Current Organic Chemistry

Author(s): Arindam Gangopadhyay*

DOI: 10.2174/1385272825666210126095118

DownloadDownload PDF Flyer Cite As
Natural Flavans and (Iso)Flavanones with Anticancer Activity: A Review

Page: [1028 - 1046] Pages: 19

  • * (Excluding Mailing and Handling)

Abstract

The present review describes 108 new examples of naturally occurring flavans and flavanones having cytotoxic potential, which have been reported during the period of 2005 to mid-2020. These compounds are found either as aglycones or as glycosides, comprising flavans, flavanones, isoflavanones and miscellaneous flavanones (homo- and bi-flavanones). The main topics addressed in this review are source, structure, and cytotoxic activity in detail and the structure-activity relationship.

Keywords: Natural flavans and flavanones, cytotoxicity, anticancer activity, aglycones, glycosides, structure-activity relationship.

Graphical Abstract

[1]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[2]
Pejin, B.; Iodice, C.; Tommonaro, G.; Bogdanovic, G.; Kojic, V.; De Rosa, S. Further in vitro evaluation of cytotoxicity of the marine natural product derivative 4′-leucine-avarone. Nat. Prod. Res., 2014, 28(5), 347-350.
[http://dx.doi.org/10.1080/14786419.2013.863201] [PMID: 24422776]
[3]
Hua, F.; Shang, S.; Hu, Z-W. Seeking new anti-cancer agents from autophagy-regulating natural products. J. Asian Nat. Prod. Res., 2017, 19(4), 305-313.
[http://dx.doi.org/10.1080/10286020.2017.1304385] [PMID: 28347180]
[4]
Eid, S.Y.; El-Readi, M.Z.; Fatani, S.H.; Nour Eldin, E.E.M.; Wink, M. Natural products modulate the multifactorial multidrug resistance of cancer. Pharmacol. Pharm., 2015, 6(3), 146-176.
[http://dx.doi.org/10.4236/pp.2015.63017]
[5]
Cort, A.; Ozben, T. Natural product modulators to overcome multidrug resistance in cancer. Nutr. Cancer, 2015, 67(3), 411-423.
[http://dx.doi.org/10.1080/01635581.2015.1002624] [PMID: 25649862]
[6]
David, B.; Wolfender, J-L.; Dias, D.A. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev., 2015, 14, 299-315.
[http://dx.doi.org/10.1007/s11101-014-9367-z]
[7]
de Moraes, J.; de Oliveira, R.N.; Costa, J.P.; Junior, A.L.G.; de Sousa, D.P.; Freitas, R.M.; Allegretti, S.M.; Pinto, P.L.S. Phytol, a diterpene alcohol from chlorophyll, as a drug against neglected tropical disease Schistosomiasis mansoni. PLoS Negl. Trop. Dis., 2014, 8(1), e2617.
[http://dx.doi.org/10.1371/journal.pntd.0002617] [PMID: 24392173]
[8]
Mignet, N.; Seguin, J.; Ramos Romano, M.; Brullé, L.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Chabot, G.G. Development of a liposomal formulation of the natural flavonoid fisetin. Int. J. Pharm., 2012, 423(1), 69-76.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.066] [PMID: 21571054]
[9]
Ying, T.H.; Yang, S.F.; Tsai, S.J.; Hsieh, S.C.; Huang, Y.C.; Bau, D.T.; Hsieh, Y.H. Fisetin induces apoptosis in human cervical cancer HeLa cells through ERK1/2-mediated activation of caspase-8-/caspase-3-dependent pathway. Arch. Toxicol., 2012, 86(2), 263-273.
[http://dx.doi.org/10.1007/s00204-011-0754-6] [PMID: 21964635]
[10]
Szliszka, E.; Helewski, K.J.; Mizgala, E.; Krol, W. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int. J. Oncol., 2011, 39(4), 771-779.
[PMID: 21743964]
[11]
Seguin, J.; Brullé, L.; Boyer, R.; Lu, Y.M.; Ramos Romano, M.; Touil, Y.S.; Scherman, D.; Bessodes, M.; Mignet, N.; Chabot, G.G. Liposomal encapsulation of the natural flavonoid fisetin improves bioavailability and antitumor efficacy. Int. J. Pharm., 2013, 444(1-2), 146-154.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.050] [PMID: 23380621]
[12]
Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Pipitone, R.M.; Dusonchet, L.; Meli, M.; Crosta, L.; Gebbia, N.; Invidiata, F.P.; Titone, L.; Simoni, D. Galangin increases the cytotoxic activity of imatinib mesylate in imatinib-sensitive and imatinib-resistant Bcr-Abl expressing leukemia cells. Cancer Lett., 2008, 265(2), 289-297.
[http://dx.doi.org/10.1016/j.canlet.2008.02.025] [PMID: 18374481]
[13]
Duan, Y.D.; Jiang, Y.Y.; Guo, F.X.; Chen, L.X.; Xu, L.L.; Zhang, W.; Liu, B. The antitumor activity of naturally occurring chromones: a review. Fitoterapia, 2019, 135, 114-129.
[http://dx.doi.org/10.1016/j.fitote.2019.04.012] [PMID: 31029639]
[14]
Tsolmon, S.; Han, J.; Isoda, H. Inhibition of cell growth by Stellera chamaejasme extract is associated with induction of autophagy and differentiation in chronic leukemia K562 cells. J. Biosci. Bioeng., 2010, 110(2), 262-268.
[http://dx.doi.org/10.1016/j.jbiosc.2010.02.006] [PMID: 20547324]
[15]
Liu, X.; Zhu, X. Stellera chamaejasme L. extract induces apoptosis of human lung cancer cells via activation of the death receptor-dependent pathway. Exp. Ther. Med., 2012, 4(4), 605-610.
[http://dx.doi.org/10.3892/etm.2012.643] [PMID: 23170112]
[16]
Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A.; Nikolic, M.; Radotic, K.; Mojovic, M. Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat. Prod. Res., 2014, 28(6), 372-376.
[http://dx.doi.org/10.1080/14786419.2013.869692] [PMID: 24422895]
[17]
Brahmachari, G.; Gorai, D. Progress in the research on naturally occurring flavones and flavonols: an overview. Curr. Org. Chem., 2006, 10(8), 873-898.
[http://dx.doi.org/10.2174/138527206776894438]
[18]
Lucas, I.K.; Kolodziej, H. Trans-resveratrol induces apoptosis through ROS-triggered mitochondria-dependent pathways in A549 human lung adenocarcinoma epithelial cells. Planta Med., 2015, 81(12-13), 1038-1044.
[http://dx.doi.org/10.1055/s-0035-1546129] [PMID: 26085046]
[19]
Sak, K.; Everaus, H. Role of flavonoids in future anticancer therapy by eliminating the cancer stem cells. Curr. Stem Cell Res. Ther., 2015, 10(3), 271-282.
[http://dx.doi.org/10.2174/1574888X10666141126122316] [PMID: 25429700]
[20]
Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem., 2007, 18(7), 427-442.
[http://dx.doi.org/10.1016/j.jnutbio.2006.11.004] [PMID: 17321735]
[21]
Zemanova, L.; Hofman, J.; Novotna, E.; Musilek, K.; Lundova, T.; Havrankova, J.; Hostalkova, A.; Chlebek, J.; Cahlikova, L.; Wsol, V. Flavones inhibit the activity of AKR1B10, a promising therapeutic target for cancer treatment. J. Nat. Prod., 2015, 78(11), 2666-2674.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00616] [PMID: 26529431]
[22]
Peng, W.; Yang, C.; Zhan, R.; Chen, Y. Two new flavans from the trunk and leaves of Horsfieldia glabra. Nat. Prod. Res., 2016, 30(20), 2350-2355.
[http://dx.doi.org/10.1080/14786419.2016.1185719] [PMID: 27238085]
[23]
Gutierrez, R-M.; Garcia, B-E. Citotoxic activity of isoflavan-cinnamylphenols from Dalbergia congestiflora on HeLa cells. J. Med. Plants Res., 2013, 7(40), 2992-2998.
[24]
Rajkapoor, B.; Murugesh, N.; Rama Krishna, D. Cytotoxic activity of a flavanone from the stem of Bauhinia variegata Linn. Nat. Prod. Res., 2009, 23(15), 1384-1389.
[http://dx.doi.org/10.1080/14786410802553752] [PMID: 19809910]
[25]
Tuan, N.Q.; Lee, W.; Oh, J.; Kulkarni, R.R.; Gény, C.; Jung, B.; Kang, H.; Bae, J-S.; Na, M. Flavanones and chromones from Salicornia herbacea mitigate septic lethality via restoring vascular barrier integrity. J. Agric. Food Chem., 2015, 63(46), 10121-10130.
[http://dx.doi.org/10.1021/acs.jafc.5b04069] [PMID: 26522440]
[26]
Yan, J.; Sun, L.R.; Zhou, Z.Y.; Chen, Y.C.; Zhang, W.M.; Dai, H.F.; Tan, J.W. Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry, 2012, 80, 37-41.
[http://dx.doi.org/10.1016/j.phytochem.2012.05.014] [PMID: 22683318]
[27]
Nguyen, A.T.; Fontaine, J.; Malonne, H.; Duez, P. Homoisoflavanones from Disporopsis aspera. Phytochemistry, 2006, 67(19), 2159-2163.
[http://dx.doi.org/10.1016/j.phytochem.2006.06.021] [PMID: 16899264]
[28]
Hafez Ghoran, S.; Saeidnia, S.; Babaei, E.; Kiuchi, F.; Dusek, M.; Eigner, V.; Dehno Khalaji, A.; Soltani, A.; Ebrahimi, P.; Mighani, H. Biochemical and biophysical properties of a novel homoisoflavonoid extracted from Scilla persica HAUSSKN. Bioorg. Chem., 2014, 57, 51-56.
[http://dx.doi.org/10.1016/j.bioorg.2014.08.001] [PMID: 25181677]
[29]
Festjens, N.; Vanden Berghe, T.; Vandenabeele, P. Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim. Biophys. Acta, 2006, 1757(9-10), 1371-1387.
[http://dx.doi.org/10.1016/j.bbabio.2006.06.014] [PMID: 16950166]
[30]
Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol., 2007, 35(4), 495-516.
[http://dx.doi.org/10.1080/01926230701320337] [PMID: 17562483]
[31]
Taylor, R.C.; Cullen, S.P.; Martin, S.J. Apoptosis: controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol., 2008, 9(3), 231-241.
[http://dx.doi.org/10.1038/nrm2312] [PMID: 18073771]
[32]
Chen, D.; Daniel, K.G.; Chen, M.S.; Kuhn, D.J.; Landis-Piwowar, K.R.; Dou, Q.P. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol., 2005, 69(10), 1421-1432.
[http://dx.doi.org/10.1016/j.bcp.2005.02.022] [PMID: 15857606]
[33]
Pradhan, D.; Pradhan, R.K.; Tripathy, G.; Pradhan, S. Inhibition of proteasome activity by the dietary flavonoid Quercetin associated with growth inhibition in cultured breast cancer cells and xenografts. J. Young Pharmacists., 2015, 7(3), 225-233.
[http://dx.doi.org/10.5530/jyp.2015.3.13]
[34]
Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J. Biol. Chem., 2005, 280(7), 5636-5645.
[http://dx.doi.org/10.1074/jbc.M408177200] [PMID: 15533929]
[35]
Oh, J.; Liu, H.; Park, H.B.; Ferreira, D.; Jeong, G-S.; Hamann, M.T.; Doerksen, R.J.; Na, M. In silico investigation of lavandulyl flavonoids for the development of potent fatty acid synthase-inhibitory prototypes. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(1 Pt A), 3180-3188.
[http://dx.doi.org/10.1016/j.bbagen.2016.08.001] [PMID: 27531709]
[36]
Silva, G.; Fachin, A.L.; Beleboni, R.O.; França, S.C.; Marins, M. In vitro action of flavonoids in the canine malignant histiocytic cell line DH82. Molecules, 2013, 18(12), 15448-15463.
[http://dx.doi.org/10.3390/molecules181215448] [PMID: 24352006]
[37]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[38]
Kong, D.; Zhang, Y.; Yamori, T.; Duan, H.; Jin, M. Inhibitory activity of flavonoids against class I phosphatidylinositol 3-kinase isoforms. Molecules, 2011, 16(6), 5159-5167.
[http://dx.doi.org/10.3390/molecules16065159] [PMID: 21694679]
[39]
Kong, D.; Yamazaki, K.; Yamori, T. Discovery of phosphatidylinositol 3-kinase inhibitory compounds from the Screening Committee of Anticancer Drugs (SCADS) library. Biol. Pharm. Bull., 2010, 33(9), 1600-1604.
[http://dx.doi.org/10.1248/bpb.33.1600] [PMID: 20823581]
[40]
Zhao, Y.; Wu, F.; Wang, Y.; Chen, S.; Han, G.; Liu, M.; Jin, D. Inhibitory action of chamaejasmin A against human HEP-2 epithelial cells: effect on tubulin protein. Mol. Biol. Rep., 2012, 39(12), 11105-11112.
[http://dx.doi.org/10.1007/s11033-012-2016-y] [PMID: 23053997]
[41]
Zhang, T.; Yu, H.; Dong, G.; Cai, L.; Bai, Y. Chamaejasmine arrests cell cycle, induces apoptosis and inhibits nuclear NF-κB translocation in the human breast cancer cell line MDA-MB-231. Molecules, 2013, 18(1), 845-858.
[http://dx.doi.org/10.3390/molecules18010845] [PMID: 23344197]
[42]
Zhang, C.; Zhou, S.S.; Feng, L.Y.; Zhang, D.Y.; Lin, N.M.; Zhang, L.H.; Pan, J.P.; Wang, J.B.; Li, J. In vitro anti-cancer activity of chamaejasmenin B and neochamaejasmin C isolated from the root of Stellera chamaejasme L. Acta Pharmacol. Sin., 2013, 34(2), 262-270.
[http://dx.doi.org/10.1038/aps.2012.158] [PMID: 23222270]
[43]
Liu, R.; Ji, P.; Liu, B.; Qiao, H.; Wang, X.; Zhou, L.; Deng, T.; Ba, Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol. Lett., 2017, 13(2), 1024-1030.
[http://dx.doi.org/10.3892/ol.2016.5495] [PMID: 28356995]
[44]
Ferraz da Costa, D.C.; Fialho, E.; Silva, J.L. Cancer chemoprevention by resveratrol: the p53 tumor suppressor protein as a promising molecular target. Molecules, 2017, 22(6), 1014-1037.
[http://dx.doi.org/10.3390/molecules22061014] [PMID: 28629161]
[45]
Molcanova, L.; Janosıkova, D.; Acqua, S.D.; Smejkal, K. C-prenylated flavonoids with potential cytotoxic activity against solid tumor cell lines. Phytochem. Rev., 2019, 18(4), 1051-1100.
[http://dx.doi.org/10.1007/s11101-019-09641-z]
[46]
Assirey, E.; Alsaggaf, A.; Naqvi, A.; Moussa, Z.; Okasha, R.M.; Afifi, T.H.; Abd-El-Aziz, A.S. Synthesis, biological assessment, and structure activity relationship studies of new flavanones embodying chromene moieties. Molecules, 2020, 25(3), 544-568.
[http://dx.doi.org/10.3390/molecules25030544] [PMID: 32012737]
[47]
Chen, C-N.; Hsiao, C-J.; Lee, S-S.; Guh, J-H.; Chiang, P-C.; Huang, C-C.; Huang, W-J. Chemical modification and anticancer effect of prenylated flavanones from Taiwanese propolis. Nat. Prod. Res., 2012, 26(2), 116-124.
[http://dx.doi.org/10.1080/14786419.2010.535146] [PMID: 21790499]
[48]
Yang, L.; Wang, E.; Fan, Y.; Yang, J.; Luo, Z.; Wang, Y.; Peng, M.; Deng, T.; Yang, X. One-pot synthesis of (E)-3-benzylideneflavanones from 2 hydroxyacetophenones and aromatic aldehydes. Tetrahedron Lett., 2019, 61(15)151180
[http://dx.doi.org/10.1016/j.tetlet.2019.151180]
[49]
Murti, Y.; Mishra, P. Synthesis and evaluation of flavanones as anticancer agents. Indian J. Pharm. Sci., 2014, 76(2), 163-166.
[PMID: 24843190]
[50]
Andrade-Carrera, B.; Clares, B.; Noé, V.; Mallandrich, M.; Calpena, A.C.; García, M.L.; Garduño-Ramírez, M.L. Mallandrich, M.; Calpena, A.C.; Garcia, M.L. Cytotoxic evaluation of (2S)-5,7-dihydroxy-6-prenylflavanone derivatives loaded PLGA nanoparticles against MiaPaCa-2 cells. Molecules, 2017, 22(9), 1553-1573.
[http://dx.doi.org/10.3390/molecules22091553] [PMID: 28914822]
[51]
Rao, G.V.; Swamy, B.N.; Chandregowda, V.; Reddy, G.C. Synthesis of (+/-)Abyssinone I and related compounds: their anti-oxidant and cytotoxic activities. Eur. J. Med. Chem., 2009, 44(5), 2239-2245.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.032] [PMID: 18603336]
[52]
Menezes, J.C.; Orlikova, B.; Morceau, F.; Diederich, M. Natural and synthetic flavonoids: structure-activity relationship and chemotherapeutic potential for the treatment of leukemia. Crit. Rev. Food Sci. Nutr., 2016, 56(Suppl. 1), S4-S28.
[http://dx.doi.org/10.1080/10408398.2015.1074532] [PMID: 26463658]
[53]
Li, Y.; Leung, K.T.; Yao, F.; Ooi, L.S.M.; Ooi, V.E.C. Antiviral flavans from the leaves of Pithecellobium clypearia. J. Nat. Prod., 2006, 69(5), 833-835.
[http://dx.doi.org/10.1021/np050498o] [PMID: 16724853]
[54]
Takashima, J.; Komiyama, K.; Ishiyama, H.; Kobayashi, J.; Ohsaki, A. Brosimacutins J-M, four new flavonoids from Brosimum acutifolium and their cytotoxic activity. Planta Med., 2005, 71(7), 654-658.
[http://dx.doi.org/10.1055/s-2005-871272] [PMID: 16041652]
[55]
Jiang, Z-Y.; Bai, X-S.; Liang, H.; Wang, C.; Li, W-J.; Guo, J.M.; Huang, X.Z. Cytotoxic flavanes from Uraria clarkei. J. Asian Nat. Prod. Res., 2013, 15(9), 979-984.
[http://dx.doi.org/10.1080/10286020.2013.822368] [PMID: 23909281]
[56]
Moosophon, P.; Kanokmedhakul, S.; Kanokmedhakul, K.; Buayairaksa, M.; Noichan, J.; Poopasit, K. Antiplasmodial and cytotoxic flavans and diarylpropanes from the stems of Combretum griffithii. J. Nat. Prod., 2013, 76(7), 1298-1302.
[http://dx.doi.org/10.1021/np400266h] [PMID: 23795891]
[57]
Rajachan, O-A.; Hongtanee, L.; Chalermsaen, K.; Kanokmedhakul, K.; Kanokmedhakul, S. Bioactive galloyl flavans from the stems of Helixanthera parasitica. J. Asian Nat. Prod. Res., 2020, 22(5), 405-412.
[http://dx.doi.org/10.1080/10286020.2019.1592165] [PMID: 30945943]
[58]
Tang, B-Q.; Huang, S-S.; Liang, Y-E.; Sun, J-B.; Ma, Y.; Zeng, B.; Lee, S.M-Y.; Lu, J-L. Two new flavans from the roots of Dianella ensifolia (L.) DC. Nat. Prod. Res., 2017, 31(13), 1561-1565.
[http://dx.doi.org/10.1080/14786419.2017.1283501] [PMID: 28135850]
[59]
Sun, Q.; Shang, X-Y.; Wang, Y-X.; Yao, G-D.; Li, F-F.; Li, L-Z.; Zhang, Y.; Huang, X-X.; Song, S-J. Prenylated flavans from Daphne giraldii and their cytotoxic activities. Fitoterapia, 2019, 132, 68-74.
[http://dx.doi.org/10.1016/j.fitote.2018.11.011] [PMID: 30496811]
[60]
Luo, Y.; Wang, H.; Zhao, Y-X.; Zeng, Y-B.; Shen, H-Y.; Dai, H-F.; Mei, W-L. Cytotoxic and antibacterial flavonoids from dragon’s blood of Dracaena cambodiana. Planta Med., 2011, 77(18), 2053-2056.
[http://dx.doi.org/10.1055/s-0031-1280086] [PMID: 21800280]
[61]
Hu, X-Q.; Han, W.; Han, Z-Z.; Liu, Q-X.; Xu, X-K.; Fu, P.; Li, H-L. A new macrocyclic lactone and a new quinoflavan from Celastrus hindsii. Phytochem. Lett., 2014, 7, 169-172.
[http://dx.doi.org/10.1016/j.phytol.2013.11.015]
[62]
Yu, J.; Xian, Y.; Li, G.; Wang, D.; Zhou, H.; Wang, X. One new flavanocoumarin from the thorns of Gleditsia sinensis. Nat. Prod. Res., 2017, 31(3), 275-280.
[http://dx.doi.org/10.1080/14786419.2016.1233406] [PMID: 27690627]
[63]
Fotso, G.W.; Kamga, J.; Ngameni, B.; Uesugi, S.; Ohno, M.; Kimura, K-I.; Momma, H.; Kwon, E.; Furuno, H.; Shiono, Y.; Ingrid, S.K.; Yeboah, S.O.; Ngadjui, B.T. Secondary metabolites with antiproliferative effects from Albizia glaberrima var glabrescens Oliv. (Mimosoideae). Nat. Prod. Res., 2017, 31(17), 1981-1987.
[http://dx.doi.org/10.1080/14786419.2016.1269097] [PMID: 28103742]
[64]
Zhao, Z.; Ruan, J.; Jin, J.; Zou, J.; Zhou, D.; Fang, W.; Zeng, F. Flavan-4-ol glycosides from the rhizomes of Abacopteris penangiana. J. Nat. Prod., 2006, 69(2), 265-268.
[http://dx.doi.org/10.1021/np050191p] [PMID: 16499328]
[65]
Ganapaty, S.; Pannakal, S.T.; Srilakshmi, G.V.K.; Lakshmi, P.; Waterman, P.G.; Brun, R. Pumilanol, an antiprotozoal isoflavanol from Tephrosia pumila. Phytochem. Lett., 2008, 1, 175-178.
[http://dx.doi.org/10.1016/j.phytol.2008.09.006]
[66]
Li, K.; Ji, S.; Song, W.; Kuang, Y.; Lin, Y.; Tang, S.; Cui, Z.; Qiao, X.; Yu, S.; Ye, M. Glycybridins A-K, bioactive phenolic compounds from Glycyrrhiza glabra. J. Nat. Prod., 2017, 80(2), 334-346.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00783] [PMID: 28140583]
[67]
Kaennakam, S.; Siripong, P.; Tip-Pyang, S. Cytotoxicities of two new isoflavanes from the roots of Dalbergia velutina. J. Nat. Med., 2017, 71(1), 310-314.
[http://dx.doi.org/10.1007/s11418-016-1039-4] [PMID: 27604296]
[68]
Shen, C.C.; Lin, T.W.; Huang, Y.L.; Wan, S.T.; Shien, B.J.; Chen, C.C. Phenolic constituents of the roots of Sophora flavescens. J. Nat. Prod., 2006, 69(8), 1237-1240.
[http://dx.doi.org/10.1021/np060189d] [PMID: 16933887]
[69]
Murphy, B.T.; Cao, S.; Norris, A.; Miller, J.S.; Ratovoson, F.; Andriantsiferana, R.; Rasamison, V.E.; Kingston, D.G.I. Cytotoxic flavanones of Schizolaena hystrix from the Madagascar rainforest. J. Nat. Prod., 2005, 68(3), 417-419.
[http://dx.doi.org/10.1021/np049639x] [PMID: 15787448]
[70]
Chen, J.J.; Lee, H.H.; Duh, C.Y.; Chen, I.S. Cytotoxic chalcones and flavonoids from the leaves of Muntingia calabura. Planta Med., 2005, 71(10), 970-973.
[http://dx.doi.org/10.1055/s-2005-871223] [PMID: 16254834]
[71]
Usman, H.; Hakim, E.H.; Harlim, T.; Jalaluddin, M.N.; Syah, Y.M.; Achmad, S.A.; Takayama, H. Cytotoxic chalcones and flavanones from the tree bark of Cryptocarya costata. Z. Natforsch. C J. Biosci., 2006, 61(3-4), 184-188.
[http://dx.doi.org/10.1515/znc-2006-3-405] [PMID: 16729574]
[72]
Pailee, P.; Mahidol, C.; Ruchirawat, S.; Prachyawarakorn, V. Diverse flavonoids from the roots of Millettia brandisiana. Phytochemistry, 2019, 162, 157-164.
[http://dx.doi.org/10.1016/j.phytochem.2019.03.013] [PMID: 30925376]
[73]
Liu, D.; Lan, R.; Xin, X.L.; Wang, X.J.; Su, D.H.; Yang, G.W. A new lavandulyl flavonoid from Sorphora flavescens Ait. Chin. Chem. Lett., 2008, 19, 1453-1455.
[http://dx.doi.org/10.1016/j.cclet.2008.09.044]
[74]
Hsu, C-L.; Shyu, M-H.; Lin, J-A.; Yen, G-C.; Fang, S-C. Cytotoxic effects of geranyl flavonoid derivatives from the fruit of Artocarpus communis in SK-Hep-1 human hepatocellular carcinoma cells. Food Chem., 2011, 127, 127-134.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.100]
[75]
Yang, D-S.; Peng, W-B.; Yang, Y-P.; Liu, K-C.; Li, X-L.; Xiao, W-L. Cytotoxic prenylated flavonoids from Macaranga indica. Fitoterapia, 2015, 103, 187-191.
[http://dx.doi.org/10.1016/j.fitote.2015.04.002] [PMID: 25861749]
[76]
Innok, P.; Rukachaisirikul, T.; Suksamrarn, A. Flavanoids and pterocarpans from the bark of Erythrina fusca. Chem. Pharm. Bull. (Tokyo), 2009, 57(9), 993-996.
[http://dx.doi.org/10.1248/cpb.57.993] [PMID: 19721263]
[77]
Awantu, A.F.; Lenta, B.N.; Donfack, E.V.; Wansi, J.D.; Neumann, B.; Stammler, H-G.; Noungoue, D.T.; Tsamo, E.; Sewald, N. Flavonoids and other constituents of Hymenostegia afzelii (Caesalpiniaceae). Phytochem. Lett., 2011, 4(3), 315-319.
[http://dx.doi.org/10.1016/j.phytol.2011.06.002]
[78]
Li, X.; Wang, D.; Xia, M.Y.; Wang, Z.H.; Wang, W.N.; Cui, Z. Cytotoxic prenylated flavonoids from the stem bark of Maackia amurensis. Chem. Pharm. Bull. (Tokyo), 2009, 57(3), 302-306.
[http://dx.doi.org/10.1248/cpb.57.302] [PMID: 19252325]
[79]
Passreiter, C.M.; Suckow-Schnitker, A-K.; Kulawik, A.; Addae-Kyereme, J.; Wright, C.W.; Wätjen, W. Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death. Phytochemistry, 2015, 117, 237-244.
[http://dx.doi.org/10.1016/j.phytochem.2015.04.002] [PMID: 26101145]
[80]
Sutthivaiyakit, S.; Thongnak, O.; Lhinhatrakool, T.; Yodchun, O.; Srimark, R.; Dowtaisong, P.; Chuankamnerdkarn, M. Cytotoxic and antimycobacterial prenylated flavonoids from the roots of Eriosema chinense. J. Nat. Prod., 2009, 72(6), 1092-1096.
[http://dx.doi.org/10.1021/np900021h] [PMID: 19555123]
[81]
Ti, H.; Wu, P.; Lin, L.; Wei, X. Stilbenes and flavonoids from Artocarpus nitidus subsp. lingnanensis. Fitoterapia, 2011, 82(4), 662-665.
[http://dx.doi.org/10.1016/j.fitote.2011.02.001] [PMID: 21316425]
[82]
Rosselli, S.; Bruno, M.; Maggio, A.; Raccuglia, R.A.; Safder, M.; Lai, C-Y.; Bastow, K.F.; Lee, K-H. Cytotoxic geranylflavonoids from Bonannia graeca. Phytochemistry, 2011, 72(9), 942-945.
[http://dx.doi.org/10.1016/j.phytochem.2011.03.005] [PMID: 21459391]
[83]
Huang, S.Q.; Tian, Y-Q.; Wei, X.Y.; Xu, H-H. Flavonoids from Pronephrium megacuspe. J. Asian Nat. Prod. Res., 2016, 18(2), 125-133.
[http://dx.doi.org/10.1080/10286020.2015.1090984] [PMID: 26479429]
[84]
Phommart, S.; Sutthivaiyakit, P.; Chimnoi, N.; Ruchirawat, S.; Sutthivaiyakit, S. Constituents of the leaves of Macaranga tanarius. J. Nat. Prod., 2005, 68(6), 927-930.
[http://dx.doi.org/10.1021/np0500272] [PMID: 15974621]
[85]
Kawakami, S.; Harinantenaina, L.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takeda, Y. Macaflavanones A-G, prenylated flavanones from the leaves of Macaranga tanarius. J. Nat. Prod., 2008, 71(11), 1872-1876.
[http://dx.doi.org/10.1021/np800380d] [PMID: 18844422]
[86]
Zou, Z.; Xu, K.; Xu, P.; Li, X.; Cheng, F.; Li, J.; Yu, X.; Cao, D.; Li, D.; Zeng, W.; Zhang, G.; Tan, G. Seladoeflavones A-F, six novel flavonoids from Selaginella doederleinii. Fitoterapia, 2017, 116, 66-71.
[http://dx.doi.org/10.1016/j.fitote.2016.11.014] [PMID: 27889540]
[87]
Li, F.; He, Y-M.; Awale, S.; Kadota, S.; Tezuka, Y. Two new cytotoxic phenylallylflavanones from Mexican propolis. Chem. Pharm. Bull. (Tokyo), 2011, 59(9), 1194-1196.
[http://dx.doi.org/10.1248/cpb.59.1194] [PMID: 21881271]
[88]
Sun, Q.; Wang, D.; Li, F-F.; Yao, G-D.; Li, X.; Li, L-Z.; Huang, X-X.; Song, S-J. Cytotoxic prenylated flavones from the stem and root bark of Daphne giraldii. Bioorg. Med. Chem. Lett., 2016, 26(16), 3968-3972.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.002] [PMID: 27400887]
[89]
Xie, G.; Lin, B.; Qin, X.; Wang, G.; Wang, Q.; Yuan, J.; Li, C.; Qin, M. New flavonoids with cytotoxicity from the roots of Flemingia latifolia. Fitoterapia, 2015, 104, 97-101.
[http://dx.doi.org/10.1016/j.fitote.2015.05.015] [PMID: 26025855]
[90]
Hung, T.M.; Cuong, T.D.; Dang, N.H.; Zhu, S.; Long, P.Q.; Komatsu, K.; Min, B.S. Flavonoid glycosides from Chromolaena odorata leaves and their in vitro cytotoxic activity. Chem. Pharm. Bull. (Tokyo), 2011, 59(1), 129-131.
[http://dx.doi.org/10.1248/cpb.59.129] [PMID: 21212562]
[91]
Nouga, A.B.; Ndom, J.C.; Mpondo, E.M.; Nyobe, J.C.N.; Njoya, A.; Meva’a, L.M.; Cranwell, P.B.; Howell, J.A.S.; Harwood, L.M.; Wansi, J.D. New furoquinoline alkaloid and flavanone glycoside derivatives from the leaves of Oricia suaveolens and Oricia renieri (Rutaceae). Nat. Prod. Res., 2016, 30(3), 305-310.
[http://dx.doi.org/10.1080/14786419.2015.1057727] [PMID: 26222678]
[92]
Mi, Z.; Rong-Rong, W.; Man, C.; Han-Qing, Z.; Shi, S.U.N.S.; Lu-Yong, Z. A new flavanone glycoside with anti-proliferation activity from the root bark of Morus alba. Chin. J. Nat. Med., 2009, 7(2), 105-107.
[http://dx.doi.org/10.3724/SP.J.1009.2009.00105]
[93]
Chin, Y.W.; Mdee, L.K.; Mbwambo, Z.H.; Mi, Q.; Chai, H.B.; Cragg, G.M.; Swanson, S.M.; Kinghorn, A.D. Prenylated flavonoids from the root bark of Berchemia discolor, a Tanzanian medicinal plant. J. Nat. Prod., 2006, 69(11), 1649-1652.
[http://dx.doi.org/10.1021/np060418w] [PMID: 17125241]
[94]
Li, Y-P.; Li, Y-K.; Du, G.; Yang, H-Y.; Gao, X-M.; Hu, Q.F. Isoflavanones from Desmodium oxyphyllum and their cytotoxicity. J. Asian Nat. Prod. Res., 2014, 16(7), 735-740.
[http://dx.doi.org/10.1080/10286020.2014.906406] [PMID: 24749537]
[95]
Gumula, I.; Heydenreich, M.; Derese, S.; Ndiege, I.O.; Yenesew, A. Four isoflavanones from the stem bark of Platycelphium voense. Phytochem. Lett., 2012, 5(1), 150-154.
[http://dx.doi.org/10.1016/j.phytol.2011.11.012]
[96]
Feng, S.; Hao, J.; Xu, Z.; Chen, T.; Qiu, S.X. Polyprenylated isoflavanone and isoflavonoids from Ormosia henryi and their cytotoxicity and anti-oxidation activity. Fitoterapia, 2012, 83(1), 161-165.
[http://dx.doi.org/10.1016/j.fitote.2011.10.007] [PMID: 22037567]
[97]
Dai, Y.; Harinantenaina, L.; Brodie, P.J.; Goetz, M.; Shen, Y.; TenDyke, K.; Kingston, D.G.I. Antiproliferative homoisoflavonoids and bufatrienolides from Urginea depressa. J. Nat. Prod., 2013, 76(5), 865-872.
[http://dx.doi.org/10.1021/np300900a] [PMID: 23659371]
[98]
Nchiozem-Ngnitedem, V-A.; Omosa, L.K.; Derese, S.; Tane, P.; Heydenreich, M.; Spiteller, M.; Seo, E-J.; Efferth, T. Two new flavonoids from Dracaena usambarensis. Engl. Phytochem. Lett., 2020, 36, 80-85.
[http://dx.doi.org/10.1016/j.phytol.2020.01.001]
[99]
Hu, X-R.; Chou, G-X.; Zhang, C-G. Flavonoids, alkaloids from the seeds of Crotalaria pallida and their cytotoxicity and anti-inflammatory activities. Phytochemistry, 2017, 143, 64-71.
[http://dx.doi.org/10.1016/j.phytochem.2017.07.010] [PMID: 28777979]
[100]
El-Elimat, T.; Rivera-Chávez, J.; Burdette, J.E.; Czarnecki, A.; Alhawarri, M.B.; Al-Gharaibeh, M.; Alali, F.; Oberlies, N.H. Cytotoxic homoisoflavonoids from the bulbs of Bellevalia flexuosa. Fitoterapia, 2018, 127, 201-206.
[http://dx.doi.org/10.1016/j.fitote.2018.02.022] [PMID: 29471027]
[101]
Alali, F.; El-Elimat, T.; Albataineh, H.; Al-Balas, Q.; Al-Gharaibeh, M.; Falkinham, J.O.; Chen, W-L.; Swanson, S.M.; Oberlies, N.H. Cytotoxic homoisoflavones from the Bulbs of Bellevalia eigii. J. Nat. Prod., 2015, 78(7), 1708-1715.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00357] [PMID: 26147490]
[102]
Hafez Ghoran, S.; Saeidnia, S.; Babaei, E.; Kiuchi, F.; Hussain, H. Scillapersicene: a new homoisoflavonoid with cytotoxic activity from the bulbs of Scilla persica HAUSSKN. Nat. Prod. Res., 2016, 30(11), 1309-1314.
[http://dx.doi.org/10.1080/14786419.2015.1054286] [PMID: 26140544]
[103]
Said, A.; Aboutabl, E.A.; Melek, F.R.; Jaleel, G.A.R.A.; Raslan, M. Steroidal saponins and homoisoflavanone from the aerial parts of Sansevieria cylindrica Bojer ex. Hook. Phytochem. Lett., 2015, 12, 113-118.
[http://dx.doi.org/10.1016/j.phytol.2015.03.006]
[104]
Liu, J.; Mei, W-L.; Wu, J.; Zhao, Y-X.; Peng, M.; Dai, H-F. A new cytotoxic homoisoflavonoid from Dracaena cambodiana. J. Asian Nat. Prod. Res., 2009, 11(2), 192-195.
[http://dx.doi.org/10.1080/10286020802674962] [PMID: 19219735]
[105]
Freitas, G.C.; Batista, J.M., Jr; Franchi, G.C., Jr; Nowill, A.E.; Yamaguchi, L.F.; Vilcachagua, J.D.; Favaro, D.C.; Furlan, M.; Guimarães, E.F.; Jeffrey, C.S.; Kato, M.J. Cytotoxic non-aromatic B-ring flavanones from Piper carniconnectivum C. DC. Phytochemistry, 2014, 97, 81-87.
[http://dx.doi.org/10.1016/j.phytochem.2013.10.012] [PMID: 24252268]
[106]
Li, J.; Zhang, J-J.; Pang, X-X. ZhengChen, X.L.; Gan, L-S. Biflavanones with anti-proliferative activity against eight human solid tumor cell lines from Stellera chamaejasme. Fitoterapia, 2014, 93, 163-167.
[http://dx.doi.org/10.1016/j.fitote.2014.01.002] [PMID: 24444895]
[107]
Wang, Z-X.; Cheng, M-C.; Zhang, X-Z.; Hong, Z.L.; Gao, M-Z.; Kan, X.X.; Li, Q.; Wang, Y.J.; Zhu, X.X.; Xiao, H.B. Cytotoxic biflavones from Stellera chamaejasme. Fitoterapia, 2014, 99, 334-340.
[http://dx.doi.org/10.1016/j.fitote.2014.10.002] [PMID: 25313014]
[108]
Bajgai, S.P.; Prachyawarakorn, V.; Mahidol, C.; Ruchirawat, S.; Kittakoop, P. Hybrid flavan-chalcones, aromatase and lipoxygenase inhibitors, from Desmos cochinchinensis. Phytochemistry, 2011, 72(16), 2062-2067.
[http://dx.doi.org/10.1016/j.phytochem.2011.07.002] [PMID: 21802698]
[109]
Ravishankar, D.; Rajora, A.K.; Greco, F.; Osborn, H.M.I. Flavonoids as prospective compounds for anti-cancer therapy. Int. J. Biochem. Cell Biol., 2013, 45(12), 2821-2831.
[http://dx.doi.org/10.1016/j.biocel.2013.10.004] [PMID: 24128857]
[110]
Tuñón, M.J.; García-Mediavilla, M.V.; Sánchez-Campos, S.; González-Gallego, J. Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Curr. Drug Metab., 2009, 10(3), 256-271.
[http://dx.doi.org/10.2174/138920009787846369] [PMID: 19442088]
[111]
Li, F.; Awale, S.; Tezuka, Y.; Kadota, S. Cytotoxic constituents of propolis from Myanmar and their structure-activity relationship. Biol. Pharm. Bull., 2009, 32(12), 2075-2078.
[http://dx.doi.org/10.1248/bpb.32.2075] [PMID: 19952433]
[112]
Wätjen, W.; Weber, N.; Lou, Y.J.; Wang, Z.Q.; Chovolou, Y.; Kampkötter, A.; Kahl, R.; Proksch, P. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem. Toxicol., 2007, 45(1), 119-124.
[http://dx.doi.org/10.1016/j.fct.2006.08.008] [PMID: 17045382]
[113]
Plochmann, K.; Korte, G.; Koutsilieri, E.; Richling, E.; Riederer, P.; Rethwilm, A.; Schreier, P.; Scheller, C. Structure-activity relationships of flavonoid-induced cytotoxicity on human leukemia cells. Arch. Biochem. Biophys., 2007, 460(1), 1-9.
[http://dx.doi.org/10.1016/j.abb.2007.02.003] [PMID: 17353006]
[114]
Smejkal, K.; Svacinová, J.; Slapetová, T.; Schneiderová, K.; Dall’acqua, S.; Innocenti, G.; Závalová, V.; Kollár, P.; Chudík, S.; Marek, R.; Julínek, O.; Urbanová, M.; Kartal, M.; Csöllei, M.; Dolezal, K. Cytotoxic activities of several geranyl-substituted flavanones. J. Nat. Prod., 2010, 73(4), 568-572.
[http://dx.doi.org/10.1021/np900681y] [PMID: 20192247]