Past, Present and Future of Electroanalytical Sensor for Aspirin, Ibuprofen and Paracetamol Detection

Page: [24 - 33] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Pain not only affects the quality of life of an individual but can also cause mental illness due to the lack of effective treatment for long-term pain. Analgesics refer to drugs that can partially or completely relieve pain, including non-steroidal anti-inflammatory drugs and central analgesics.

Methods: In recent years, the cross integration of electrochemical analysis technology with biochemistry, materials science, biomedicine and other disciplines has driven the vigorous development of electrochemical sensing technology in the field of life sciences. The electrochemical sensor has many advantages, such as simple equipment, good specificity, high sensitivity, economy and convenience. As a newly emerging technology, electrochemical sensing technology has been increasingly used in drug analysis.

Results: This review introduces the recent advances of the detection of analgesics using electrochemical technology. We deliberately selected three representative drugs for discussion: aspirin, ibuprofen and paracetamol.

Conclusion: Electrochemical sensing technology has the advantages of high sensitivity, a low detection limit and simple operation. However, sensors still have some technical problems, such as the existence of many interference factors in actual samples in blood drug concentration monitoring and the need to further optimize the method conditions for multi-channel detection. With the continuous advancement of research, the application of new detection methods, nanomaterials, and biomolecules has enabled electrochemical technology to make certain progress in the field of drug analysis. In particular, the emergence of new nanomaterials will greatly promote the development of electrochemical sensing technology in drug analysis. As a cutting-edge technology, electrochemical sensing technology has enormous potential application value.

Keywords: Electrochemical sensors, analgesics, aspirin, ibuprofen, paracetamol, NSAIDs.

Graphical Abstract

[1]
Chiwunze, T.E.; Palakollu, V.N.; Gill, A.A.S.; Kayamba, F.; Thapliyal, N.B.; Karpoormath, R. A highly dispersed multi-walled carbon nanotubes and poly(methyl orange) based electrochemical sensor for the determination of an anti-malarial drug: Amodiaquine. Mater. Sci. Eng. C, 2019, 97, 285-292.
[http://dx.doi.org/10.1016/j.msec.2018.12.018] [PMID: 30678913]
[2]
Elfiky, M.; Salahuddin, N.; Hassanein, A.; Matsuda, A.; Hattori, T. Detection of antibiotic ofloxacin drug in urine using electrochemical sensor based on synergistic effect of different morphological carbon materials. Microchem. J., 2019, 146, 170-177.
[http://dx.doi.org/10.1016/j.microc.2018.12.034]
[3]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13(3), 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[4]
Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep., 2020, 10(1), 11699.
[http://dx.doi.org/10.1038/s41598-020-68663-2] [PMID: 32678156]
[5]
Rezaeifar, Z.; Rounaghi, G.H.; Es’haghi, Z.; Chamsaz, M. Electrochemical determination of anticancer drug, flutamide in human plasma sample using a microfabricated sensor based on hyperbranchedpolyglycerol modified graphene oxide reinforced hollow fiber-pencil graphite electrode. Mater. Sci. Eng. C, 2018, 91, 10-18.
[http://dx.doi.org/10.1016/j.msec.2018.05.017] [PMID: 30033236]
[6]
Nigović, B.; Jurić, S.; Mornar, A. Electrochemical determination of nepafenac topically applied nonsteroidal anti-inflammatory drug using graphene nanoplatelets-carbon nanofibers modified glassy carbon electrode. J. Electroanal. Chem. (Lausanne Switz.), 2018, 817, 30-35.
[http://dx.doi.org/10.1016/j.jelechem.2018.03.068]
[7]
Fu, L.; Liu, Z.; Ge, J.; Guo, M.; Zhang, H.; Chen, F.; Su, W.; Yu, A. (001) plan manipulation of α-Fe2O3 nanostructures for enhanced electrochemical CR(VI) sensing. J. Electroanal. Chem. (Lausanne Switz.), 2019, 841, 142-147.
[http://dx.doi.org/10.1016/j.jelechem.2019.04.046]
[8]
Karadurmus, L.; Sahin, I.F.; Kurbanoglu, S.; Ozkan, S.A. Electrochemical determination of non-steroidal anti-inflammatory drugs. Curr. Anal. Chem., 2019, 15(4), 485-501.
[http://dx.doi.org/10.2174/1573411014666180917113920]
[9]
El-Wekil, M.M.; Alkahtani, S.A.; Ali, H.R.H.; Mahmoud, A.M. Advanced sensing nanomaterials based carbon paste electrode for simultaneous electrochemical measurement of esomeprazole and diclofenac sodium in human serum and urine samples. J. Mol. Liq., 2018, 262, 495-503.
[http://dx.doi.org/10.1016/j.molliq.2018.04.120]
[10]
Mostafavi, M.; Yaftian, M.R.; Piri, F.; Shayani-Jam, H. A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite. Biosens. Bioelectron., 2018, 122, 160-167.
[http://dx.doi.org/10.1016/j.bios.2018.09.047] [PMID: 30265965]
[11]
Mansano, G.R.; Eisele, A.P.P.; Sartori, E.R. Electrochemical evaluation of a boron-doped diamond electrode for simultaneous determination of an antihypertensive ternary mixture of amlodipine, hydrochlorothiazide and valsartan in pharmaceuticals. Anal. Methods, 2015, 7(3), 1053-1060.
[http://dx.doi.org/10.1039/C4AY02511C]
[12]
Yang, Y.; Wu, J. Ultrasensitive electrocatalytic detection of COX-2 Rs20417: Relying on 3D interconnected architecture of Pt-LSSUs@PAA nanostructures for sensor interface modification. J. Exp. Nanosci., 2019, 14(1), 1-12.
[http://dx.doi.org/10.1080/17458080.2018.1559368]
[13]
Gulersonmez, M.C.; Lock, S.; Hankemeier, T.; Ramautar, R. Sheathless capillary electrophoresis-mass spectrometry for anionic metabolic profiling. Electrophoresis, 2016, 37(7-8), 1007-1014.
[http://dx.doi.org/10.1002/elps.201500435] [PMID: 26593113]
[14]
Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A Novel Electrochemical epinine sensor using amplified CuO nanoparticles and a N-Hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem., 2019, 43(5), 2362-2367.
[http://dx.doi.org/10.1039/C8NJ05581E]
[15]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[16]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[17]
Sadik, O.A.; Yazgan, I.; Eroglu, O.; Liu, P.; Olsen, S.T.; Moser, A.M.; Sander, P.G.; Tsiagbe, C.; Harada, K.; Bajwa, S.; Tvetenstrand, C.D.; Yin, L.; Gerhardstein, P. Objective clinical pain analysis using serum cyclooxygenase-2 and inducible nitric oxide synthase in American patients. Clin. Chim. Acta, 2018, 484, 278-283.
[http://dx.doi.org/10.1016/j.cca.2018.06.005] [PMID: 29885320]
[18]
Asmatulu, R.; Veisi, Z.; Uddin, Md. N.; Mahapatro, A. Highly sensitive and reliable electrospun polyaniline nanofiber based biosensor as a robust platform for cox-2 enzyme detections. Fibers Polym., 2019, 20(5), 966-974.
[http://dx.doi.org/10.1007/s12221-019-1096-x]
[19]
de Siqueira Leite, K.C.; Garcia, L.F.; Sanz, G.; Colmati, F.; de Souza, A.R.; da Costa Batista, D.; Menegatti, R.; de Souza Gil, E.; Luque, R. Electrochemical characterization of a novel nimesulide anti-inflammatory drug analog: LQFM-091. J. Electroanal. Chem. (Lausanne Switz.), 2018, 818, 92-96.
[http://dx.doi.org/10.1016/j.jelechem.2018.04.033]
[20]
Zhang, J-W.; Wang, K-P.; Zhang, X. Fabrication of SnO2 decorated graphene composite material and its application in electrochemical detection of caffeic acid in red wine. Mater. Res. Bull., 2020, 126, 110820.
[http://dx.doi.org/10.1016/j.materresbull.2020.110820]
[21]
Zhang, X.; Yang, R.; Li, Z.; Zhang, M.; Wang, Q.; Xu, Y.; Fu, L.; Du, J.; Zheng, Y.; Zhu, J. Electroanalytical Study of Infrageneric Relationship of Lagerstroemia Using Glassy Carbon Electrode Recorded Voltammograms. Rev. Mex. Ing. Quím., 2020, 19(sup 1), 281-291.
[http://dx.doi.org/10.24275/rmiq/Bio1750]
[22]
Fu, L.; Wang, A.; Xie, K.; Zhu, J.; Chen, F.; Wang, H.; Zhang, H.; Su, W.; Wang, Z.; Zhou, C.; Ruan, S. Electrochemical detection of silver ions by using sulfur quantum dots modified gold electrode. Sens. Actuators B Chem., 2020, 304, 127390.
[http://dx.doi.org/10.1016/j.snb.2019.127390]
[23]
Xu, Y.; Lu, Y.; Zhang, P.; Wang, Y.; Zheng, Y.; Fu, L.; Zhang, H.; Lin, C-T.; Yu, A. Infrageneric phylogenetics investigation of Chimonanthus based on electroactive compound profiles. Bioelectrochemistry, 2020, 133, 107455.
[http://dx.doi.org/10.1016/j.bioelechem.2020.107455] [PMID: 31978859]
[24]
Fu, L.; Wu, M.; Zheng, Y.; Zhang, P.; Ye, C.; Zhang, H.; Wang, K.; Su, W.; Chen, F.; Yu, J.; Yu, A.; Cai, W.; Lin, C-T. Lycoris species identification and infrageneric relationship investigation via graphene enhanced electrochemical fingerprinting of pollen. Sens. Actuators B Chem., 2019, 298, 126836.
[http://dx.doi.org/10.1016/j.snb.2019.126836]
[25]
Zhang, M.; Pan, B.; Wang, Y.; Du, X.; Fu, L.; Zheng, Y.; Chen, F.; Wu, W.; Zhou, Q.; Ding, S. Recording the electrochemical profile of pueraria leaves for polyphyly analysis. ChemistrySelect, 2020, 5(17), 5035-5040.
[http://dx.doi.org/10.1002/slct.202001100]
[26]
Ying, J.; Zheng, Y.; Zhang, H.; Fu, L. Room temperature biosynthesis of gold nanoparticles with lycoris aurea leaf extract for the electrochemical determination of aspirin. Rev. Mex. Ing. Quim., 2020, 19(2), 585-592.
[http://dx.doi.org/10.24275/rmiq/Mat741]
[27]
Mohammed, G.I.; Khraibah, N.H.; Bashammakh, A.S.; El-Shahawi, M.S. Electrochemical sensor for trace determination of timolol maleate drug in real samples and drug residues using nafion/carboxylated-mwcnts nanocomposite modified glassy carbon electrode. Microchem. J., 2018, 143, 474-483.
[http://dx.doi.org/10.1016/j.microc.2018.08.011]
[28]
Mohamed, M.A.; Atty, S.A.; Asran, A.M.; Boukherroub, R. One-pot green synthesis of reduced graphene oxide decorated with β-Ni(OH)2-nanoflakes as an efficient electrochemical platform for the determination of antipsychotic drug sulpiride. Microchem. J., 2019, 147, 555-563.
[http://dx.doi.org/10.1016/j.microc.2019.03.057]
[29]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–nickel nanoparticles decorated on functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250, 123042.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[30]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Wu, M.; Zhang, H.; Wang, A.; Su, W.; Chen, F.; Yu, J.; Cai, W.; Lin, C-T. An electrochemical method for plant species determination and classification based on fingerprinting petal tissue. Bioelectrochemistry, 2019, 129, 199-205.
[http://dx.doi.org/10.1016/j.bioelechem.2019.06.001] [PMID: 31200249]
[31]
Zhou, J.; Zheng, Y.; Zhang, J.; Karimi-Maleh, H.; Xu, Y.; Zhou, Q.; Fu, L.; Wu, W. Characterization of the electrochemical profiles of lycoris seeds for species identification and infrageneric relationships. Anal. Lett., 2020, 53(15), 2517-2528.
[http://dx.doi.org/10.1080/00032719.2020.1746327]
[32]
Fu, L.; Zheng, Y.; Zhang, P.; Zhang, H.; Xu, Y.; Zhou, J.; Zhang, H.; Karimi-Maleh, H.; Lai, G.; Zhao, S.; Su, W.; Yu, J.; Lin, C-T. Development of an electrochemical biosensor for phylogenetic analysis of Amaryllidaceae based on the enhanced electrochemical fingerprint recorded from plant tissue. Biosens. Bioelectron., 2020, 159, 112212.
[http://dx.doi.org/10.1016/j.bios.2020.112212] [PMID: 32364933]
[33]
Cao, C.; Jin, R.; Wei, H.; Liu, Z.; Ni, S.; Liu, G-J.; Young, H.A.; Chen, X.; Liu, G. Adaptive in vivo device for theranostics of inflammation: Real-time monitoring of interferon-γ and aspirin. Acta Biomater., 2020, 101, 372-383.
[http://dx.doi.org/10.1016/j.actbio.2019.10.021] [PMID: 31622780]
[34]
Han, X-J.; Ji, X-F.; Zhang, Q.; Sun, J-W.; Sun, P-X.; Pan, W-J.; Wang, J.; Yang, C. Giant “molecular capacitor” arrays - portable sensors to determine ionizable compounds. J. Electroanal. Chem. (Lausanne Switz.), 2020, 865, 114108.
[http://dx.doi.org/10.1016/j.jelechem.2020.114108]
[35]
Abdel-Haleem, F.M.; Zahran, E.M. Miniaturization overcomes macro sample analysis limitations: Salicylate-selective polystyrene nanoparticle-modified optical sensor. Talanta, 2019, 196, 436-441.
[http://dx.doi.org/10.1016/j.talanta.2018.12.073] [PMID: 30683389]
[36]
Fu, L.; Wang, Q.; Zhang, M.; Zheng, Y.; Wu, M.; Lan, Z.; Pu, J.; Zhang, H.; Chen, F.; Su, W.; Yu, J.; Lin, C.T. Electrochemical sex determination of dioecious plants using polydopamine-functionalized graphene sheets. Front Chem., 2020, 8, 92.
[http://dx.doi.org/10.3389/fchem.2020.00092] [PMID: 32211371]
[37]
Yang, X.; Chen, L.; Xiong, X.; Shu, Y.; Jin, D.; Zang, Y.; Wang, W.; Xu, Q.; Hu, X-Y. Molecularly imprinted polymers and peg double engineered perovskite: an efficient platform for constructing aqueous solution feasible photoelectrochemical sensor. Sens. Actuators B Chem., 2020, 304, 127321.
[http://dx.doi.org/10.1016/j.snb.2019.127321]
[38]
Sağlam, Ş.; Üzer, A.; Erçağ, E.; Apak, R. Electrochemical determination of TNT, DNT, RDX, and HMX with gold nanoparticles/poly(carbazole-aniline) film-modified glassy carbon sensor electrodes imprinted for molecular recognition of nitroaromatics and nitramines. Anal. Chem., 2018, 90(12), 7364-7370.
[http://dx.doi.org/10.1021/acs.analchem.8b00715] [PMID: 29786423]
[39]
Tamiji, Z.; Salahinejad, M.; Niazi, A. Optimized vortex-assisted dispersive liquid–liquid microextraction coupled with spectrofluorimetry for determination of aspirin in human urine: response surface methodology. Curr. Pharm. Anal., 2020, 16(2), 201-209.
[http://dx.doi.org/10.2174/1573412914666181031115209]
[40]
Saadat, A.; Pourbasheer, E.; Morsali, S.; Aalizadeh, R. Simultaneous spectrophotometric determination of aspirin and dipyridamole in pharmaceutical formulations using the multivariate calibration methods. Curr. Pharm. Anal., 2018, 14(4), 419-425.
[http://dx.doi.org/10.2174/1573412913666170613104439]
[41]
Kavousi, F.; Goodarzi, M.; Ghanbari, D.; Hedayati, K. Synthesis and characterization of a magnetic polymer nanocomposite for the release of metoprolol and aspirin. J. Mol. Struct., 2019, 1183, 324-330.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.003]
[42]
Veronica, N.; Liew, C.V.; Heng, P.W.S. Insights on the role of excipients and tablet matrix porosity on aspirin stability. Int. J. Pharm., 2020, 580, 119218.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119218] [PMID: 32165224]
[43]
Mirzajani, R.; Arefiyan, E. Construction and evaluation of a graphene oxide functionalized aminopropyltriethoxy silane surface molecularly imprinted polymer potentiometric sensor for dipyridamole detection in urine and pharmaceutical samples. J. Braz. Chem. Soc., 2019, 30(9), 1874-1886.
[http://dx.doi.org/10.21577/0103-5053.20190097]
[44]
Fonseca, R.R.F.; Gaspar, R.D.L.; Raimundo, I.M.; Luz, P.P. Photoluminescent Tb3+-based metal-organic framework as a sensor for detection of methanol in ethanol fuel. J. Rare Earths, 2019, 37(3), 225-231.
[http://dx.doi.org/10.1016/j.jre.2018.07.006]
[45]
Zhu, M.; Ye, H.; Lai, M.; Ye, J.; Li, R.; Zhang, W.; Liang, H.; Zhu, R.; Fan, H.; Chen, S. The gold nanoparticle sensitized PRGO-MWCNTs grid modified carbon fiber microelectrode as an efficient sensor system for simultaneous detection of three dihydroxybenzoic acid isomers. Electrochim. Acta, 2019, 322, 134765.
[http://dx.doi.org/10.1016/j.electacta.2019.134765]
[46]
Kuzmanović, D.; Khan, M.; Mehmeti, E.; Nazir, R.; Amaizah, N.R.R.; Stanković, D.M. Determination of pyridoxine (vitamin b6) in pharmaceuticals and urine samples using unmodified boron-doped diamond electrode. Diamond Related Materials, 2016, 64, 184-189.
[http://dx.doi.org/10.1016/j.diamond.2016.02.018]
[47]
Diouf, A.; Moufid, M.; Bouyahya, D.; Österlund, L.; El Bari, N.; Bouchikhi, B. An electrochemical sensor based on chitosan capped with gold nanoparticles combined with a voltammetric electronic tongue for quantitative aspirin detection in human physiological fluids and tablets. Mater. Sci. Eng. C, 2020, 110, 110665.
[http://dx.doi.org/10.1016/j.msec.2020.110665] [PMID: 32204094]
[48]
Purushotham, M.; Gupta, P.; Goyal, R.N. Graphene modified glassy carbon sensor for the determination of aspirin metabolites in human biological samples. Talanta, 2015, 143, 328-334.
[http://dx.doi.org/10.1016/j.talanta.2015.04.082] [PMID: 26078167]
[49]
Ghadimi, H.; Tehrani, M.A. R.; Basirun, W. J.; Ab Aziz, N. J.; Mohamed, N.; Ab Ghani, S. Electrochemical determination of aspirin and caffeine at MWCNTs-Poly-4-vinylpyridine composite modified electrode. J. Taiwan Inst. Chem. Eng., 2016, 65, 101-109.
[http://dx.doi.org/10.1016/j.jtice.2016.05.043]
[50]
Atta, N.F.; Galal, A.; El-Ads, E.H.; Galal, A.E. New insight in fabrication of a sensitive nano-magnetite/glutamine/carbon based electrochemical sensor for determination of aspirin and omeprazole. J. Electrochem. Soc., 2019, 166(2), B161-B172.
[http://dx.doi.org/10.1149/2.1241902jes]
[51]
Park, J.; Eun, C. Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes. Electrochim. Acta, 2016, 194, 346-356.
[http://dx.doi.org/10.1016/j.electacta.2016.02.103]
[52]
Yiğit, A.; Yardım, Y.; Çelebi, M.; Levent, A.; Şentürk, Z. Graphene/Nafion composite film modified glassy carbon electrode for simultaneous determination of paracetamol, aspirin and caffeine in pharmaceutical formulations. Talanta, 2016, 158, 21-29.
[http://dx.doi.org/10.1016/j.talanta.2016.05.046] [PMID: 27343573]
[53]
Kruanetr, S.; Prabhu, R.; Pollard, P.; Fernandez, C. Pharmaceutical electrochemistry: the electrochemical detection of aspirin utilising screen printed graphene electrodes as sensors platforms. Surg. Eng. Appl. Electrochem., 2015, 51(3), 283-289.
[http://dx.doi.org/10.3103/S1068375515030114]
[54]
Zhao, C.; Lin, J. Electrochemically reduced graphene oxide modified screen-printed electrodes for sensitive determination of acetylsalicylic acid. Int. J. Electrochem. Sci., 2017, 12, 10177-10186.
[http://dx.doi.org/10.20964/2017.11.03]
[55]
Puangjan, A.; Chaiyasith, S.; Wichitpanya, S.; Daengduang, S.; Puttota, S. Electrochemical sensor based on PANI/MnO2-Sb2O3 nanocomposite for selective simultaneous voltammetric determination of ascorbic acid and acetylsalicylic acid. J. Electroanal. Chem. (Lausanne Switz.), 2016, 782, 192-201.
[http://dx.doi.org/10.1016/j.jelechem.2016.09.019]
[56]
Kim, D.; Kim, J.M.; Jeon, Y.; Lee, J.; Oh, J.; Hooch Antink, W.; Kim, D.; Piao, Y. Novel two-step activation of biomass-derived carbon for highly sensitive electrochemical determination of acetaminophen. Sens. Actuators B Chem., 2018, 259, 50-58.
[http://dx.doi.org/10.1016/j.snb.2017.12.066]
[57]
Zhang, D.; Qian, J.; Yi, Y.; Kingsford, O.J.; Zhu, G. Nitrogen-doped hollow carbon nanospheres wrapped with MoS2 nanosheets for simultaneous electrochemical determination of acetaminophen and 4-aminophenol. J. Electroanal. Chem. (Lausanne Switz.), 2019, 847, 113229.
[http://dx.doi.org/10.1016/j.jelechem.2019.113229]
[58]
Movlaee, K.; Beitollahi, H.; Ganjali, M.R.; Norouzi, P. Electrochemical platform for simultaneous determination of levodopa, acetaminophen and tyrosine using a graphene and ferrocene modified carbon paste electrode. Mikrochim. Acta, 2017, 184(9), 3281-3289.
[http://dx.doi.org/10.1007/s00604-017-2291-3]
[59]
Haghshenas, E.; Madrakian, T.; Afkhami, A. A novel electrochemical sensor based on magneto Au nanoparticles/carbon paste electrode for voltammetric determination of acetaminophen in real samples. Mater. Sci. Eng. C, 2015, 57, 205-214.
[http://dx.doi.org/10.1016/j.msec.2015.07.054] [PMID: 26354256]
[60]
Deiminiat, B.; Razavipanah, I.; Rounaghi, G.H.; Arbab-Zavar, M.H. A novel electrochemical imprinted sensor for acetylsalicylic acid based on polypyrrole, sol-gel and SiO2@Au core-shell nanoparticles. Sens. Actuators B Chem., 2017, 244, 785-795.
[http://dx.doi.org/10.1016/j.snb.2017.01.059]
[61]
Beitollahi, H.; Salimi, H. A Triple Electrochemical platform for simultaneous determination of isoproterenol, acetaminophen and tyrosine based on a glassy carbon electrode modified with hematoxylin and graphene. J. Electrochem. Soc., 2016, 163(14), H1157-H1164.
[http://dx.doi.org/10.1149/2.0911614jes]
[62]
Sivakumar, M.; Sakthivel, M.; Chen, S-M.; Cheng, Y-H.; Pandi, K. One-step synthesis of porous copper oxide for electrochemical sensing of acetylsalicylic acid in the real sample. J. Colloid Interface Sci., 2017, 501, 350-356.
[http://dx.doi.org/10.1016/j.jcis.2017.04.074] [PMID: 28463766]
[63]
Sun, Y.; He, J.; Waterhouse, G.I.N.; Xu, L.; Zhang, H.; Qiao, X.; Xu, Z. A selective molecularly imprinted electrochemical sensor with GO@COF signal amplification for the simultaneous determination of sulfadiazine and acetaminophen. Sens. Actuators B Chem., 2019, 300, 126993.
[http://dx.doi.org/10.1016/j.snb.2019.126993]
[64]
Ezhil Vilian, A.T.; Rajkumar, M.; Chen, S-M. In situ electrochemical synthesis of highly loaded zirconium nanoparticles decorated reduced graphene oxide for the selective determination of dopamine and paracetamol in presence of ascorbic acid. Colloids Surf. B Biointerfaces, 2014, 115, 295-301.
[http://dx.doi.org/10.1016/j.colsurfb.2013.12.014] [PMID: 24384145]
[65]
Wu, X.; Wu, Y.; Dong, H.; Zhao, J.; Wang, C.; Zhou, S.; Lu, J.; Yan, Y.; Li, H. Accelerating the design of molecularly imprinted nanocomposite membranes modified by Au@polyaniline for selective enrichment and separation of ibuprofen. Appl. Surf. Sci., 2018, 428, 555-565.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.104]
[66]
Parlak, C.; Alver, Ö. Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: a comparative DFT study. J. Mol. Struct., 2019, 1184, 110-113.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.023]
[67]
Dinç-Zor, Ş.; Dönmez, Ö.A. Box-Behnken design-desirability function approach in optimization of HPLC method for simultaneous determination of ibuprofen along with additives in syrup formulation. J. AOAC Int., 2020, 127, 10-17.
[http://dx.doi.org/10.1093/jaoacint/qsaa096]
[68]
Javanbakht, S.; Pooresmaeil, M.; Hashemi, H.; Namazi, H. Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. Int. J. Biol. Macromol., 2018, 119, 588-596.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.181] [PMID: 30071223]
[69]
Mahmoud, E-S.; Omar, A.; Bayoumy, A.M.; Ibrahim, M. Chitosan ibuprofen interaction: modeling approach. Sens. Lett., 2018, 16(5), 347-355.
[http://dx.doi.org/10.1166/sl.2018.3956]
[70]
Tawfik, S.M.; Huy, B.T.; Sharipov, M.; Abd-Elaal, A.; Lee, Y-I. Enhanced fluorescence of CdTe quantum dots capped with a novel nonionic alginate for selective optosensing of ibuprofen. Sens. Actuators B Chem., 2018, 256, 243-250.
[http://dx.doi.org/10.1016/j.snb.2017.10.092]
[71]
Junejo, Y.; Safdar, M. Highly effective heterogeneous doxycycline stabilized silver nanocatalyst for the degradation of ibuprofen and paracetamol drugs. Arab. J. Chem., 2019, 12(8), 2823-2832.
[http://dx.doi.org/10.1016/j.arabjc.2015.06.014]
[72]
Lal, S.; Prakash, K.; Hooda, S.; Kumar, V.; Kumar, P. Ibuprofen-based chemosensor for efficient binding and sensing of Cu2+ ion in aqueous medium. J. Mol. Struct., 2020, 1199, 127003.
[http://dx.doi.org/10.1016/j.molstruc.2019.127003]
[73]
Essam, H.M.; Bassuoni, Y.F.; Elzanfaly, E.S.; Zaazaa, H.E-S.; Kelani, K.M. Potentiometric sensing platform for selective determination and monitoring of codeine phosphate in presence of ibuprofen in pharmaceutical and biological matrices. Microchem. J., 2020, 159, 105286.
[http://dx.doi.org/10.1016/j.microc.2020.105286]
[74]
Švorc, Ľ.; Strežová, I.; Kianičková, K.; Stanković, D.M.; Otřísal, P.; Samphao, A. An advanced approach for electrochemical sensing of ibuprofen in pharmaceuticals and human urine samples using a bare boron-doped diamond electrode. J. Electroanal. Chem. (Lausanne Switz.), 2018, 822, 144-152.
[http://dx.doi.org/10.1016/j.jelechem.2018.05.026]
[75]
Lima, A.B.; Faria, E.O.; Montes, R.H.O.; Cunha, R.R.; Richter, E.M.; Munoz, R.A.A.; dos Santos, W.T.P. Electrochemical oxidation of ibuprofen and its voltammetric determination at a boron-doped diamond electrode. Electroanalysis, 2013, 25(7), 1585-1588.
[http://dx.doi.org/10.1002/elan.201300014]
[76]
Roushani, M.; Shahdost-Fard, F. Covalent attachment of aptamer onto nanocomposite as a high performance electrochemical sensing platform: Fabrication of an ultra-sensitive ibuprofen electrochemical aptasensor. Mater. Sci. Eng. C, 2016, 68, 128-135.
[http://dx.doi.org/10.1016/j.msec.2016.05.099] [PMID: 27524004]
[77]
Roushani, M.; Shahdost-Fard, F. Applicability of AuNPs@N-GQDs nanocomposite in the modeling of the amplified electrochemical Ibuprofen aptasensing assay by monitoring of riboflavin. Bioelectrochemistry, 2019, 126, 38-47.
[http://dx.doi.org/10.1016/j.bioelechem.2018.11.005] [PMID: 30472570]
[78]
Nair, A.S.; Sooraj, M.P. Molecular imprinted polymer-wrapped AgNPs-decorated acid-functionalized graphene oxide as a potent electrochemical sensor for ibuprofen. J. Mater. Sci., 2020, 55(8), 3700-3711.
[http://dx.doi.org/10.1007/s10853-019-04258-1]
[79]
Suresh, E.; Sundaram, K.; Kavitha, B.; Rayappan, S. M.; Kumar, N. S. Simultaneous electrochemical determination of paracetamol and ibuprofen at the glassy carbon electrode. J. Adv. Chem. Sci., 2016, 369-372.
[80]
Roushani, M.; Shahdost-Fard, F. Fabrication of an ultrasensitive ibuprofen nanoaptasensor based on covalent attachment of aptamer to electrochemically deposited gold-nanoparticles on glassy carbon electrode. Talanta, 2015, 144, 510-516.
[http://dx.doi.org/10.1016/j.talanta.2015.06.052] [PMID: 26452855]
[81]
Mekassa, B.; Tessema, M.; Chandravanshi, B.S.; Tefera, M. Square wave voltammetric determination of ibuprofen at poly (l-aspartic acid) modified glassy carbon electrode. IEEE Sens. J., 2017, 18(1), 37-44.
[http://dx.doi.org/10.1109/JSEN.2017.2769137]
[82]
Apetrei, I.M.; Bejinaru, A.A. MONICA, B.; Apetrei, C.; Buzia, O. D. Determination of ibuprofen based on screen-printed electrodes modified with carbon nanofibers. Rev. Farm., 2017, 65(5), 790-795.
[83]
Roushani, M.; Shahdost-Fard, F. Ultra-sensitive detection of ibuprofen (IBP) by electrochemical aptasensor using the dendrimer-quantum dot (Den-QD) bioconjugate as an immobilization platform with special features. Mater. Sci. Eng. C, 2017, 75, 1091-1096.
[http://dx.doi.org/10.1016/j.msec.2017.03.023] [PMID: 28415394]
[84]
Rivera-Hernández, S.I.; Álvarez-Romero, G.A.; Corona-Avendaño, S.; Páez-Hernández, M.E.; Galán-Vidal, C.A.; Romero-Romo, M. Voltammetric determination of ibuprofen using a carbon paste – multiwalled carbon nanotube composite electrode. Instrum. Sci. Technol., 2016, 44(5), 483-494.
[http://dx.doi.org/10.1080/10739149.2016.1173061]
[85]
Loudiki, A.; Boumya, W.; Hammani, H.; Nasrellah, H.; El Bouabi, Y.; Zeroual, M.; Farahi, A.; Lahrich, S.; Hnini, K.; Achak, M.; Bakasse, M.; El Mhammedi, M.A. Ibuprofen analysis in blood samples by palladium particles-impregnated sodium montmorillonite electrodes: Validation using high performance liquid chromatography. Mater. Sci. Eng. C, 2016, 69, 616-624.
[http://dx.doi.org/10.1016/j.msec.2016.07.024] [PMID: 27612754]
[86]
Loudiki, A.; Hammani, H.; Boumya, W.; Lahrich, S.; Farahi, A.; Achak, M.; Bakasse, M.; El Mhammedi, M.A. Electrocatalytical effect of montmorillonite to oxidizing ibuprofen: analytical application in river water and commercial tablets. Appl. Clay Sci., 2016, 123, 99-108.
[http://dx.doi.org/10.1016/j.clay.2016.01.013]
[87]
Lenik, J.; Nieszporek, J. Construction of a glassy carbon ibuprofen electrode modified with multi-walled carbon nanotubes and cyclodextrins. Sens. Actuators B Chem., 2018, 255, 2282-2289.
[http://dx.doi.org/10.1016/j.snb.2017.09.034]
[88]
Mutharani, B.; Rajakumaran, R.; Chen, S-M.; Ranganathan, P.; Chen, T-W.; Al Farraj, D.A.; Ajmal Ali, M.; Al-Hemaid, F.M.A. Facile synthesis of 3D stone-like copper Tellurate (Cu3TeO6) as a new platform for anti-inflammatory drug ibuprofen sensor in human blood serum and urine samples. Microchem. J., 2020, 159, 105378.
[http://dx.doi.org/10.1016/j.microc.2020.105378]
[89]
Bahram, M.; Madrakian, T.; Alizadeh, S. Simultaneous colorimetric determination of morphine and ibuprofen based on the aggregation of gold nanoparticles using partial least square. J. Pharm. Anal., 2017, 7(6), 411-416.
[http://dx.doi.org/10.1016/j.jpha.2017.03.001] [PMID: 29404068]
[90]
LI, L.; WANG, J.; LIU, J.; ZHANG, Y.; ZHENG, J.; GUO, M. Electrochemical detection of Ibuprofen on L-Cysteine/Au Colloid/DNA/Chitosan modified gold electrode. J. Anal. Sci., 2016, 5, 10.
[91]
Burç, M.; Köytepe, S.; Duran, S.T.; Ayhan, N.; Aksoy, B.; Seçkin, T. Development of voltammetric sensor based on polyimide-MWCNT composite membrane for rapid and highly sensitive detection of paracetamol. Measurement, 2020, 151, 107103.
[http://dx.doi.org/10.1016/j.measurement.2019.107103]
[92]
Zhou, P.; She, M.; Liu, P.; Zhang, S.; Li, J. Measuring the distribution and concentration of cysteine by fluorescent sensor for the visual study of paracetamol-induced pro-sarcopenic effect. Sens. Actuators B Chem., 2020, 318, 128258.
[http://dx.doi.org/10.1016/j.snb.2020.128258]
[93]
Avinash, B.; Ravikumar, C.R.; Kumar, M.R.A.; Nagaswarupa, H.P.; Santosh, M.S.; Bhatt, A.S.; Kuznetsov, D. Nano cuo: electrochemical sensor for the determination of paracetamol and d-Glucose. J. Phys. Chem. Solids, 2019, 134, 193-200.
[http://dx.doi.org/10.1016/j.jpcs.2019.06.012]
[94]
Naik, T.S.S.K.; Swamy, B.E.K.; Ramamurthy, P.C.; Chetankumar, K. Poly (L-Leucine) modified carbon paste electrode as an electrochemical sensor for the detection of paracetamol in presence of folic acid. Mater. Sci. Energy Technol., 2020, 3, 626-632.
[http://dx.doi.org/10.1016/j.mset.2020.07.003]
[95]
Wong, A.; Santos, A.M.; Fatibello-Filho, O. Simultaneous determination of paracetamol and levofloxacin using a glassy carbon electrode modified with carbon black, silver nanoparticles and PEDOT:PSS film. Sens. Actuators B Chem., 2018, 255, 2264-2273.
[http://dx.doi.org/10.1016/j.snb.2017.09.020]
[96]
Camargo, J.R.; Andreotti, I.A.A.; Kalinke, C.; Henrique, J.M.; Bonacin, J.A.; Janegitz, B.C. Waterproof paper as a new substrate to construct a disposable sensor for the electrochemical determination of paracetamol and melatonin. Talanta, 2020, 208, 120458.
[http://dx.doi.org/10.1016/j.talanta.2019.120458] [PMID: 31816781]
[97]
Teng, Y.; Fan, L.; Dai, Y.; Zhong, M.; Lu, X.; Kan, X. Electrochemical sensor for paracetamol recognition and detection based on catalytic and imprinted composite film. Biosens. Bioelectron., 2015, 71, 137-142.
[http://dx.doi.org/10.1016/j.bios.2015.04.037] [PMID: 25897883]
[98]
Li, M.; Wang, W.; Chen, Z.; Song, Z.; Luo, X. Electrochemical determination of paracetamol based on Au@graphene core-shell nanoparticles doped conducting polymer PEDOT nanocomposite. Sens. Actuators B Chem., 2018, 260, 778-785.
[http://dx.doi.org/10.1016/j.snb.2018.01.093]
[99]
Ibáñez-Redín, G.; Wilson, D.; Gonçalves, D.; Oliveira, O.N., Jr Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection. J. Colloid Interface Sci., 2018, 515, 101-108.
[http://dx.doi.org/10.1016/j.jcis.2017.12.085] [PMID: 29331776]
[100]
Liu, L.; Lv, H.; Wang, C.; Ao, Z.; Wang, G. Fabrication of the protonated graphitic carbon nitride nanosheets as enhanced electrochemical sensing platforms for hydrogen peroxide and paracetamol detection. Electrochim. Acta, 2016, 206, 259-269.
[http://dx.doi.org/10.1016/j.electacta.2016.04.123]
[101]
Mao, A.; Li, H.; Jin, D.; Yu, L.; Hu, X. Fabrication of electrochemical sensor for paracetamol based on multi-walled carbon nanotubes and chitosan-copper complex by self-assembly technique. Talanta, 2015, 144, 252-257.
[http://dx.doi.org/10.1016/j.talanta.2015.06.020] [PMID: 26452818]
[102]
Zheng, M.; Gao, F.; Wang, Q.; Cai, X.; Jiang, S.; Huang, L.; Gao, F. Electrocatalytical oxidation and sensitive determination of acetaminophen on glassy carbon electrode modified with graphene-chitosan composite. Mater. Sci. Eng. C, 2013, 33(3), 1514-1520.
[http://dx.doi.org/10.1016/j.msec.2012.12.055] [PMID: 23827603]
[103]
Chen, X.; Zhu, J.; Xi, Q.; Yang, W. A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube–graphene nanosheet hybrid films. Sens. Actuators B Chem., 2012, 161(1), 648-654.
[http://dx.doi.org/10.1016/j.snb.2011.10.085]
[104]
Arvand, M.; Hassannezhad, M. Magnetic core-shell Fe₃O₄@SiO₂/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of uric acid. Mater. Sci. Eng. C, 2014, 36, 160-167.
[http://dx.doi.org/10.1016/j.msec.2013.12.014] [PMID: 24433899]
[105]
Liu, X.; Zhang, X-Y.; Wang, L-L.; Wang, Y-Y. A sensitive electrochemical sensor for paracetamol based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. Mikrochim. Acta, 2014, 181(11–12), 1439-1446.
[http://dx.doi.org/10.1007/s00604-014-1289-3]
[106]
Huang, T-Y.; Kung, C-W.; Wei, H-Y.; Boopathi, K.M.; Chu, C-W.; Ho, K-C. A High performance electrochemical sensor for acetaminophen based on a RGO–PEDOT nanotube composite modified electrode. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(20), 7229-7237.
[http://dx.doi.org/10.1039/C4TA00309H]
[107]
Ghadimi, H.; Tehrani, R.M.; Ali, A.S.; Mohamed, N.; Ab Ghani, S. Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta, 2013, 765, 70-76.
[http://dx.doi.org/10.1016/j.aca.2012.12.039] [PMID: 23410628]
[108]
Raymundo-Pereira, P.A.; Campos, A.M.; Mendonça, C.D.; Calegaro, M.L.; Machado, S.A.S.; Oliveira, O.N. Printex 6L carbon nanoballs used in electrochemical sensors for simultaneous detection of emerging pollutants hydroquinone and paracetamol. Sens. Actuators B Chem., 2017, 252, 165-174.
[http://dx.doi.org/10.1016/j.snb.2017.05.121]
[109]
Niedziałkowski, P.; Cebula, Z.; Malinowska, N.; Białobrzeska, W.; Sobaszek, M.; Ficek, M.; Bogdanowicz, R.; Anand, J.S.; Ossowski, T. Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls. Biosens. Bioelectron., 2019, 126, 308-314.
[http://dx.doi.org/10.1016/j.bios.2018.10.063] [PMID: 30445306]
[110]
Dhanush, S.; Sreejesh, M.; Bindu, K.; Chowdhury, P.; Nagaraja, H.S. Synthesis and electrochemical properties of silver dendrites and silver Dendrites/RGO composite for applications in paracetamol sensing. Mater. Res. Bull., 2018, 100, 295-301.
[http://dx.doi.org/10.1016/j.materresbull.2017.12.044]
[111]
Kumar, Y.; Pramanik, P.; Das, D.K. Electrochemical detection of paracetamol and dopamine molecules using nano-particles of cobalt ferrite and manganese ferrite modified with graphite. Heliyon, 2019, 5(7), e02031.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02031] [PMID: 31321329]
[112]
Brahman, P.K.; Suresh, L.; Lokesh, V.; Nizamuddin, S. Fabrication of highly sensitive and selective nanocomposite film based on CuNPs/fullerene-C60/MWCNTs: An electrochemical nanosensor for trace recognition of paracetamol. Anal. Chim. Acta, 2016, 917, 107-116.
[http://dx.doi.org/10.1016/j.aca.2016.02.044] [PMID: 27026607]
[113]
Vinay, M.M.; Arthoba Nayaka, Y. Iron Oxide (Fe2O3) nanoparticles modified carbon paste electrode as an advanced material for electrochemical investigation of paracetamol and dopamine. J. Sci. Adv. Mater. Devices, 2019, 4(3), 442-450.
[http://dx.doi.org/10.1016/j.jsamd.2019.07.006]
[114]
Tanuja, S.B.; Kumara Swamy, B.E.; Pai, K.V. Electrochemical determination of paracetamol in presence of folic acid at nevirapine modified carbon paste electrode: a cyclic voltammetric study. J. Electroanal. Chem. (Lausanne Switz.), 2017, 798, 17-23.
[http://dx.doi.org/10.1016/j.jelechem.2017.05.025]