C.A. Strategies for molecular diversification of 2-[aminoalkyl-(1H-1, 2, 3-triazol-1-yl)]-1, 4-naphthoquinones using click chemistry. J. Braz. Chem. Soc., 2017, 28(4), 681-688.
[150]
Silva, M.T.d.; Oliveira, R.N.d.; Valença, W.O.; Barbosa, F.C.; Silva, M.G.d.; Camara, C.A. Synthesis of N-substituted phthalimidoalkyl 1H-1, 2, 3-triazoles: a molecular diversity combining click chemistry and ultrasound irradiation. J. Braz. Chem. Soc., 2012, 23(10), 1839-1843.
[http://dx.doi.org/10.1590/S0103-50532012005000053]
[151]
Barbosa, T.P.; Camara, C.A.; Silva, T.M.S.; Martins, R.M.; Pinto, A.C.; Vargas, M.D. New 1,2,3,4-tetrahydro-1-aza-anthraquinones and 2-aminoalkyl compounds from norlapachol with molluscicidal activity. Bioorg. Med. Chem., 2005, 13(23), 6464-6469.
[http://dx.doi.org/10.1016/j.bmc.2005.06.068] [PMID: 16140019]
[152]
Zhang, J.; Fu, X-L.; Yang, N.; Wang, Q-A. Synthesis and cytotoxicity of chalcones and 5-deoxyflavonoids. The Sci. World J., 2013, 2013, 649485.
[http://dx.doi.org/10.1155/2013/649485 ]
[153]
Singh, P.; Raj, R.; Kumar, V.; Mahajan, M.P.; Bedi, P.M.; Kaur, T.; Saxena, A.K. 1,2,3-Triazole tethered β-lactam-chalcone bifunctional hybrids: synthesis and anticancer evaluation. Eur. J. Med. Chem., 2012, 47(1), 594-600.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.033] [PMID: 22071256]
[154]
Bandgar, B.P.; Gawande, S.S.; Bodade, R.G.; Totre, J.V.; Khobragade, C.N. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorg. Med. Chem., 2010, 18(3), 1364-1370.
[http://dx.doi.org/10.1016/j.bmc.2009.11.066] [PMID: 20064725]
[155]
Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorg. Med. Chem. Lett., 2010, 20(3), 942-944.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.062] [PMID: 20045640]
[156]
Moon, D-O.; Kim, M-O.; Choi, Y.H.; Kim, G-Y. Butein sensitizes human hepatoma cells to TRAIL-induced apoptosis via extracellular signal-regulated kinase/Sp1-dependent DR5 upregulation and NF-kappaB inactivation. Mol. Cancer Ther., 2010, 9(6), 1583-1595.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0942] [PMID: 20515942]
[157]
Gutteridge, C.E.; Hoffman, M.M.; Bhattacharjee, A.K.; Milhous, W.K.; Gerena, L. In vitro efficacy of 7-benzylamino-1-isoquinolinamines against Plasmodium falciparum related to the efficacy of chalcones. Bioorg. Med. Chem. Lett., 2011, 21(2), 786-789.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.099] [PMID: 21168330]
[158]
Mielcke, T.R.; Mascarello, A.; Filippi-Chiela, E.; Zanin, R.F.; Lenz, G.; Leal, P.C.; Chiaradia, L.D.; Yunes, R.A.; Nunes, R.J.; Battastini, A.M.; Morrone, F.B.; Campos, M.M. Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation. Eur. J. Med. Chem., 2012, 48, 255-264.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.023] [PMID: 22209415]
[159]
Sharma, V.; Chaudhary, A.; Arora, S.; Saxena, A.K.; Ishar, M.P.S. β-Ionone derived chalcones as potent antiproliferative agents. Eur. J. Med. Chem., 2013, 69, 310-315.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.017] [PMID: 24056146]
[160]
Kumar, D.; Raj, K.K.; Malhotra, S.V.; Rawat, D.S. Synthesis and anticancer activity evaluation of resveratrol–chalcone conjugates. MedChemComm, 2014, 5(4), 528-535.
[http://dx.doi.org/10.1039/c3md00329a]
[161]
Sharma, N.; Mohanakrishnan, D.; Sharma, U.K.; Kumar, R. Richa; Sinha, A.K.; Sahal, D. Design, economical synthesis and antiplasmodial evaluation of vanillin derived allylated chalcones and their marked synergism with artemisinin against chloroquine resistant strains of Plasmodium falciparum. Eur. J. Med. Chem., 2014, 79, 350-368.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.079] [PMID: 24747290]
[162]
Mahapatra, D.K.; Bharti, S.K.; Asati, V. Anti-cancer chalcones: structural and molecular target perspectives. Eur. J. Med. Chem., 2015, 98, 69-114.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.004] [PMID: 26005917]
[163]
Champelovier, P.; Chauchet, X.; Hazane-Puch, F.; Vergnaud, S.; Garrel, C.; Laporte, F.; Boutonnat, J.; Boumendjel, A. Cellular and molecular mechanisms activating the cell death processes by chalcones: critical structural effects. Toxicol. In Vitro, 2013, 27(8), 2305-2315.
[http://dx.doi.org/10.1016/j.tiv.2013.09.021] [PMID: 24134853]
[164]
Mourad, M.A.; Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Farag, H.H. Design, synthesis and anticancer activity of nitric oxide donating/chalcone hybrids. Eur. J. Med. Chem., 2012, 54, 907-913.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.030] [PMID: 22703846]
[165]
Evangelista, F.C.; Bandeira, M.O.; Silva, G.D.; Silva, M.G.; Andrade, S.N.; Marques, D.R.; Silva, L.M.; Castro, W.V.; Santos, F.V.; Viana, G.H. Synthesis and in vitro evaluation of novel triazole/azide chalcones. Med. Chem. Res., 2017, 26(1), 27-43.
[http://dx.doi.org/10.1007/s00044-016-1705-9]
[166]
Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr., 2011, 6(2), 125-147.
[http://dx.doi.org/10.1007/s12263-011-0210-5] [PMID: 21484163]
[167]
Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cruz-Lopez, O.; Cara, C.L.; Balzarini, J.; Hamel, E.; Canella, A.; Fabbri, E.; Gambari, R.; Basso, G.; Viola, G. Hybrid α-bromoacryloylamido chalcones. Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2009, 19(7), 2022-2028.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.038] [PMID: 19250822]
[168]
Zhang, S-Y.; Fu, D-J.; Yue, X-X.; Liu, Y-C.; Song, J.; Sun, H-H.; Liu, H-M.; Zhang, Y-B. Design, synthesis and structure-activity relationships of novel chalcone-1, 2, 3-triazole-azole derivates as antiproliferative agents. Molecules, 2016, 21(5), 653.
[http://dx.doi.org/10.3390/molecules21050653] [PMID: 27213317]
[169]
Dagenais, G.R.; Leong, D.P.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Gupta, R.; Diaz, R.; Avezum, A.; Oliveira, G.B.F.; Wielgosz, A.; Parambath, S.R.; Mony, P.; Alhabib, K.F.; Temizhan, A.; Ismail, N.; Chifamba, J.; Yeates, K.; Khatib, R.; Rahman, O.; Zatonska, K.; Kazmi, K.; Wei, L.; Zhu, J.; Rosengren, A.; Vijayakumar, K.; Kaur, M.; Mohan, V.; Yusufali, A.; Kelishadi, R.; Teo, K.K.; Joseph, P.; Yusuf, S. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet, 2020, 395(10226), 785-794.
[http://dx.doi.org/10.1016/S0140-6736(19)32007-0] [PMID: 31492501]
[170]
Ma, L-Y.; Wang, B.; Pang, L-P.; Zhang, M.; Wang, S-Q.; Zheng, Y-C.; Shao, K-P.; Xue, D-Q.; Liu, H-M. Design and synthesis of novel 1,2,3-triazole-pyrimidine-urea hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2015, 25(5), 1124-1128.
[http://dx.doi.org/10.1016/j.bmcl.2014.12.087] [PMID: 25655718]
[171]
Duan, Y-C.; Zheng, Y-C.; Li, X-C.; Wang, M-M.; Ye, X-W.; Guan, Y-Y.; Liu, G-Z.; Zheng, J-X.; Liu, H-M. Design, synthesis and antiproliferative activity studies of novel 1,2,3-triazole-dithiocarbamate-urea hybrids. Eur. J. Med. Chem., 2013, 64, 99-110.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.058] [PMID: 23644193]
[172]
Kong, Y.; Wang, K.; Edler, M.C.; Hamel, E.; Mooberry, S.L.; Paige, M.A.; Brown, M.L. A boronic acid chalcone analog of combretastatin A-4 as a potent anti-proliferation agent. Bioorg. Med. Chem., 2010, 18(2), 971-977.
[http://dx.doi.org/10.1016/j.bmc.2009.11.003] [PMID: 20006519]
[173]
Syam, S.; Abdelwahab, S.I.; Al-Mamary, M.A.; Mohan, S. Synthesis of chalcones with anticancer activities. Molecules, 2012, 17(6), 6179-6195.
[http://dx.doi.org/10.3390/molecules17066179] [PMID: 22634834]
[174]
Ducki, S.; Rennison, D.; Woo, M.; Kendall, A.; Chabert, J.F.D.; McGown, A.T.; Lawrence, N.J. Combretastatin-like chalcones as inhibitors of microtubule polymerization. Part 1: synthesis and biological evaluation of antivascular activity. Bioorg. Med. Chem., 2009, 17(22), 7698-7710.
[http://dx.doi.org/10.1016/j.bmc.2009.09.039] [PMID: 19837593]
[175]
Sum, T.H.; Sum, T.J.; Stokes, J.E.; Galloway, W.R.; Spring, D.R. Divergent and concise total syntheses of dihydrochalcones and 5-deoxyflavones recently isolated from Tacca species and Mimosa diplotricha. Tetrahedron, 2015, 71(26-27), 4557-4564.
[http://dx.doi.org/10.1016/j.tet.2015.02.017]
[176]
Wu, B.; Zhang, W.; Li, Z.; Gu, L.; Wang, X.; Wang, P.G. Concise synthesis of 5-methoxy-6-hydroxy-2-methylchromone-7-O- and 5-hydroxy-2-methylchromone-7-O-rutinosides. Investigation of their cytotoxic activities against several human tumor cell lines. J. Org. Chem., 2011, 76(7), 2265-2268.
[http://dx.doi.org/10.1021/jo102325s] [PMID: 21366286]
[177]
Snijman, P.W.; Joubert, E.; Ferreira, D.; Li, X-C.; Ding, Y.; Green, I.R.; Gelderblom, W.C. Antioxidant activity of the dihydrochalcones Aspalathin and Nothofagin and their corresponding flavones in relation to other Rooibos (Aspalathus linearis) flavonoids, Epigallocatechin Gallate, and Trolox. J. Agric. Food Chem., 2009, 57(15), 6678-6684.
[http://dx.doi.org/10.1021/jf901417k] [PMID: 19722573]
[178]
Sum, T.J.; Sum, T.H.; Galloway, W.R.; Spring, D.R. Divergent total syntheses of flavonoid natural products isolated from Rosa rugosa and Citrus unshiu. Synlett, 2016, 27(11), 1725-1727.
[http://dx.doi.org/10.1055/s-0035-1561851]
[179]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[180]
Seleem, D.; Pardi, V.; Murata, R.M. Review of flavonoids: a diverse group of natural compounds with anti-Candida albicans activity in vitro. Arch. Oral Biol., 2017, 76, 76-83.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.030] [PMID: 27659902]
[181]
Salaritabar, A.; Darvishi, B.; Hadjiakhoondi, F.; Manayi, A.; Sureda, A.; Nabavi, S.F.; Fitzpatrick, L.R.; Nabavi, S.M.; Bishayee, A. Therapeutic potential of flavonoids in inflammatory bowel disease: a comprehensive review. World J. Gastroenterol., 2017, 23(28), 5097-5114.
[http://dx.doi.org/10.3748/wjg.v23.i28.5097] [PMID: 28811706]
[182]
Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: updated review of mechanisms and catalyzing metals. Phytother. Res., 2016, 30(9), 1379-1391.
[http://dx.doi.org/10.1002/ptr.5643] [PMID: 27241122]
[183]
Brueggemeier, R.W.; Hackett, J.C.; Diaz-Cruz, E.S. Aromatase inhibitors in the treatment of breast cancer. Endocr. Rev., 2005, 26(3), 331-345.
[http://dx.doi.org/10.1210/er.2004-0015] [PMID: 15814851]
[184]
Sable, P.M.; Potey, L.C. Synthesis and antiproliferative activity of imidazole and triazole derivatives of flavonoids. Pharm. Chem. J., 2018, 52(5), 438-443.
[http://dx.doi.org/10.1007/s11094-018-1836-z]
[185]
Aher, N.G.; Pore, V.S.; Mishra, N.N.; Kumar, A.; Shukla, P.K.; Sharma, A.; Bhat, M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 759-763.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.026] [PMID: 19110424]
[186]
Demaray, J.A.; Thuener, J.E.; Dawson, M.N.; Sucheck, S.J. Synthesis of triazole-oxazolidinones via a one-pot reaction and evaluation of their antimicrobial activity. Bioorg. Med. Chem. Lett., 2008, 18(17), 4868-4871.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.087] [PMID: 18678487]
[187]
Giffin, M.J.; Heaslet, H.; Brik, A.; Lin, Y-C.; Cauvi, G.; Wong, C-H.; McRee, D.E.; Elder, J.H.; Stout, C.D.; Torbett, B.E. A copper(I)-catalyzed 1,2,3-triazole azide-alkyne click compound is a potent inhibitor of a multidrug-resistant HIV-1 protease variant. J. Med. Chem., 2008, 51(20), 6263-6270.
[http://dx.doi.org/10.1021/jm800149m] [PMID: 18823110]
[188]
Patpi, S.R.; Pulipati, L.; Yogeeswari, P.; Sriram, D.; Jain, N.; Sridhar, B.; Murthy, R.; Anjana Devi, T.; Kalivendi, S.V.; Kantevari, S. Design, synthesis, and structure-activity correlations of novel dibenzo[b,d]furan, dibenzo[b,d]thiophene, and N-methylcarbazole clubbed 1,2,3-triazoles as potent inhibitors of Mycobacterium tuberculosis. J. Med. Chem., 2012, 55(8), 3911-3922.
[http://dx.doi.org/10.1021/jm300125e] [PMID: 22449006]
[189]
De Simone, R.; Chini, M.G.; Bruno, I.; Riccio, R.; Mueller, D.; Werz, O.; Bifulco, G. Structure-based discovery of inhibitors of microsomal prostaglandin E2 synthase-1, 5-lipoxygenase and 5-lipoxygenase-activating protein: promising hits for the development of new anti-inflammatory agents. J. Med. Chem., 2011, 54(6), 1565-1575.
[http://dx.doi.org/10.1021/jm101238d] [PMID: 21323313]
[190]
Li, X.; Lin, Y.; Wang, Q.; Yuan, Y.; Zhang, H.; Qian, X. The novel anti-tumor agents of 4-triazol-1,8-naphthalimides: synthesis, cytotoxicity, DNA intercalation and photocleavage. Eur. J. Med. Chem., 2011, 46(4), 1274-1279.
[http://dx.doi.org/10.1016/j.ejmech.2011.01.050] [PMID: 21345546]
[191]
Stefely, J.A.; Palchaudhuri, R.; Miller, P.A.; Peterson, R.J.; Moraski, G.C.; Hergenrother, P.J.; Miller, M.J.N. -((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)arylamide as a new scaffold that provides rapid access to antimicrotubule agents: synthesis and evaluation of antiproliferative activity against select cancer cell lines. J. Med. Chem., 2010, 53(8), 3389-3395.
[http://dx.doi.org/10.1021/jm1000979] [PMID: 20334421]
[192]
Hackett, J.C.; Brueggemeier, R.W.; Hadad, C.M. The final catalytic step of cytochrome p450 aromatase: a density functional theory study. J. Am. Chem. Soc., 2005, 127(14), 5224-5237.
[http://dx.doi.org/10.1021/ja044716w] [PMID: 15810858]
[193]
Samara, N.; Casper, R.F. Aromatase inhibitors. In: Infertility in Women with Polycystic Ovary Syndrome; Springer, 2018; pp. 119-133.
[http://dx.doi.org/10.1007/978-3-319-45534-1_10]
[194]
Franik, S.; Eltrop, S.M.; Kremer, J.A.; Kiesel, L.; Farquhar, C. Aromatase inhibitors (letrozole) for subfertile women with polycystic ovary syndrome. Cochrane Database Syst. Rev., 2018, 5(5), CD010287.
[http://dx.doi.org/10.1002/14651858.CD010287.pub3] [PMID: 29797697 ]
[195]
Mojaddami, A.; Sakhteman, A.; Fereidoonnezhad, M.; Faghih, Z.; Najdian, A.; Khabnadideh, S.; Sadeghpour, H.; Rezaei, Z. Binding mode of triazole derivatives as aromatase inhibitors based on docking, protein ligand interaction fingerprinting, and molecular dynamics simulation studies. Res. Pharm. Sci., 2017, 12(1), 21-30.
[http://dx.doi.org/10.4103/1735-5362.199043] [PMID: 28255310]
[196]
Kalalinia, F.; Jouya, M.; Komachali, A.K.; Aboutourabzadeh, S.M.; Karimi, G.; Behravan, J.; Abnous, K.; Etemad, L.; Kamali, H.; Hadizadeh, F. Design, synthesis, and biological evaluation of new azole derivatives as potent aromatase inhibitors with potential effects against breast cancer. Anticancer. Agents Med. Chem., 2018, 18(7), 1016-1024.
[http://dx.doi.org/10.2174/1871520618666180116105858 ]
[197]
Kshatriya, R.; Jejurkar, V.P.; Saha, S. In memory of Prof. Venkataraman: recent advances in the synthetic methodologies of flavones. Tetrahedron, 2018, 74(8), 811-833.
[http://dx.doi.org/10.1016/j.tet.2017.12.052]
[198]
Sum, T.H.; Sum, T.J.; Galloway, W.R.; Collins, S.; Twigg, D.G.; Hollfelder, F.; Spring, D.R. Combinatorial synthesis of structurally diverse triazole-bridged flavonoid dimers and trimers. Molecules, 2016, 21(9), 1230.
[http://dx.doi.org/10.3390/molecules21091230] [PMID: 27649131]
[199]
McGown, A.; Ragazzon-Smith, A.; Hadfield, J.A.; Potgetier, H.; Ragazzon, P.A. Microwave-assisted synthesis of novel bis-flavone dimers as new anticancer agents. Lett. Org. Chem., 2019, 16(1), 66-75.
[http://dx.doi.org/10.2174/1570178615666180621094529]
[200]
Lin, Y.; Shi, R.; Wang, X.; Shen, H-M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[201]
Middleton, E., Jr; Kandaswami, C.; Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol. Rev., 2000, 52(4), 673-751.
[PMID: 11121513]
[202]
Fusi, F.; Spiga, O.; Trezza, A.; Sgaragli, G.; Saponara, S. The surge of flavonoids as novel, fine regulators of cardiovascular Cav channels. Eur. J. Pharmacol., 2017, 796, 158-174.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.033] [PMID: 28012974]
[203]
Ishaq, M.S.; Hussain, M.M.; Afridi, M.S.; Ali, G.; Khattak, M.; Ahmad, S. In vitro phytochemical, antibacterial, and antifungal activities of leaf, stem, and root extracts of Adiantum capillus veneris. The Sci. World J., 2014, 2014, 269793.
[http://dx.doi.org/10.1155/2014/269793 ]
[204]
Mujeeb, F.; Bajpai, P.; Pathak, N. Phytochemical evaluation, antimicrobial activity, and determination of bioactive components from leaves of Aegle marmelos. BioMed Res. Int., 2014, 2014, 497606.
[http://dx.doi.org/10.1155/2014/497606 ]
[205]
Lin, B.W.; Gong, C.C.; Song, H.F.; Cui, Y.Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol., 2017, 174(11), 1226-1243.
[http://dx.doi.org/10.1111/bph.13627] [PMID: 27646173]
[206]
Ragazzon, P.A.; Bradshaw, T.; Matthews, C.; Iley, J.; Missailidis, S. The characterisation of flavone-DNA isoform interactions as a basis for anticancer drug development. Anticancer Res., 2009, 29(6), 2273-2283.
[PMID: 19528492]
[207]
Tanemossu, S.A.F.; Franke, K.; Arnold, N.; Schmidt, J.; Wabo, H.K.; Tane, P.; Wessjohann, L.A. Rare biscoumarin derivatives and flavonoids from Hypericum riparium. Phytochemistry, 2014, 105, 171-177.
[http://dx.doi.org/10.1016/j.phytochem.2014.05.008] [PMID: 24930002]
[208]
Nakashima, K.i.; Abe, N.; Kamiya, F.; Ito, T.; Oyama, M.; Iinuma, M. Novel flavonoids in dragon’s blood of Daemonorops draco. Helv. Chim. Acta, 2009, 92(10), 1999-2008.
[http://dx.doi.org/10.1002/hlca.200900086]
[209]
Ramaswamy, A.; Basu, N. Bradykinin Antagonism by Biflavonyls from Ginkgo Biloba L. and Cupressus torulosa. In: Vasopeptides; Springer, 1972; pp. 357-360.
[http://dx.doi.org/10.1007/978-1-4684-7439-8_41]
[210]
Pelter, A. On the question of the structures of GB1, GB1a and GB2, a new group of bisflavonoids. Tetrahedron Lett., 1967, 19(19), 1767-1771.
[http://dx.doi.org/10.1016/S0040-4039(00)90719-6] [PMID: 6047530]
[211]
Roitman, J.N.; Wong, R.Y.; Wollenweber, E. Methylene bisflavonoids from frond exudate of Pentagramma triangularis ssp triangularis. Phytochemistry, 1993, 34(1), 297-301.
[http://dx.doi.org/10.1016/S0031-9422(00)90824-0]
[212]
Sawada, T. Studies on flavonoids in the leaves of coniferae and allied plants. V. Relation between the distribution of bisflavonoids and taxonomical position of the plants. J. Pharm. Soc. Jpn., 1958, 78(9), 1023-1027.
[http://dx.doi.org/10.1248/yakushi1947.78.9_1023]
[213]
Sarbu, L.G.; Bahrin, L.G.; Babii, C.; Stefan, M.; Birsa, M.L. Synthetic flavonoids with antimicrobial activity: a review. J. Appl. Microbiol., 2019, 127(5), 1282-1290.
[http://dx.doi.org/10.1111/jam.14271] [PMID: 30934143]
[214]
Salas, M.P.; Céliz, G.; Geronazzo, H.; Daz, M.; Resnik, S.L. Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem., 2011, 124(4), 1411-1415.
[http://dx.doi.org/10.1016/j.foodchem.2010.07.100]
[215]
Vavříková, E.; Vacek, J.; Valentová, K.; Marhol, P.; Ulrichová, J.; Kuzma, M.; Křen, V. Chemo-enzymatic synthesis of silybin and 2,3-dehydrosilybin dimers. Molecules, 2014, 19(4), 4115-4134.
[http://dx.doi.org/10.3390/molecules19044115] [PMID: 24699152]
[216]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[217]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[218]
Appukkuttan, P.; Dehaen, W.; Fokin, V.V.; Van der Eycken, E. A microwave-assisted click chemistry synthesis of 1,4-disubstituted 1,2,3-triazoles via a copper(I)-catalyzed three-component reaction. Org. Lett., 2004, 6(23), 4223-4225.
[http://dx.doi.org/10.1021/ol048341v] [PMID: 15524448]
[219]
Punna, S. Click chemistry in polymer synthesis. In: Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, 2004; pp. 420-421.
[220]
Wang, X.; Huang, B.; Liu, X.; Zhan, P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov. Today, 2016, 21(1), 118-132.
[http://dx.doi.org/10.1016/j.drudis.2015.08.004] [PMID: 26315392]
[221]
Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: antioxidants and beyond. Am. J. Clin. Nutr., 2005, 81(1), 215S-217S.
[http://dx.doi.org/10.1093/ajcn/81.1.215S] [PMID: 15640483]
[222]
Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr., 2005, 45(4), 287-306.
[http://dx.doi.org/10.1080/1040869059096] [PMID: 16047496]
[223]
Roohbakhsh, A.; Parhiz, H.; Soltani, F.; Rezaee, R.; Iranshahi, M. Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci., 2015, 124, 64-74.
[http://dx.doi.org/10.1016/j.lfs.2014.12.030] [PMID: 25625242]
[224]
Cho, J. Antioxidant and neuroprotective effects of hesperidin and its aglycone hesperetin. Arch. Pharm. Res., 2006, 29(8), 699-706.
[http://dx.doi.org/10.1007/BF02968255] [PMID: 16964766]
[225]
Hirata, A.; Murakami, Y.; Shoji, M.; Kadoma, Y.; Fujisawa, S. Kinetics of radical-scavenging activity of hesperetin and hesperidin and their inhibitory activity on COX-2 expression. Anticancer Res., 2005, 25(5), 3367-3374.
[PMID: 16101151]
[226]
Alshatwi, A.A.; Ramesh, E.; Periasamy, V.S.; Subash-Babu, P. The apoptotic effect of hesperetin on human cervical cancer cells is mediated through cell cycle arrest, death receptor, and mitochondrial pathways. Fundam. Clin. Pharmacol., 2013, 27(6), 581-592.
[http://dx.doi.org/10.1111/j.1472-8206.2012.01061.x] [PMID: 22913657]
[227]
Patel, R.V.; Park, S.W. Access to a new class of biologically active quinoline based 1,2,4-triazoles. Eur. J. Med. Chem., 2014, 71, 24-30.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.059] [PMID: 24269513]
[228]
Kallander, L.S.; Lu, Q.; Chen, W.; Tomaszek, T.; Yang, G.; Tew, D.; Meek, T.D.; Hofmann, G.A.; Schulz-Pritchard, C.K.; Smith, W.W.; Janson, C.A.; Ryan, M.D.; Zhang, G.F.; Johanson, K.O.; Kirkpatrick, R.B. HO, T.F.; Fisher, P.W.; Mattern, M.R.; Johnson, R.K.; Hansbury, M.J.; Winkler, J.D.; Ward, K.W.; Veber, D.F.; Thompson, S.K. 4-Aryl-1,2,3-triazole: a novel template for a reversible methionine aminopeptidase 2 inhibitor, optimized to inhibit angiogenesis in vivo. J. Med. Chem., 2005, 48(18), 5644-5647.
[http://dx.doi.org/10.1021/jm050408c] [PMID: 16134930]
[229]
Mistry, B.; Patel, R.V.; Keum, Y-S. Access to the substituted benzyl-1, 2, 3-triazolyl hesperetin derivatives expressing antioxidant and anticancer effects. Arab. J. Chem., 2017, 10(2), 157-166.
[http://dx.doi.org/10.1016/j.arabjc.2015.10.004]
[230]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113, 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[231]
Bollu, R.; Palem, J.D.; Bantu, R.; Guguloth, V.; Nagarapu, L.; Polepalli, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur. J. Med. Chem., 2015, 89, 138-146.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.051] [PMID: 25462234]
[232]
El Sayed Aly, M.R.; Saad, H.A.; Mohamed, M.A.M. Click reaction based synthesis, antimicrobial, and cytotoxic activities of new 1,2,3-triazoles. Bioorg. Med. Chem. Lett., 2015, 25(14), 2824-2830.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.096] [PMID: 26025874]
[233]
Lipeeva, A.V.; Pokrovsky, M.A.; Baev, D.S.; Shakirov, M.M.; Bagryanskaya, I.Y.; Tolstikova, T.G.; Pokrovsky, A.G.; Shults, E.E. Synthesis of 1H-1,2,3-triazole linked aryl(arylamidomethyl) - dihydrofurocoumarin hybrids and analysis of their cytotoxicity. Eur. J. Med. Chem., 2015, 100, 119-128.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.016] [PMID: 26079088]
[234]
Xu, J-M.; Zhang, E.; Shi, X-J.; Wang, Y-C.; Yu, B.; Jiao, W-W.; Guo, Y-Z.; Liu, H-M. Synthesis and preliminary biological evaluation of 1,2,3-triazole-Jaspine B hybrids as potential cytotoxic agents. Eur. J. Med. Chem., 2014, 80, 593-604.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.022] [PMID: 24835817]
[235]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 2010, 18(23), 8243-8256.
[http://dx.doi.org/10.1016/j.bmc.2010.10.009] [PMID: 21044845]
[236]
Evranos, B.; Altanlar, N.; Ertan, R. Synthesis and biological activity of some new lavonylazole derivatives. ACTA Pharmaceutic. Sci., 2007, 49(3), 231-238.
[237]
Pessoa, J.C.; Azevedo, R.F.; Mota, S.F.; Pinheiro, S.; Muri, E.M.; de Souza, E.A.; Oliveira, D.F. Synthesis and activity of 1, 2, 3-triazolyl-chalcones against the fungus Colletotrichum lindemuthianum. Lett. Org. Chem., 2018, 15(9), 787-796.
[http://dx.doi.org/10.2174/1570178615666180215144049]
[238]
Pinto, J.M.; Pereira, R.; Mota, S.F.; Ishikawa, F.H.; Souza, E.A. Investigating phenotypic variability in Colletotrichum lindemuthianum populations. Phytopathology, 2012, 102(5), 490-497.
[http://dx.doi.org/10.1094/PHYTO-06-11-0179] [PMID: 22250759]
[239]
Damasceno e Silva, K.; De Souza, E.; Ishikawa, F. Characterization of Colletotrichum lindemuthianum isolates from the state of Minas Gerais, Brazil. J. Phytopathol., 2007, 155(4), 241-247.
[http://dx.doi.org/10.1111/j.1439-0434.2007.01226.x]
[240]
Chan, K-F.; Wong, I.L.; Kan, J.W.; Yan, C.S.; Chow, L.M.; Chan, T.H. Amine linked flavonoid dimers as modulators for P-glycoprotein-based multidrug resistance: structure-activity relationship and mechanism of modulation. J. Med. Chem., 2012, 55(5), 1999-2014.
[http://dx.doi.org/10.1021/jm201121b] [PMID: 22320402]
[241]
Wong, I.L.K.; Zhu, X.; Chan, K-F.; Law, M.C.; Lo, A.M.Y.; Hu, X.; Chow, L.M.C.; Chan, T.H. Discovery of novel flavonoid dimers to reverse multidrug resistance protein 1 (MRP1, ABCC1) mediated drug resistance in cancers using a high throughput platform with “Click Chemistry”. J. Med. Chem., 2018, 61(22), 9931-9951.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00834] [PMID: 30351934]
[242]
Zhu, X.; Wong, I.L.K.; Chan, K-F.; Cui, J.; Law, M.C.; Chong, T.C.; Hu, X.; Chow, L.M.C.; Chan, T.H. Triazole bridged flavonoid dimers as potent, nontoxic, and highly selective Breast Cancer Resistance Protein (BCRP/ABCG2) inhibitors. J. Med. Chem., 2019, 62(18), 8578-8608.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00963] [PMID: 31465686]
[243]
Meguellati, A.; Ahmed-Belkacem, A.; Nurisso, A.; Yi, W.; Brillet, R.; Berqouch, N.; Chavoutier, L.; Fortuné, A.; Pawlotsky, J-M.; Boumendjel, A.; Peuchmaur, M. New pseudodimeric aurones as palm pocket inhibitors of Hepatitis C virus RNA-dependent RNA polymerase. Eur. J. Med. Chem., 2016, 115, 217-229.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.005] [PMID: 27017550]
[244]
Sashidhara, K.V.; Kumar, A.; Kumar, M.; Sarkar, J.; Sinha, S. Synthesis and in vitro evaluation of novel coumarin-chalcone hybrids as potential anticancer agents. Bioorg. Med. Chem. Lett., 2010, 20(24), 7205-7211.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.116] [PMID: 21071221]
[245]
Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone-coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem., 2014, 85, 65-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.087] [PMID: 25078311]
[246]
Yan, C.S.; Wong, I.L.; Chan, K-F.; Kan, J.W.; Chong, T.C.; Law, M.C.; Zhao, Y.; Chan, S.W.; Chan, T.H.; Chow, L.M. A new class of safe, potent, and specific P-gp modulator: flavonoid dimer FD18 reverses P-gp-mediated multidrug resistance in human breast xenograft in vivo. Mol. Pharm., 2015, 12(10), 3507-3517.
[http://dx.doi.org/10.1021/mp500770e] [PMID: 26291333]
[247]
Wong, I.L.; Chan, K-F.; Chen, Y-F.; Lun, Z-R.; Chan, T.H.; Chow, L.M. In vitro and in vivo efficacy of novel flavonoid dimers against cutaneous leishmaniasis. Antimicrob. Agents Chemother., 2014, 58(6), 3379-3388.
[http://dx.doi.org/10.1128/AAC.02425-13] [PMID: 24687505]
[248]
Lewis, R.E. Pharmacokinetic–pharmacodynamic optimization of triazole antifungal therapy. Curr. Opin. Infect. Dis., 2011, 24, S14-S29.
[http://dx.doi.org/10.1097/01.qco.0000399603.91138.e7]
[249]
Yeap, G.Y.; Yam, W.S.; Takeuchi, D.; Osakada, K.; Gorecka, E.; Mahmood, W.A.K.; Boey, P.L.; Hamid, S.A. Synthesis, thermal stabilities, and anisotropic properties of some new isoflavone-based esters 7-decanoyloxy-3-(4¢-substitutedphenyl)-4H-1-benzopyran-4-ones. Liq. Cryst., 2008, 35(3), 315-323.
[http://dx.doi.org/10.1080/02678290701875811]
[250]
Xiong, Y.; Schaus, S.E.; Porco, J.A. Jr Metal-catalyzed cascade rearrangements of 3-alkynyl flavone ethers. Org. Lett., 2013, 15(8), 1962-1965.
[http://dx.doi.org/10.1021/ol400631b] [PMID: 23574045]
[251]
Liu, J.; Taylor, S.F.; Dupart, P.S.; Arnold, C.L.; Sridhar, J.; Jiang, Q.; Wang, Y.; Skripnikova, E.V.; Zhao, M.; Foroozesh, M. Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1. J. Med. Chem., 2013, 56(10), 4082-4092.
[http://dx.doi.org/10.1021/jm4003654] [PMID: 23600958]
[252]
Detsi, A.; Majdalani, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Kefalas, P. Natural and synthetic 2¢-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorg. Med. Chem., 2009, 17(23), 8073-8085.
[http://dx.doi.org/10.1016/j.bmc.2009.10.002] [PMID: 19853459]
[253]
Li, S-Y.; Wang, X-B.; Xie, S-S.; Jiang, N.; Wang, K.D.; Yao, H-Q.; Sun, H-B.; Kong, L-Y. Multifunctional tacrine-flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 69, 632-646.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.024] [PMID: 24095756]
[254]
Chow, L.; Chan, T.; Chan, K.; Wong, I.; Man, C. Alkyne-, azide-and triazolecontaining flavonoids as modulators for multidrug resistance in cancer. World Patent WO2013127361A1, September 6, 2013.
[255]
Jiang, Y.; Ren, B.; Lv, X.; Zhang, W.; Li, W.; Xu, G. Design, synthesis and antifungal activity of novel paeonol derivatives linked with 1, 2, 3-triazole moiety by the click reaction. J. Chem. Res., 2015, 39(4), 243-246.
[http://dx.doi.org/10.3184/174751915X14284938334623]
[256]
Costa, A.V.; Moreira, L.C.; Pinto, R.T.; Alves, T.A.; Schwan, V.V.; Queiroz, V.T.d.; Praça-Fontes, M.M.; Teixeira, R.R.; Morais, P.A.; Jesus, W.C. Synthesis of glycerol-derived 4-alkyl-substituted 1, 2, 3-triazoles and evaluation of their fungicidal, phytotoxic, and antiproliferative activities. J. Braz. Chem. Soc., 2020, 31(4), 821-832.
[http://dx.doi.org/10.21577/0103-5053.20190246]
[257]
Yuan, J.W.; Qu, L.B.; Chen, X.L.; Qu, Z.B.; Liu, X.Q.; Ke, D.D. An efficient synthesis of mono and bis-1, 2, 3-triazole AZT derivatives via Copper (I)-catalyzed cycloaddition. J. Chin. Chem. Soc. (Taipei), 2011, 58(1), 24-30.
[http://dx.doi.org/10.1002/jccs.201190053]
[258]
Querfurth, H.W.; LaFerla, F.M. Alzheimer’s disease. N. Engl. J. Med., 2010, 362(4), 329-344.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[259]
Citron, M. Alzheimer’s disease: strategies for disease modification. Nat. Rev. Drug Discov., 2010, 9(5), 387-398.
[http://dx.doi.org/10.1038/nrd2896] [PMID: 20431570]
[260]
Ladiwala, A.R.A.; Dordick, J.S.; Tessier, P.M. Aromatic small molecules remodel toxic soluble oligomers of amyloid β through three independent pathways. J. Biol. Chem., 2011, 286(5), 3209-3218.
[http://dx.doi.org/10.1074/jbc.M110.173856] [PMID: 21098486]
[261]
Ono, K.; Yoshiike, Y.; Takashima, A.; Hasegawa, K.; Naiki, H.; Yamada, M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J. Neurochem., 2003, 87(1), 172-181.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01976.x] [PMID: 12969264]
[262]
World Health Organization. Cancer, http://www. who. int/mediacentre/factsheets/fs297/en
[263]
Merlo, D.F.; Filiberti, R.; Kobernus, M.; Bartonova, A.; Gamulin, M.; Ferencic, Z.; Dusinska, M.; Fucic, A. Cancer risk and the complexity of the interactions between environmental and host factors: HENVINET interactive diagrams as simple tools for exploring and understanding the scientific evidence. Environ. Health, 2012, 11(S1), S9.
[http://dx.doi.org/10.1186/1476-069X-11-S1-S9] [PMID: 22759509]
[264]
Hochberg, M.E.; Noble, R.J. A framework for how environment contributes to cancer risk. Ecol. Lett., 2017, 20(2), 117-134.
[http://dx.doi.org/10.1111/ele.12726] [PMID: 28090737]
[265]
Fidler, M.M.; Bray, F.; Soerjomataram, I. The global cancer burden and human development: a review. Scand. J. Public Health, 2018, 46(1), 27-36.
[http://dx.doi.org/10.1177/1403494817715400] [PMID: 28669281]
[266]
Ciardiello, F.; Tortora, G. Epidermal Growth Factor Receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur. J. Cancer, 2003, 39(10), 1348-1354.
[http://dx.doi.org/10.1016/S0959-8049(03)00235-1] [PMID: 12826036]
[267]
Cohen, M.H.; Johnson, J.R.; Chen, Y-F.; Sridhara, R.; Pazdur, R. FDA drug approval summary: erlotinib (Tarceva) tablets. Oncologist, 2005, 10(7), 461-466.
[http://dx.doi.org/10.1634/theoncologist.10-7-461] [PMID: 16079312]
[268]
Cohen, M.H.; Williams, G.A.; Sridhara, R.; Chen, G.; Pazdur, R. FDA drug approval summary: gefitinib (ZD1839) (Iressa) tablets. Oncologist, 2003, 8(4), 303-306.
[http://dx.doi.org/10.1634/theoncologist.8-4-303] [PMID: 12897327]
[269]
Tan, F.; Shi, Y.; Wang, Y.; Ding, L.; Yuan, X.; Sun, Y. Icotinib, a selective EGF receptor tyrosine kinase inhibitor, for the treatment of non-small-cell lung cancer. Future Oncol., 2015, 11(3), 385-397.
[http://dx.doi.org/10.2217/fon.14.249] [PMID: 25675121]
[270]
Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci., 2015, 36(7), 422-439.
[http://dx.doi.org/10.1016/j.tips.2015.04.005] [PMID: 25975227]
[271]
Dungo, R.T.; Keating, G.M. Afatinib: first global approval. Drugs, 2013, 73(13), 1503-1515.
[http://dx.doi.org/10.1007/s40265-013-0111-6] [PMID: 23982599]
[272]
Leung, E.L-H.; Fan, X-X.; Wong, M.P.; Jiang, Z-H.; Liu, Z-Q.; Yao, X-J.; Lu, L-L.; Zhou, Y-L.; Yau, L-F.; Tin, V.P-C.; Liu, L. Targeting tyrosine kinase inhibitor-resistant non-small cell lung cancer by inducing epidermal growth factor receptor degradation via methionine 790 oxidation. Antioxid. Redox Signal., 2016, 24(5), 263-279.
[http://dx.doi.org/10.1089/ars.2015.6420] [PMID: 26528827]
[273]
Schacher-Kaufmann, S.; Pless, M. Acute fatal liver toxicity under erlotinib. Case Rep. Oncol., 2010, 3(2), 182-188.
[http://dx.doi.org/10.1159/000315366] [PMID: 20740194]
[274]
Banerji, B.; Chandrasekhar, K.; Sreenath, K.; Roy, S.; Nag, S.; Saha, K.D. Synthesis of triazole-substituted quinazoline hybrids for anticancer activity and a lead compound as the EGFR blocker and ROS inducer agent. ACS Omega, 2018, 3(11), 16134-16142.
[http://dx.doi.org/10.1021/acsomega.8b01960] [PMID: 30556027]
[275]
Rajput, R.; Mishra, A.P. A review on biological activity of quinazolinones. Int. J. Pharm. Pharm. Sci., 2012, 4(2), 66-70.
[276]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[277]
Shang, X.F.; Morris-Natschke, S.L.; Yang, G.Z.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Zhang, J.Y.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev., 2018, 38(5), 1614-1660.
[http://dx.doi.org/10.1002/med.21492] [PMID: 29485730]
[278]
Cheng, C-M.; Lee, Y-J.; Wang, W-T.; Hsu, C-T.; Tsai, J-S.; Wu, C-M.; Ou, K-L.; Yang, T-S. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers. Biochem. Biophys. Res. Commun., 2011, 404(1), 297-301.
[http://dx.doi.org/10.1016/j.bbrc.2010.11.110] [PMID: 21130075]
[279]
Selvam, T.P.; Kumar, P.V. Quinazoline marketed drugs. Research in Pharmacy, 2011, 1(1), 1-21.
[280]
Medapi, B.; Suryadevara, P.; Renuka, J.; Sridevi, J.P.; Yogeeswari, P.; Sriram, D. 4-Aminoquinoline derivatives as novel Mycobacterium tuberculosis GyrB inhibitors: Structural optimization, synthesis and biological evaluation. Eur. J. Med. Chem., 2015, 103, 1-16.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.032] [PMID: 26318054]
[281]
Mendoza-Martínez, C.; Galindo-Sevilla, N.; Correa-Basurto, J.; Ugalde-Saldivar, V.M.; Rodríguez-Delgado, R.G.; Hernández-Pineda, J.; Padierna-Mota, C.; Flores-Alamo, M.; Hernández-Luis, F. Antileishmanial activity of quinazoline derivatives: synthesis, docking screens, molecular dynamic simulations and electrochemical studies. Eur. J. Med. Chem., 2015, 92, 314-331.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.051] [PMID: 25576738]
[282]
Rejhová, A.; Opattová, A.; Čumová, A.; Slíva, D.; Vodička, P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem., 2018, 144, 582-594.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.039] [PMID: 29289883]
[283]
Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Chemosensitization by ursolic acid: a new avenue for cancer therapy. In: Role of Nutraceuticals in Cancer Chemosensitization; Elsevier, 2018; pp. 99-109.
[http://dx.doi.org/10.1016/B978-0-12-812373-7.00005-X]
[284]
Ding, Y.; Guo, H.; Ge, W.; Chen, X.; Li, S.; Wang, M.; Chen, Y.; Zhang, Q. Copper(I) oxide nanoparticles catalyzed click chemistry based synthesis of melampomagnolide B-triazole conjugates and their anti-cancer activities. Eur. J. Med. Chem., 2018, 156, 216-229.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.058] [PMID: 30006167]
[285]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[286]
Longley, D.; Johnston, P. Molecular mechanisms of drug resistance. The J. Pathol., 2005, 205(2), 275-292.
[http://dx.doi.org/10.1002/path.1706]
[287]
Yoshida, G.J.; Saya, H. Therapeutic strategies targeting cancer stem cells. Cancer Sci., 2016, 107(1), 5-11.
[http://dx.doi.org/10.1111/cas.12817] [PMID: 26362755]
[288]
Magee, J.A.; Piskounova, E.; Morrison, S.J. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 2012, 21(3), 283-296.
[http://dx.doi.org/10.1016/j.ccr.2012.03.003] [PMID: 22439924]
[289]
Carke, M. Cancer stem cells-perspectives on current status and future directions. Cancer Res., 2006, 66(19), 9339-9344.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3126] [PMID: 16990346]
[290]
Nguyen, L.V.; Vanner, R.; Dirks, P.; Eaves, C.J. Cancer stem cells: an evolving concept. Nat. Rev. Cancer, 2012, 12(2), 133-143.
[http://dx.doi.org/10.1038/nrc3184] [PMID: 22237392]
[291]
Alison, M.R.; Lim, S.M.; Nicholson, L.J. Cancer stem cells: problems for therapy? J. Pathol., 2011, 223(2), 147-161.
[http://dx.doi.org/10.1002/path.2793] [PMID: 21125672]
[292]
Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today, 2010, 15(15-16), 668-678.
[http://dx.doi.org/10.1016/j.drudis.2010.06.002] [PMID: 20541036]
[293]
Ren, Y.; Yu, J.; Kinghorn, A.D. Development of anticancer agents from plant-derived sesquiterpene lactones. Curr. Med. Chem., 2016, 23(23), 2397-2420.
[http://dx.doi.org/10.2174/0929867323666160510123255] [PMID: 27160533]
[294]
Janganati, V.; Penthala, N.R.; Madadi, N.R.; Chen, Z.; Crooks, P.A. Anti-cancer activity of carbamate derivatives of melampomagnolide B. Bioorg. Med. Chem. Lett., 2014, 24(15), 3499-3502.
[http://dx.doi.org/10.1016/j.bmcl.2014.05.059] [PMID: 24928404]
[295]
Penthala, N.R.; Bommagani, S.; Janganati, V.; MacNicol, K.B.; Cragle, C.E.; Madadi, N.R.; Hardy, L.L.; MacNicol, A.M.; Crooks, P.A. Heck products of parthenolide and melampomagnolide-B as anticancer modulators that modify cell cycle progression. Eur. J. Med. Chem., 2014, 85, 517-525.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.022] [PMID: 25117652]
[296]
Janganati, V.; Ponder, J.; Jordan, C.T.; Borrelli, M.J.; Penthala, N.R.; Crooks, P.A. Dimers of melampomagnolide B exhibit potent anticancer activity against hematological and solid tumor cells. J. Med. Chem., 2015, 58(22), 8896-8906.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01187] [PMID: 26540463]
[297]
El-Feraly, F.S. Melampolides from Magnolia grandiflora. Phytochemistry, 1984, 23(10), 2372-2374.
[http://dx.doi.org/10.1016/S0031-9422(00)80557-9]
[298]
Chadwick, M.; Trewin, H.; Gawthrop, F.; Wagstaff, C. Sesquiterpenoids lactones: benefits to plants and people. Int. J. Mol. Sci., 2013, 14(6), 12780-12805.
[http://dx.doi.org/10.3390/ijms140612780] [PMID: 23783276]
[299]
Gach, K.; Długosz, A.; Janecka, A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. Naunyn Schmiedebergs Arch. Pharmacol., 2015, 388(5), 477-486.
[http://dx.doi.org/10.1007/s00210-015-1096-3] [PMID: 25656627]
[300]
Bork, P.M.; Schmitz, M.L.; Kuhnt, M.; Escher, C.; Heinrich, M. Sesquiterpene lactone containing Mexican Indian medicinal plants and pure sesquiterpene lactones as potent inhibitors of transcription factor NF-kappaB. FEBS Lett., 1997, 402(1), 85-90.
[http://dx.doi.org/10.1016/S0014-5793(96)01502-5] [PMID: 9013864]
[301]
Hehner, S.P.; Heinrich, M.; Bork, P.M.; Vogt, M.; Ratter, F.; Lehmann, V.; Schulze-Osthoff, K.; Dröge, W.; Schmitz, M.L. Sesquiterpene lactones specifically inhibit activation of NF-κ B by preventing the degradation of I κ B-α and I κ B-β. J. Biol. Chem., 1998, 273(3), 1288-1297.
[http://dx.doi.org/10.1074/jbc.273.3.1288] [PMID: 9430659]
[302]
Karin, M.; Cao, Y.; Greten, F.R.; Li, Z-W. NF-kappaB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer, 2002, 2(4), 301-310.
[http://dx.doi.org/10.1038/nrc780] [PMID: 12001991]
[303]
Oka, D.; Nishimura, K.; Shiba, M.; Nakai, Y.; Arai, Y.; Nakayama, M.; Takayama, H.; Inoue, H.; Okuyama, A.; Nonomura, N. Sesquiterpene lactone parthenolide suppresses tumor growth in a xenograft model of renal cell carcinoma by inhibiting the activation of NF-kappaB. Int. J. Cancer, 2007, 120(12), 2576-2581.
[http://dx.doi.org/10.1002/ijc.22570] [PMID: 17290398]
[304]
Dai, Y.; Guzman, M.L.; Chen, S.; Wang, L.; Yeung, S.K.; Pei, X.Y.; Dent, P.; Jordan, C.T.; Grant, S. The NF (Nuclear factor)-κB inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1-dependent apoptosis in human acute myeloid leukaemia cells. Br. J. Haematol., 2010, 151(1), 70-83.
[http://dx.doi.org/10.1111/j.1365-2141.2010.08319.x] [PMID: 20701602]
[305]
Paolicchi, A.; Dominici, S.; Pieri, L.; Maellaro, E.; Pompella, A. Glutathione catabolism as a signaling mechanism. Biochem. Pharmacol., 2002, 64(5-6), 1027-1035.
[http://dx.doi.org/10.1016/S0006-2952(02)01173-5] [PMID: 12213602]
[306]
Pei, S.; Minhajuddin, M.; Callahan, K.P.; Balys, M.; Ashton, J.M.; Neering, S.J.; Lagadinou, E.D.; Corbett, C.; Ye, H.; Liesveld, J.L.; O’Dwyer, K.M.; Li, Z.; Shi, L.; Greninger, P.; Settleman, J.; Benes, C.; Hagen, F.K.; Munger, J.; Crooks, P.A.; Becker, M.W.; Jordan, C.T. Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells. J. Biol. Chem., 2013, 288(47), 33542-33558.
[http://dx.doi.org/10.1074/jbc.M113.511170] [PMID: 24089526]
[307]
Guzman, M.L.; Rossi, R.M.; Karnischky, L.; Li, X.; Peterson, D.R.; Howard, D.S.; Jordan, C.T. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood, 2005, 105(11), 4163-4169.
[http://dx.doi.org/10.1182/blood-2004-10-4135] [PMID: 15687234]
[308]
Guzman, M.L.; Rossi, R.M.; Neelakantan, S.; Li, X.; Corbett, C.A.; Hassane, D.C.; Becker, M.W.; Bennett, J.M.; Sullivan, E.; Lachowicz, J.L.; Vaughan, A.; Sweeney, C.J.; Matthews, W.; Carroll, M.; Liesveld, J.L.; Crooks, P.A.; Jordan, C.T. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood, 2007, 110(13), 4427-4435.
[http://dx.doi.org/10.1182/blood-2007-05-090621] [PMID: 17804695]
[309]
Macías, F.A.; Galindo, J.C.G.; Massanet, G.M. Potential allelopathic activity of several sesquiterpene lactone models. Phytochemistry, 1992, 31(6), 1969-1977.
[http://dx.doi.org/10.1016/0031-9422(92)80343-D]
[310]
Bommagani, S.; Ponder, J.; Penthala, N.R.; Janganati, V.; Jordan, C.T.; Borrelli, M.J.; Crooks, P.A. Indole carboxylic acid esters of melampomagnolide B are potent anticancer agents against both hematological and solid tumor cells. Eur. J. Med. Chem., 2017, 136, 393-405.
[http://dx.doi.org/10.1016/j.ejmech.2017.05.031] [PMID: 28525840]
[311]
Janganati, V.; Ponder, J.; Thakkar, S.; Jordan, C.T.; Crooks, P.A. Succinamide derivatives of melampomagnolide B and their anti-cancer activities. Bioorg. Med. Chem., 2017, 25(14), 3694-3705.
[http://dx.doi.org/10.1016/j.bmc.2017.05.008] [PMID: 28545815]
[312]
Janganati, V.; Ponder, J.; Balasubramaniam, M.; Bhat-Nakshatri, P.; Bar, E.E.; Nakshatri, H.; Jordan, C.T.; Crooks, P.A. MMB triazole analogs are potent NF-κB inhibitors and anti-cancer agents against both hematological and solid tumor cells. Eur. J. Med. Chem., 2018, 157, 562-581.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.010] [PMID: 30121494]
[313]
Masood-Ur-Rahman,; Mohammad, Y.; Fazili, K.M.; Bhat, K.A.; Ara, T. Synthesis and biological evaluation of novel 3-O-tethered triazoles of diosgenin as potent antiproliferative agents. Steroids, 2017, 118, 1-8.
[http://dx.doi.org/10.1016/j.steroids.2016.11.003] [PMID: 27864018]
[314]
Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. CuAAC-ensembled 1, 2, 3-triazole-linked isosteres as pharmacophores in drug discovery. RSC Advances, 2020, 10(10), 5610-5635.
[http://dx.doi.org/10.1039/C9RA09510A]
[315]
Butler, M.S. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25(3), 475-516.
[http://dx.doi.org/10.1039/b514294f] [PMID: 18497896]
[316]
Thibodeaux, C.J.; Melançon, C.E., III; Liu, H.W. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew. Chem. Int. Ed. Engl., 2008, 47(51), 9814-9859.
[http://dx.doi.org/10.1002/anie.200801204] [PMID: 19058170]
[317]
Williams, G.J.; Gantt, R.W.; Thorson, J.S. The impact of enzyme engineering upon natural product glycodiversification. Curr. Opin. Chem. Biol., 2008, 12(5), 556-564.
[http://dx.doi.org/10.1016/j.cbpa.2008.07.013] [PMID: 18678278]
[318]
Kennedy, J. Mutasynthesis, chemobiosynthesis, and back to semi-synthesis: combining synthetic chemistry and biosynthetic engineering for diversifying natural products. Nat. Prod. Rep., 2008, 25(1), 25-34.
[http://dx.doi.org/10.1039/B707678A] [PMID: 18250896]
[319]
Kirschning, A.; Taft, F.; Knobloch, T. Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering. Org. Biomol. Chem., 2007, 5(20), 3245-3259.
[http://dx.doi.org/10.1039/b709549j] [PMID: 17912378]
[320]
Olano, C.; Méndez, C.; Salas, J.A. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat. Prod. Rep., 2010, 27(4), 571-616.
[http://dx.doi.org/10.1039/b911956f] [PMID: 20352666]
[321]
Deb Roy, A.; Grüschow, S.; Cairns, N.; Goss, R.J. Gene expression enabling synthetic diversification of natural products: chemogenetic generation of pacidamycin analogs. J. Am. Chem. Soc., 2010, 132(35), 12243-12245.
[http://dx.doi.org/10.1021/ja1060406] [PMID: 20712319]
[322]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[323]
Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
[324]
Dupuis, S.N.; Robertson, A.W.; Veinot, T.; Monro, S.M.; Douglas, S.E.; Syvitski, R.T.; Goralski, K.B.; McFarland, S.A.; Jakeman, D.L. Synthetic diversification of natural products: semi-synthesis and evaluation of triazole jadomycins. Chem. Sci. (Camb.), 2012, 3(5), 1640-1644.
[http://dx.doi.org/10.1039/c2sc00663d]
[325]
Jakeman, D.L.; Graham, C.L.; Young, W.; Vining, L.C. Culture conditions improving the production of jadomycin B. J. Ind. Microbiol. Biotechnol., 2006, 33(9), 767-772.
[http://dx.doi.org/10.1007/s10295-006-0113-4] [PMID: 16568271]
[326]
Jakeman, D.L.; Dupuis, S.N.; Graham, C.L. Isolation and characterization of jadomycin L from Streptomyces venezuelae ISP5230 for solid tumor efficacy studies. Pure Appl. Chem., 2009, 81(6), 1041-1049.
[http://dx.doi.org/10.1351/PAC-CON-08-11-08]
[327]
Cottreau, K.M.; Spencer, C.; Wentzell, J.R.; Graham, C.L.; Borissow, C.N.; Jakeman, D.L.; McFarland, S.A. Diverse DNA-cleaving capacities of the jadomycins through precursor-directed biosynthesis. Org. Lett., 2010, 12(6), 1172-1175.
[http://dx.doi.org/10.1021/ol902907r] [PMID: 20175518]
[328]
Borissow, C.N.; Graham, C.L.; Syvitski, R.T.; Reid, T.R.; Blay, J.; Jakeman, D.L. Stereochemical integrity of oxazolone ring-containing jadomycins. ChemBioChem, 2007, 8(10), 1198-1203.
[http://dx.doi.org/10.1002/cbic.200700204] [PMID: 17570722]
[329]
Jakeman, D.L.; Bandi, S.; Graham, C.L.; Reid, T.R.; Wentzell, J.R.; Douglas, S.E. Antimicrobial activities of jadomycin B and structurally related analogues. Antimicrob. Agents Chemother., 2009, 53(3), 1245-1247.
[http://dx.doi.org/10.1128/AAC.00801-08] [PMID: 19075054]
[330]
Zheng, J-T.; Rix, U.; Zhao, L.; Mattingly, C.; Adams, V.; Chen, Q.; Rohr, J.; Yang, K-Q. Cytotoxic activities of new jadomycin derivatives. J. Antibiot. (Tokyo), 2005, 58(6), 405-408.
[http://dx.doi.org/10.1038/ja.2005.51] [PMID: 16156517]
[331]
Biot, C.; Chibale, K. Novel approaches to antimalarial drug discovery. Infect. Disord. Drug Targets, 2006, 6(2), 173-204.
[http://dx.doi.org/10.2174/187152606784112155] [PMID: 16789878]
[332]
Daily, J.P. Malaria 2017: update on the clinical literature and management. Curr. Infect. Dis. Rep., 2017, 19(8), 28.
[http://dx.doi.org/10.1007/s11908-017-0583-8] [PMID: 28634831]
[333]
Oliveira, A.B.; Dolabela, M.F.; Braga, F.C.; Jácome, R.L.; Varotti, F.P.; Póvoa, M.M. Plant-derived antimalarial agents: new leads and efficient phythomedicines. Part I. Alkaloids. An. Acad. Bras. Cienc., 2009, 81(4), 715-740.
[http://dx.doi.org/10.1590/S0001-37652009000400011] [PMID: 19893898]
[334]
França, T.C.; Santos, M.G.d.; Figueroa-Villar, J.D. Malária: aspectos históricos e quimioterapia. Quim. Nova, 2008, 31(5), 1271-1278.
[http://dx.doi.org/10.1590/S0100-40422008000500060]
[335]
Srinivasan, T.; Srivastava, G.K.; Pathak, A.; Batra, S.; Raj, K.; Singh, K.; Puri, S.K.; Kundu, B. Solid-phase synthesis and bioevaluation of lupeol-based libraries as antimalarial agents. Bioorg. Med. Chem. Lett., 2002, 12(20), 2803-2806.
[http://dx.doi.org/10.1016/S0960-894X(02)00623-6] [PMID: 12270150]
[336]
Gallo, M.B.; Sarachine, M.J. Biological activities of lupeol. Int. J. Biomed. Pharm. Sci, 2009, 3(1), 46-66.
[337]
Alves, T.M.; Nagem, T.J.; de Carvalho, L.H.; Krettli, A.U.; Zani, C.L. Antiplasmodial triterpene from Vernonia brasiliana. Planta Med., 1997, 63(6), 554-555.
[http://dx.doi.org/10.1055/s-2006-957764] [PMID: 9434611]
[338]
Borgati, T.F.; Pereira, G.R.; Brandão, G.C.; Santos, J.O.; Fernandes, D.A.M.; Paula, R.C.d.; Nascimento, M.F.A.d.; Soares, L.F.; Lopes, J.C.D.; Souza Filho, J.D.d. Synthesis by click reactions and antiplasmodial activity of lupeol 1, 2, 3-triazole derivatives. J. Braz. Chem. Soc., 2017, 28(10), 1850-1856.
[http://dx.doi.org/10.21577/0103-5053.20170013]
[339]
Whiting, M.; Muldoon, J.; Lin, Y-C.; Silverman, S.M.; Lindstrom, W.; Olson, A.J.; Kolb, H.C.; Finn, M.G.; Sharpless, K.B.; Elder, J.H.; Fokin, V.V. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed. Engl., 2006, 45(9), 1435-1439.
[http://dx.doi.org/10.1002/anie.200502161] [PMID: 16425339]
[340]
Hein, J.E.; Tripp, J.C.; Krasnova, L.B.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed cycloaddition of organic azides and 1-iodoalkynes. Angew. Chem. Int. Ed. Engl., 2009, 48(43), 8018-8021.
[http://dx.doi.org/10.1002/anie.200903558] [PMID: 19774581]
[341]
Pereira, G.R.; Brandão, G.C.; Arantes, L.M.; de Oliveira, H.A., Jr; de Paula, R.C.; do Nascimento, M.F.A.; dos Santos, F.M.; da Rocha, R.K.; Lopes, J.C.D.; de Oliveira, A.B. 7-Chloroquinolinotriazoles: synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies. Eur. J. Med. Chem., 2014, 73, 295-309.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.022] [PMID: 24469080]
[342]
Santos, J.O.; Pereira, G.R.; Brandão, G.C.; Borgati, T.F.; Arantes, L.M.; Paula, R.C.d.; Soares, L.F.; do Nascimento, M.F.; Ferreira, M.R.; Taranto, A.G. Synthesis, in vitro antimalarial activity and in silico studies of hybrid kauranoid 1, 2, 3-triazoles derived from naturally occurring diterpenes. J. Braz. Chem. Soc., 2016, 27(3), 551-565.
[http://dx.doi.org/10.5935/0103-5053.20150287]
[343]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, 25-64.
[http://dx.doi.org/10.4137/PMC.S14459 ]
[344]
Catry, B.; Dewulf, J.; Maes, D.; Pardon, B.; Callens, B.; Vanrobaeys, M.; Opsomer, G.; de Kruif, A.; Haesebrouck, F. Effect of antimicrobial consumption and production type on antibacterial resistance in the bovine respiratory and digestive tract. PLoS One, 2016, 11(1), e0146488.
[http://dx.doi.org/10.1371/journal.pone.0146488] [PMID: 26820134]
[345]
Darvishi, E.; Omidi, M.; Bushehri, A.A.S.; Golshani, A.; Smith, M.L. The antifungal eugenol perturbs dual aromatic and branched-chain amino acid permeases in the cytoplasmic membrane of yeast. PLoS One, 2013, 8(10), e76028.
[http://dx.doi.org/10.1371/journal.pone.0076028] [PMID: 24204588]
[346]
Wang, C.; Fan, Y. Eugenol enhances the resistance of tomato against tomato yellow leaf curl virus. J. Sci. Food Agric., 2014, 94(4), 677-682.
[http://dx.doi.org/10.1002/jsfa.6304] [PMID: 23852671]
[347]
Coelho, C.M.; Santos, T.d.; Freitas, P.G.; Nunes, J.B.; Marques, M.J.; Padovani, C.G.; Júdice, W.A.; Camps, I.; da Silveira, N.J.; Carvalho, D.T. Design, synthesis, biological evaluation and molecular modeling studies of novel eugenol esters as leishmanicidal agents. J. Braz. Chem. Soc., 2018, 29(4), 715-728.
[348]
Andrade-Ochoa, S.; Nevárez-Moorillón, G.V.; Sánchez-Torres, L.E.; Villanueva-García, M.; Sánchez-Ramírez, B.E.; Rodríguez-Valdez, L.M.; Rivera-Chavira, B.E. Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis. BMC Complement. Altern. Med., 2015, 15(1), 332.
[http://dx.doi.org/10.1186/s12906-015-0858-2] [PMID: 26400221]
[349]
Phatak, P.S.; Bakale, R.D.; Kulkarni, R.S.; Dhumal, S.T.; Dixit, P.P.; Krishna, V.S.; Sriram, D.; Khedkar, V.M.; Haval, K.P. Design and synthesis of new indanol-1,2,3-triazole derivatives as potent antitubercular and antimicrobial agents. Bioorg. Med. Chem. Lett., 2020, 30(22), 127579.
[http://dx.doi.org/10.1016/j.bmcl.2020.127579] [PMID: 32987135]
[350]
Srinivasarao, S.; Nandikolla, A.; Suresh, A.; Ewa, A.K.; Głogowska, A.; Ghosh, B.; Kumar, B.K.; Murugesan, S.; Pulya, S.; Aggarwal, H.; Sekhar, K.V.G.C. Discovery of 1,2,3-triazole based quinoxaline-1,4-di-N-oxide derivatives as potential anti-tubercular agents. Bioorg. Chem., 2020, 100, 103955.
[http://dx.doi.org/10.1016/j.bioorg.2020.103955] [PMID: 32464405]
[351]
Santos, T.d.; Coelho, C.M.; Elias, T.C.; Siqueira, F.S.; Nora, E.S.; Campos, M.; de Souza, G.A.; Coelho, L.F.; Carvalho, D.T. Synthesis and biological evaluation of new eugenol-derived 1, 2, 3-triazoles as antimyco bacterial agents. J. Braz. Chem. Soc., 2019, 30(7), 1425-1436.
[http://dx.doi.org/10.21577/0103-5053.20190038]]
[352]
Murie, V.E.; Marques, L.M.; Souza, G.E.; Oliveira, A.R.; Lopes, N.P.; Clososki, G.C. Acetaminophen prodrug: microwave-assisted synthesis and in vitro metabolism evaluation by mass spectrometry. J. Braz. Chem. Soc., 2016, 27(6), 1121-1128.
[http://dx.doi.org/10.5935/0103-5053.20160005]
[353]
Hemelaere, R.; Carreaux, F.; Carboni, B. A diastereoselective route to trans-2-aryl-2, 3-dihydrobenzofurans through sequential cross-metathesis/isomerization/allylboration reactions: synthesis of bioactive neolignans. Eur. J. Org. Chem., 2015, 2015(11), 2470-2481.
[http://dx.doi.org/10.1002/ejoc.201500019]
[354]
Kawatkar, S.P.; Keating, T.A.; Olivier, N.B.; Breen, J.N.; Green, O.M.; Guler, S.Y.; Hentemann, M.F.; Loch, J.T.; McKenzie, A.R.; Newman, J.V.; Otterson, L.G.; Martínez-Botella, G. Antibacterial inhibitors of Gram-positive thymidylate kinase: structure-activity relationships and chiral preference of a new hydrophobic binding region. J. Med. Chem., 2014, 57(11), 4584-4597.
[http://dx.doi.org/10.1021/jm500463c] [PMID: 24828090]
[355]
Vujjini, S.K.; Datla, V.K.R.; Badarla, K.R.; Vetukuri, V.P.R.; Bandichhor, R.; Kagga, M.; Cherukupally, P. Total synthesis of agomelatine via Friedel–Crafts acylation followed by Willgerodt–Kindler reaction. Tetrahedron Lett., 2014, 55(29), 3885-3887.
[http://dx.doi.org/10.1016/j.tetlet.2014.03.106]
[356]
Pereira, G.R.; Santos, L.J.; Luduvico, I.; Alves, R.B.; de Freitas, R.P. ‘Click’ chemistry as a tool for the facile synthesis of fullerene glycoconjugate derivatives. Tetrahedron Lett., 2010, 51(7), 1022-1025.
[http://dx.doi.org/10.1016/j.tetlet.2009.12.050]
[357]
Ghosh, A.K.; Liu, C. Total synthesis of antitumor depsipeptide (-)-doliculide. Org. Lett., 2001, 3(4), 635-638.
[http://dx.doi.org/10.1021/ol0100069] [PMID: 11178844]
[358]
Keraani, A.; Fischmeister, C.; Renouard, T.; Le Floch, M.; Baudry, A.; Bruneau, C.; Rabiller-Baudry, M. Silica and zirconia supported olefin metathesis pre-catalysts: Synthesis, catalytic activity and multiple-use in dimethyl carbonate. J. Mol. Catal. Chem., 2012, 357, 73-80.
[http://dx.doi.org/10.1016/j.molcata.2012.01.022]
[359]
Wang, H.; Ma, Y.; Tian, H.; Yu, A.; Chang, J.; Wu, Y. Tetrabutyl ammonium bromide-mediated benzylation of phenols in water under mild condition. Tetrahedron, 2014, 70(16), 2669-2673.
[http://dx.doi.org/10.1016/j.tet.2014.01.004]
[360]
Pu, X.; Hu, J.; Zhao, Y.; Shi, Z. Nickel-catalyzed decarbonylative borylation and silylation of esters. ACS Catal., 2016, 6(10), 6692-6698.
[http://dx.doi.org/10.1021/acscatal.6b01956]
[361]
Zhu, Z-Y.; Cui, D.; Gao, H.; Dong, F-Y.; Liu, X.C.; Liu, F.; Chen, L.; Zhang, Y.M. Efficient synthesis and activity of beneficial intestinal flora of two lactulose-derived oligosaccharides. Eur. J. Med. Chem., 2016, 114, 8-13.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.007] [PMID: 26974370]
[362]
Teixeira, R.R.; Gazolla, P.A.R.; da Silva, A.M.; Borsodi, M.P.G.; Bergmann, B.R.; Ferreira, R.S.; Vaz, B.G.; Vasconcelos, G.A.; Lima, W.P. Synthesis and leishmanicidal activity of eugenol derivatives bearing 1,2,3-triazole functionalities. Eur. J. Med. Chem., 2018, 146, 274-286.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.046] [PMID: 29407957]
[363]
Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; Team, W.L.C. WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012, 7(5), e35671.
[http://dx.doi.org/10.1371/journal.pone.0035671] [PMID: 22693548]
[364]
Organization, W.H. Leishmaniasis Fact sheet N 375; WHO Media Centre: Geneva, Switzerland, 2015.
[365]
Sundar, S.; Chakravarty, J. Investigational drugs for visceral leishmaniasis. Expert Opin. Investig. Drugs, 2015, 24(1), 43-59.
[http://dx.doi.org/10.1517/13543784.2014.954035] [PMID: 25409760]
[366]
García Bustos, M.F.; Barrio, A.; Prieto, G.G.; de Raspi, E.M.; Cimino, R.O.; Cardozo, R.M.; Parada, L.A.; Yeo, M.; Soto, J.; Uncos, D.A.; Parodi, C.; Basombrío, M.A. In vivo antileishmanial efficacy of miltefosine against Leishmania (Leishmania) amazonensis. J. Parasitol., 2014, 100(6), 840-847.
[http://dx.doi.org/10.1645/13-376.1] [PMID: 25014108]
[367]
Frézard, F.; Demicheli, C.; Ribeiro, R.R. Pentavalent antimonials: new perspectives for old drugs. Molecules, 2009, 14(7), 2317-2336.
[http://dx.doi.org/10.3390/molecules14072317] [PMID: 19633606]
[368]
Croft, S.L.; Sundar, S.; Fairlamb, A.H. Drug resistance in leishmaniasis. Clin. Microbiol. Rev., 2006, 19(1), 111-126.
[http://dx.doi.org/10.1128/CMR.19.1.111-126.2006] [PMID: 16418526]
[369]
Ouellette, M.; Drummelsmith, J.; Papadopoulou, B. Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist. Updat., 2004, 7(4-5), 257-266.
[http://dx.doi.org/10.1016/j.drup.2004.07.002] [PMID: 15533763]
[370]
Tiew, K-C.; Dou, D.; Teramoto, T.; Lai, H.; Alliston, K.R.; Lushington, G.H.; Padmanabhan, R.; Groutas, W.C. Inhibition of Dengue virus and West Nile virus proteases by click chemistry-derived benz[d]isothiazol-3(2H)-one derivatives. Bioorg. Med. Chem., 2012, 20(3), 1213-1221.
[http://dx.doi.org/10.1016/j.bmc.2011.12.047] [PMID: 22249124]
[371]
Borgati, T.F.; Alves, R.B.; Teixeira, R.R.; Freitas, R.P.; Perdigão, T.G.; Silva, S.F.d.; Santos, A.A.d.; Bastidas, A.J.O. Synthesis and phytotoxic activity of 1, 2, 3-triazole derivatives. J. Braz. Chem. Soc., 2013, 24(6), 953-961.
[http://dx.doi.org/10.5935/0103-5053.20130121]
[372]
Ueda-Nakamura, T.; Mendonça-Filho, R.R.; Morgado-Díaz, J.A.; Korehisa Maza, P.; Prado Dias Filho, B.; Aparício Garcia Cortez, D.; Alviano, D.S. Rosa, Mdo.S.; Lopes, A.H.C.; Alviano, C.S.; Nakamura, C.V. Antileishmanial activity of eugenol-rich essential oil from Ocimum gratissimum. Parasitol. Int., 2006, 55(2), 99-105.
[http://dx.doi.org/10.1016/j.parint.2005.10.006] [PMID: 16343984]
[373]
Kumar, S.V.; Scottwell, S.Ø.; Waugh, E.; McAdam, C.J.; Hanton, L.R.; Brooks, H.J.; Crowley, J.D. Antimicrobial properties of tris (homoleptic) ruthenium (II) 2-Pyridyl-1, 2, 3-triazole “click” complexes against pathogenic bacteria, including methicillin-resistant staphylococcus aureus (MRSA). Inorg. Chem., 2016, 55(19), 9767-9777.
[http://dx.doi.org/10.1021/acs.inorgchem.6b01574] [PMID: 27657170]
[374]
Natan, M.; Gutman, O.; Lavi, R.; Margel, S.; Banin, E. Killing mechanism of stable N-halamine cross-linked polymethacrylamide nanoparticles that selectively target bacteria. ACS Nano, 2015, 9(2), 1175-1188.
[http://dx.doi.org/10.1021/nn507168x] [PMID: 25602279]
[375]
Frieden, T. Antibiotic resistance threats in the United States, 2013. Center. Disease Control Prevention. US Depart. Health Human Service., 2013, 23, 11-28.
[http://dx.doi.org/10.15620/cdc:82532]
[376]
Burt, S.A.; Ojo-Fakunle, V.T.; Woertman, J.; Veldhuizen, E.J. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One, 2014, 9(4), e93414.
[http://dx.doi.org/10.1371/journal.pone.0093414] [PMID: 24691035]
[377]
Bunders, C.A.; Richards, J.J.; Melander, C. Identification of aryl 2-aminoimidazoles as biofilm inhibitors in Gram-negative bacteria. Bioorg. Med. Chem. Lett., 2010, 20(12), 3797-3800.
[http://dx.doi.org/10.1016/j.bmcl.2010.04.042] [PMID: 20466544]
[378]
Linares, D.; Bottzeck, O.; Pereira, O.; Praud-Tabariès, A.; Blache, Y. Designing 2-aminoimidazole alkaloids analogs with anti-biofilm activities: structure-activities relationships of polysubstituted triazoles. Bioorg. Med. Chem. Lett., 2011, 21(22), 6751-6755.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.050] [PMID: 21982498]
[379]
Minvielle, M.J.; Bunders, C.A.; Melander, C. Indole/triazole conjugates are selective inhibitors and inducers of bacterial biofilms. MedChemComm, 2013, 4(6), 916-919.
[http://dx.doi.org/10.1039/c3md00064h] [PMID: 23930199]
[380]
Ballard, T.E.; Richards, J.J.; Wolfe, A.L.; Melander, C. Synthesis and antibiofilm activity of a second-generation reverse-amide oroidin library: a structure-activity relationship study. Chemistry, 2008, 14(34), 10745-10761.
[http://dx.doi.org/10.1002/chem.200801419] [PMID: 18942682]
[381]
Rogers, S.A.; Melander, C. Construction and screening of a 2-aminoimidazole library identifies a small molecule capable of inhibiting and dispersing bacterial biofilms across order, class, and phylum. Angew. Chem. Int. Ed. Engl., 2008, 47(28), 5229-5231.
[http://dx.doi.org/10.1002/anie.200800862] [PMID: 18528836]
[382]
Huigens, R.W., III; Rogers, S.A.; Steinhauer, A.T.; Melander, C. Inhibition of Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa biofilm formation with a class of TAGE-triazole conjugates. Org. Biomol. Chem., 2009, 7(4), 794-802.
[http://dx.doi.org/10.1039/b817926c] [PMID: 19194596]
[383]
Nagender, P.; Malla Reddy, G.; Naresh Kumar, R.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis, cytotoxicity, antimicrobial and anti-biofilm activities of novel pyrazolo[3,4-b]pyridine and pyrimidine functionalized 1,2,3-triazole derivatives. Bioorg. Med. Chem. Lett., 2014, 24(13), 2905-2908.
[http://dx.doi.org/10.1016/j.bmcl.2014.04.084] [PMID: 24835633]
[384]
Praud-Tabaries, A.; Dombrowsky, L.; Bottzek, O.; Briand, J-F.; Blache, Y. Synthesis of a polyprenyl-type library containing 1, 4-disubstituted-1, 2, 3-triazoles with anti-biofilm activities against Pseudoalteromonas sp. Tetrahedron Lett., 2009, 50(14), 1645-1648.
[http://dx.doi.org/10.1016/j.tetlet.2009.01.125]
[385]
Dubey, N.; Sharma, M.C.; Kumar, A.; Sharma, P. A click chemistry strategy to synthesize geraniol-coupled 1, 4-disubstituted 1, 2, 3-triazoles and exploration of their microbicidal and antioxidant potential with molecular docking profile. Med. Chem. Res., 2015, 24(6), 2717-2731.
[http://dx.doi.org/10.1007/s00044-015-1329-5]
[386]
Güzeldemirci, N.U.; Küçükbasmaci, O. Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b]thiazole moiety. Eur. J. Med. Chem., 2010, 45(1), 63-68.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.024] [PMID: 19939519]
[387]
Kim, S-H.; Bae, H.C.; Park, E-J.; Lee, C.R.; Kim, B-J.; Lee, S.; Park, H.H.; Kim, S-J.; So, I.; Kim, T.W.; Jeon, J.H. Geraniol inhibits prostate cancer growth by targeting cell cycle and apoptosis pathways. Biochem. Biophys. Res. Commun., 2011, 407(1), 129-134.
[http://dx.doi.org/10.1016/j.bbrc.2011.02.124] [PMID: 21371438]
[388]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils--a review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[389]
Tiwari, M.; Kakkar, P. Plant derived antioxidants - Geraniol and camphene protect rat alveolar macrophages against t-BHP induced oxidative stress. Toxicol. In Vitro, 2009, 23(2), 295-301.
[http://dx.doi.org/10.1016/j.tiv.2008.12.014] [PMID: 19135518]
[390]
Singh, P.; Kaur, S.; Kumar, V.; Bedi, P.M.; Mahajan, M.P.; Sehar, I.; Pal, H.C.; Saxena, A.K. Synthesis and in vitro cytotoxic evaluation of N-alkylbromo and N-alkylphthalimido-isatins. Bioorg. Med. Chem. Lett., 2011, 21(10), 3017-3020.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.043] [PMID: 21482109]
[391]
Smith Olsen, C.; Overgaard Larsen, H. Alpine medicinal plant trade and Himalayan mountain livelihood strategies. Geogr. J., 2003, 169(3), 243-254.
[http://dx.doi.org/10.1111/1475-4959.00088]
[392]
Mulliken, T.; Crofton, P. Review of the status, harvest, trade and management of seven Asian CITES-listed medicinal and aromatic plant species. BfN-Skripten; Federal Agency for Natural Conservation: Bonn, Germany, 2008, pp. 11-138.
[393]
Sautour, M.; Mitaine-Offer, A-C.; Lacaille-Dubois, M-A. The Dioscorea genus: a review of bioactive steroid saponins. J. Nat. Med., 2007, 61(2), 91-101.
[http://dx.doi.org/10.1007/s11418-006-0126-3]
[394]
Corbiere, C.; Liagre, B.; Bianchi, A.; Bordji, K.; Dauça, M.; Netter, P.; Beneytout, J-L. Different contribution of apoptosis to the antiproliferative effects of diosgenin and other plant steroids, hecogenin and tigogenin, on human 1547 osteosarcoma cells. Int. J. Oncol., 2003, 22(4), 899-905.
[http://dx.doi.org/10.3892/ijo.22.4.899] [PMID: 12632085]
[395]
Raju, J.; Patlolla, J.M.; Swamy, M.V.; Rao, C.V. Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiol. Biomarkers Prev., 2004, 13(8), 1392-1398.
[PMID: 15298963]
[396]
Malisetty, V.S.; Patlolla, J.M.; Raju, J.; Marcus, L.A.; Choi, C-I.; Rao, C.V. Chemoprevention of colon cancer by diosgenin, a steroidal saponin constituent of fenugreek. AACR, 2005, 46, 1-12.
[397]
Srinivasan, S.; Koduru, S.; Kumar, R.; Venguswamy, G.; Kyprianou, N.; Damodaran, C. Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. Int. J. Cancer, 2009, 125(4), 961-967.
[http://dx.doi.org/10.1002/ijc.24419] [PMID: 19384950]
[398]
Lepage, C.; Liagre, B.; Cook-Moreau, J.; Pinon, A.; Beneytout, J-L. Cyclooxygenase-2 and 5-lipoxygenase pathways in diosgenin-induced apoptosis in HT-29 and HCT-116 colon cancer cells. Int. J. Oncol., 2010, 36(5), 1183-1191.
[PMID: 20372792]
[399]
Raju, J.; Bird, R.P. Diosgenin, a naturally occurring steroid [corrected] saponin suppresses 3-hydroxy-3-methylglutaryl CoA reductase expression and induces apoptosis in HCT-116 human colon carcinoma cells. Cancer Lett., 2007, 255(2), 194-204.
[http://dx.doi.org/10.1016/j.canlet.2007.04.011] [PMID: 17555873]
[400]
Raju, J.; Rao, C.V. Diosgenin, a steroid saponin constituent of yams and fenugreek: emerging evidence for applications in medicine. Bioactive Compounds in Phytomedicine, 2012, 125, 143.
[http://dx.doi.org/10.5772/26700]
[401]
Hanson, J.R. Steroids: partial synthesis in medicinal chemistry. Nat. Prod. Rep., 2010, 27(6), 887-899.
[http://dx.doi.org/10.1039/c001262a] [PMID: 20424788]
[402]
Heasley, B. Chemical synthesis of the cardiotonic steroid glycosides and related natural products. Chemistry, 2012, 18(11), 3092-3120.
[http://dx.doi.org/10.1002/chem.201103733] [PMID: 22354477]
[403]
Abdelhalim, M.M.; el-Saidi, M.M.; Rabie, S.T.; Elmegeed, G.A. Synthesis of novel steroidal heterocyclic derivatives as antibacterial agents. Steroids, 2007, 72(5), 459-465.
[http://dx.doi.org/10.1016/j.steroids.2007.01.003] [PMID: 17386937]
[404]
Thomas, S.T.; Yang, X.; Sampson, N.S. Inhibition of the M. tuberculosis 3β-hydroxysteroid dehydrogenase by azasteroids. Bioorg. Med. Chem. Lett., 2011, 21(8), 2216-2219.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.004] [PMID: 21439822]
[405]
Dantas-Leite, L.; Urbina, J.A.; de Souza, W.; Vommaro, R.C. Selective anti-Toxoplasma gondii activities of azasterols. Int. J. Antimicrob. Agents, 2004, 23(6), 620-626.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.11.005] [PMID: 15194134]
[406]
Croft, S.L.; Coombs, G.H. Leishmaniasis--current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol., 2003, 19(11), 502-508.
[http://dx.doi.org/10.1016/j.pt.2003.09.008] [PMID: 14580961]
[407]
Roberts, C.W.; McLeod, R.; Rice, D.W.; Ginger, M.; Chance, M.L.; Goad, L.J. Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol. Biochem. Parasitol., 2003, 126(2), 129-142.
[http://dx.doi.org/10.1016/S0166-6851(02)00280-3] [PMID: 12615312]
[408]
Pan, L.; Lezama-Davila, C.M.; Isaac-Marquez, A.P.; Calomeni, E.P.; Fuchs, J.R.; Satoskar, A.R.; Kinghorn, A.D. Sterols with antileishmanial activity isolated from the roots of Pentalinon andrieuxii. Phytochemistry, 2012, 82, 128-135.
[http://dx.doi.org/10.1016/j.phytochem.2012.06.012] [PMID: 22840389]
[409]
Kittakoop, P.; Suttisri, R.; Chaichantipyuth, C.; Vethchagarun, S.; Suwanborirux, K. Norpregnane glycosides from a Thai soft coral, Scleronephthya pallida. J. Nat. Prod., 1999, 62(2), 318-320.
[http://dx.doi.org/10.1021/np980273w] [PMID: 10075773]
[410]
Magaraci, F.; Jimenez, C.J.; Rodrigues, C.; Rodrigues, J.C.; Braga, M.V.; Yardley, V.; de Luca-Fradley, K.; Croft, S.L.; de Souza, W.; Ruiz-Perez, L.M.; Urbina, J.; Gonzalez Pacanowska, D.; Gilbert, I.H. Azasterols as inhibitors of sterol 24-methyltransferase in Leishmania species and Trypanosoma cruzi. J. Med. Chem., 2003, 46(22), 4714-4727.
[http://dx.doi.org/10.1021/jm021114j] [PMID: 14561091]
[411]
Song, Z.; Nes, W.D. Sterol biosynthesis inhibitors: potential for transition state analogs and mechanism-based inactivators targeted at sterol methyltransferase. Lipids, 2007, 42(1), 15-33.
[http://dx.doi.org/10.1007/s11745-006-3017-1] [PMID: 17393207]
[412]
Grycová, L.; Dostál, J.; Marek, R. Quaternary protoberberine alkaloids. Phytochemistry, 2007, 68(2), 150-175.
[http://dx.doi.org/10.1016/j.phytochem.2006.10.004] [PMID: 17109902]
[413]
Da-Cunha, E.V.L.; Fechinei, I.M.; Guedes, D.N.; Barbosa-Filho, J.M.; Da Silva, M.S. Protoberberine alkaloids. Alkaloids Chem. Biol., 2005, 62, 1-75.
[http://dx.doi.org/10.1016/S1099-4831(05)62001-9] [PMID: 16265921]
[414]
Jeffs, P. The protoberberine alkaloids. In: The Alkaloids: Chemistry and Physiology; Elsevier, 1967; Vol. 9, pp. 41-115.
[415]
Bentley, K.W. β-phenylethylamines and the isoquinoline alkaloids. Nat. Prod. Rep., 2001, 18(2), 148-170.
[http://dx.doi.org/10.1039/a909672h] [PMID: 11336286]
[416]
Kukula-Koch, W.; Widelski, J. Alkaloids A2-Badal, Simone. In: Pharmacognosy; Delgoda, R., Ed.; Academic Press: Boston, 2017; pp. 163-198.
[http://dx.doi.org/10.1016/B978-0-12-802104-0.00009-3]
[417]
Kumar, A.; Ekavali, K.C.; Chopra, K.; Mukherjee, M.; Pottabathini, R.; Dhull, D.K. Current knowledge and pharmacological profile of berberine: An update. Eur. J. Pharmacol., 2015, 761, 288-297.
[http://dx.doi.org/10.1016/j.ejphar.2015.05.068] [PMID: 26092760]
[418]
Zhang, M.; Chen, L. Berberine in type 2 diabetes therapy: a new perspective for an old antidiarrheal drug? Acta Pharm. Sin. B, 2012, 2(4), 379-386.
[http://dx.doi.org/10.1016/j.apsb.2012.06.004] [PMID: 23710432]
[419]
Wang, J.; Yang, T.; Chen, H.; Xu, Y-N.; Yu, L-F.; Liu, T.; Tang, J.; Yi, Z.; Yang, C-G.; Xue, W.; Yang, F. The synthesis and antistaphylococcal activity of 9, 13-disubstituted berberine derivatives. Eur. J. Med. Chem., 2017, 127, 424-433.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.012] [PMID: 28092858]
[420]
Ding, Y.; Ye, X.; Zhu, J.; Zhu, X.; Li, X.; Chen, B. Structural modification of berberine alkaloid and their hypoglycemic activity. J. Funct. Foods, 2014, 7, 229-237.
[http://dx.doi.org/10.1016/j.jff.2014.02.007]
[421]
Bian, X.; He, L.; Yang, G. Synthesis and antihyperglycemic evaluation of various protoberberine derivatives. Bioorg. Med. Chem. Lett., 2006, 16(5), 1380-1383.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.045] [PMID: 16359864]
[422]
Liao, G.; Zhou, Z.; Guo, Z. Synthesis and immunological study of α-2,9-oligosialic acid conjugates as anti-group C meningitis vaccines. Chem. Commun. (Camb.), 2015, 51(47), 9647-9650.
[http://dx.doi.org/10.1039/C5CC01794G] [PMID: 25973942]
[423]
Chen, J.; Wang, T.; Xu, S.; Lin, A.; Yao, H.; Xie, W.; Zhu, Z.; Xu, J. Design, synthesis and biological evaluation of novel nitric oxide-donating protoberberine derivatives as antitumor agents. Eur. J. Med. Chem., 2017, 132, 173-183.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.027] [PMID: 28359045]
[424]
Gautam, R.; Jachak, S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev., 2009, 29(5), 767-820.
[http://dx.doi.org/10.1002/med.20156] [PMID: 19378317]
[425]
Bahar, M.; Deng, Y.; Zhu, X.; He, S.; Pandharkar, T.; Drew, M.E.; Navarro-Vázquez, A.; Anklin, C.; Gil, R.R.; Doskotch, R.W.; Werbovetz, K.A.; Kinghorn, A.D. Potent antiprotozoal activity of a novel semi-synthetic berberine derivative. Bioorg. Med. Chem. Lett., 2011, 21(9), 2606-2610.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.101] [PMID: 21474310]
[426]
Turner, N.; Li, J-Y.; Gosby, A.; To, S.W.; Cheng, Z.; Miyoshi, H.; Taketo, M.M.; Cooney, G.J.; Kraegen, E.W.; James, D.E.; Hu, L.H.; Li, J.; Ye, J.M. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes, 2008, 57(5), 1414-1418.
[http://dx.doi.org/10.2337/db07-1552] [PMID: 18285556]
[427]
Rosen, E.D.; MacDougald, O.A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol., 2006, 7(12), 885-896.
[http://dx.doi.org/10.1038/nrm2066] [PMID: 17139329]
[428]
Pham, T.P.; Kwon, J.; Shin, J. Berberine exerts anti-adipogenic activity through up-regulation of C/EBP inhibitors, CHOP and DEC2. Biochem. Biophys. Res. Commun., 2011, 413(2), 376-382.
[http://dx.doi.org/10.1016/j.bbrc.2011.08.110] [PMID: 21893041]
[429]
Xia, X.; Yan, J.; Shen, Y.; Tang, K.; Yin, J.; Zhang, Y.; Yang, D.; Liang, H.; Ye, J.; Weng, J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One, 2011, 6(2), e16556.
[http://dx.doi.org/10.1371/journal.pone.0016556] [PMID: 21304897]
[430]
Zhang, S.; Wang, X.; Yin, W.; Liu, Z.; Zhou, M.; Xiao, D.; Liu, Y.; Peng, D. Synthesis and hypoglycemic activity of 9-O-(lipophilic group substituted) berberine derivatives. Bioorg. Med. Chem. Lett., 2016, 26(19), 4799-4803.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.027] [PMID: 27561717]
[431]
Chen, Z.; Ye, X.; Yi, J.; Chen, X.; Li, X. Synthesis of 9-O-glycosyl-berberine derivatives and bioavailability evaluation. Med. Chem. Res., 2012, 21(8), 1641-1646.
[http://dx.doi.org/10.1007/s00044-011-9678-1]
[432]
Han, L.; Sheng, W.; Li, X.; Sik, A.; Lin, H.; Liu, K.; Wang, L. Novel carbohydrate modified berberine derivatives: synthesis and in vitro anti-diabetic investigation. MedChemComm, 2019, 10(4), 598-605.
[http://dx.doi.org/10.1039/C9MD00036D] [PMID: 31057739]
[433]
Shigeta, S.; Mori, S.; Watanabe, F.; Takahashi, K.; Nagata, T.; Koike, N.; Wakayama, T.; Saneyoshi, M. Synthesis and antiherpesvirus activities of 5-alkyl-2-thiopyrimidine nucleoside analogues. Antivir. Chem. Chemother., 2002, 13(2), 67-82.
[http://dx.doi.org/10.1177/095632020201300201] [PMID: 12238531]
[434]
Amblard, F.; Cho, J.H.; Schinazi, R.F. Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in nucleoside, nucleotide, and oligonucleotide chemistry. Chem. Rev., 2009, 109(9), 4207-4220.
[http://dx.doi.org/10.1021/cr9001462] [PMID: 19737023]
[435]
Mieczkowski, A.; Roy, V.; Agrofoglio, L.A. Preparation of cyclonucleosides. Chem. Rev., 2010, 110(4), 1828-1856.
[http://dx.doi.org/10.1021/cr900329y] [PMID: 20030313]
[436]
Joule, J.; Mills, K.; Smith, G. Pyridines: reactions and synthesis. In: Heterocyclic Chemistry; Springer, 1995; pp. 72-119.
[http://dx.doi.org/10.1007/978-1-4899-3222-8_5]
[437]
Lazrek, H.B.; Taourirte, M.; Oulih, T.; Barascut, J.L.; Imbach, J.L.; Pannecouque, C.; Witrouw, M.; De Clercq, E. Synthesis and anti-HIV activity of new modified 1,2,3-triazole acyclonucleosides. Nucleosides Nucleotides Nucleic Acids, 2001, 20(12), 1949-1960.
[http://dx.doi.org/10.1081/NCN-100108325] [PMID: 11794800]
[438]
Lindsell, W.E.; Murray, C.; Preston, P.N.; Woodman, T.A. Synthesis of 1, 3-diynes in the purine, pyrimidine, 1, 3, 5-triazine and acridine series. Tetrahedron, 2000, 56(9), 1233-1245.
[http://dx.doi.org/10.1016/S0040-4020(00)00016-8]
[439]
Ermolat’ev, D.S.; Mehta, V.P.; Van der Eycken, E.V. Synthesis of furo [2, 3-b] pyrazine nucleoside analogues with 1, 2, 3-triazole linkage. QSAR Comb. Sci., 2007, 26(11-12), 1266-1273.
[http://dx.doi.org/10.1002/qsar.200740123]
[440]
Seley, K.L.; Salim, S.; Zhang, L.; O’Daniel, P.I. “Molecular chameleons”. Design and synthesis of a second series of flexible nucleosides. J. Org. Chem., 2005, 70(5), 1612-1619.
[http://dx.doi.org/10.1021/jo048218h] [PMID: 15730279]
[441]
Chittepu, P.; Sirivolu, V.R.; Seela, F. Nucleosides and oligonucleotides containing 1,2,3-triazole residues with nucleobase tethers: synthesis via the azide-alkyne ‘click’ reaction. Bioorg. Med. Chem., 2008, 16(18), 8427-8439.
[http://dx.doi.org/10.1016/j.bmc.2008.08.026] [PMID: 18774721]
[442]
Zaki, M.; Oukhrib, A.; El Hakmaoui, A.; Hiebel, M-A.; Berteina-Raboin, S.; Akssira, M. Synthesis of novel 1, 2, 3-triazole-substituted tomentosins. Z. Naturforsch. B, 2019, 74(3), 273-281.
[http://dx.doi.org/10.1515/znb-2018-0225]
[443]
Santana, A.; Molinillo, J.M.G.; Domínguez, F.A.M. Trends in the synthesis and functionalization of guaianolides. Eur. J. Org. Chem., 2015, 2015(10), 2093-2110.
[http://dx.doi.org/10.1002/ejoc.201403244]
[444]
Ghantous, A.; Sinjab, A.; Herceg, Z.; Darwiche, N. Parthenolide: from plant shoots to cancer roots. Drug Discov. Today, 2013, 18(17-18), 894-905.
[http://dx.doi.org/10.1016/j.drudis.2013.05.005] [PMID: 23688583]
[445]
Woods, J.R.; Mo, H.; Bieberich, A.A.; Alavanja, T.; Colby, D.A. Amino-derivatives of the sesquiterpene lactone class of natural products as prodrugs. MedChemComm, 2013, 4(1), 27-33.
[http://dx.doi.org/10.1039/C2MD20172K]
[446]
Schinella, G.R.; Tournier, H.A.; Prieto, J.M.; Mordujovich de Buschiazzo, P.; Ríos, J.L. Antioxidant activity of anti-inflammatory plant extracts. Life Sci., 2002, 70(9), 1023-1033.
[http://dx.doi.org/10.1016/S0024-3205(01)01482-5] [PMID: 11860151]
[447]
Abad, M.J.; Guerra, J.A.; Bermejo, P.; Irurzun, A.; Carrasco, L. Search for antiviral activity in higher plant extracts. Phytother. Res., 2000, 14(8), 604-607.
[http://dx.doi.org/10.1002/1099-1573(200012)14:8<604:AID-PTR678>3.0.CO;2-L] [PMID: 11113996]
[448]
Hernández, V.; del Carmen Recio, M.; Máñez, S.; Prieto, J.M.; Giner, R.M.; Ríos, J.L. A mechanistic approach to the in vivo anti-inflammatory activity of sesquiterpenoid compounds isolated from Inula viscosa. Planta Med., 2001, 67(8), 726-731.
[http://dx.doi.org/10.1055/s-2001-18342] [PMID: 11731914]
[449]
Fontana, G.; La Rocca, S.; Passannanti, S.; Paternostro, M.P. Sesquiterpene compounds from Inula viscosa. Nat. Prod. Res., 2007, 21(9), 824-827.
[http://dx.doi.org/10.1080/14786410701415681] [PMID: 17654288]
[450]
Oh, S.; Jeong, I.H.; Shin, W-S.; Wang, Q.; Lee, S. Synthesis and biological activity of (+)-hedychilactone A and its analogs from (+)-sclareolide. Bioorg. Med. Chem. Lett., 2006, 16(6), 1656-1659.
[http://dx.doi.org/10.1016/j.bmcl.2005.12.009] [PMID: 16384699]
[451]
Arcadi, A.; Chiarini, M.; Marinelli, F.; Berente, Z.; Kollàr, L. Palladium-catalyzed arylation of α-methylene-γ-butyrolactone: 3-benzylfuran-2(5H)-ones vs (Z)-benzylidene-γ-butyrolactones and their reduction to 3-benzyl-γ-butyrolactones. Org. Lett., 2000, 2(1), 69-72.
[http://dx.doi.org/10.1021/ol9912130] [PMID: 10814248]
[452]
Častulík, J.; Marek, J.r.; Mazal, C. Synthesis of spiropyrrolidines and spiropyrrolizidines by 1, 3-dipolar cycloadditions of azomethine ylides to substituted α-methylene-γ-lactones. Tetrahedron, 2001, 57(39), 8339-8347.
[http://dx.doi.org/10.1016/S0040-4020(01)00807-9]
[453]
Nishimura, K.; Tomioka, K. Chiral amino ether-controlled catalytic enantioselective arylthiol conjugate additions to α,β-unsaturated esters and ketones: scope, structural requirements, and mechanistic implications. J. Org. Chem., 2002, 67(2), 431-434.
[http://dx.doi.org/10.1021/jo015879v] [PMID: 11798314]
[454]
Otto, A.; Liebscher, J. Synthesis of hydroxyalkyl heterocycles by ring transformation of spiroepoxy lactones with binucleophiles. Synthesis, 2003, 2003(08), 1209-1214.
[http://dx.doi.org/10.1055/s-2003-39403]
[455]
Gasperi, T.; Loreto, M.A.; Tardella, P.A.; Veri, E. Synthesis of α-amino γ-butyrolactone derivatives by aziridination of α-ylidene γ-butyrolactones. Tetrahedron Lett., 2003, 44(27), 4953-4956.
[http://dx.doi.org/10.1016/S0040-4039(03)01166-3]
[456]
Read de Alaniz, J.; Rovis, T. A highly enantio- and diastereoselective catalytic intramolecular Stetter reaction. J. Am. Chem. Soc., 2005, 127(17), 6284-6289.
[http://dx.doi.org/10.1021/ja0425132] [PMID: 15853335]
[457]
Hyldgaard, M.G.; Purup, S.; Bond, A.D.; Fretté, X.C.; Qu, H.; Jensen, K.T.; Christensen, L.P. Guaianolides and a seco-eudesmane from the resinous exudates of cushion bush (Leucophyta brownii) and evaluation of their cytostatic and anti-inflammatory activity. J. Nat. Prod., 2015, 78(8), 1877-1885.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00208] [PMID: 26218649]
[458]
Zaki, M.; Oukhrib, A.; Akssira, M.; Berteina-Raboin, S. Synthesis of novel spiro-isoxazoline and spiro-isoxazolidine derivatives of tomentosin. RSC Advances, 2017, 7(11), 6523-6529.
[http://dx.doi.org/10.1039/C6RA25869G]
[459]
Zhang, Q.; Lu, Y.; Ding, Y.; Zhai, J.; Ji, Q.; Ma, W.; Yang, M.; Fan, H.; Long, J.; Tong, Z.; Shi, Y.; Jia, Y.; Han, B.; Zhang, W.; Qiu, C.; Ma, X.; Li, Q.; Shi, Q.; Zhang, H.; Li, D.; Zhang, J.; Lin, J.; Li, L.Y.; Gao, Y.; Chen, Y. Guaianolide sesquiterpene lactones, a source to discover agents that selectively inhibit acute myelogenous leukemia stem and progenitor cells. J. Med. Chem., 2012, 55(20), 8757-8769.
[http://dx.doi.org/10.1021/jm301064b] [PMID: 22985027]
[460]
Roth, G.J.; Binder, R.; Colbatzky, F.; Dallinger, C. efan-Lutz; Kaiser, R. Nintedanib: from discovery to the clinic. J. Med. Chem., 2015, 58(3), 1053-1063.
[http://dx.doi.org/10.1021/jm501562a]
[461]
Ding, Z.; Hou, P.; Liu, B. Gatifloxacin-1,2,3-triazole-isatin hybrids and their antimycobacterial activities. Archiv der Pharmazi, 2019, 352(10), e1900135.
[http://dx.doi.org/10.1002/ardp.201900135] [PMID: 31441087]
[462]
Cormier, R.; Burda, W.N.; Harrington, L.; Edlinger, J.; Kodigepalli, K.M.; Thomas, J.; Kapolka, R.; Roma, G.; Anderson, B.E.; Turos, E.; Shaw, L.N. (2012). Studies on the antimicrobial properties of N-acylated ciprofloxacins. Bioorg. Med. Chem. Lett., 2012, 22(20), 6513-6520.
[http://dx.doi.org/10.1016/j.bmcl.2012.05] [PMID: 22995622]
[463]
Chellan, P.; Land, M.K.; Shokar, A.; Au, A.; An, S.H.; Clavel, M.C.; Dyson, J.P.; Kock, D.C.; Smith, J.P.; Chibale, K.; Smith, S.G. Exploring the versatility of cycloplatinated thiosemicarbazones as antitumor and antiparasitic agents. Organometallics, 2012, 31(16), 5791-5799.
[http://dx.doi.org/10.1021/om300334z]
[464]
Nisha, Vishu M.; Melissa, H.; Neal, P.; Dominique, H.; Lisa, A.W.; Kirkwood, M.L.; Vipan, K. Design and synthesis of β-amino alcohol based β-lactam-isatin chimeras and preliminary analysis of in vitro activity against the protozoal pathogen Trichomonas vaginalis. MedChemComm, 2013, 4(6), 1018-1024.
[http://dx.doi.org/10.1039/C3MD00057E] [PMID: 28917752]
[465]
Sarah, L.C.; Kiera, L.D.; Shannon, F.H-M.; Dino, P.P.; Gary, E.G. Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin. Microbiol. Rev., 2004, 17(4), 783-793.
[http://dx.doi.org/10.1128/CMR.17.4.783-793.2004] [PMID: 15489348]
[466]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700 ] [PMID: 31546197]