[3]
Newman, J.D.; Warner, P.J.; Turner, A.P.F.; Tigwell, L.J. Biosensors - A Clearer View; Cranfield University: UK, 2004, p. 216.
[5]
Coulet, P.R. Enzyme electrodes: from the self-contained probe to the design of an automatic analyzer. Biosensors International Workshop, 1987, vol. 10, pp. 75-80.
[8]
Koyun, A.; Ahlatcolu, E.; Koca, Y. Biosensors and their principles. A roadmap Biomed Eng milestones; InTech: New York, 2012.
[10]
Keiji, K. Kanazawa; Joseph, G. Gordon. Frequency of a quartz microbalance in contact with liquid. Analytical chemistry. ACS Publications Anal. Chem, 1985, 57(8), 1770-1771.
[21]
Kumar, S.; Bukkitgar, S.D.; Singh, S.; Singh, V.; Reddy, K.R.; Shetti, N.P.; Venkata Reddy, C.; Sadhu, V.; Naveen, S. Electrochemical sensors and biosensors based on graphene functionalized with metal oxide nanostructures for healthcare applications. ChemistrySelect, 2019, 4(18), 5322-5337.
[22]
Monisha Chakraborty, M.; Saleem, H.J. Wonder material graphene: properties, synthesis and practical applications. Adv. Mat. Proc. Technol., 2018, 4(4), 573-602.
[24]
Aguilar, Z. Nanomaterials for medical applications; Newnes, 2012.
[32]
Bolinder, J.; Ungersted, U.; Arner, P. Microdialysis measurement of the absolute glucose concentration in subcutaneous adipose tissue allowing glucose monitoring in diabetic patients. Diabetologia, 1992, 35, 1177-1180.
[35]
Qinghua, Y. A highly sensitive uric acid electrochemical biosensor based on a nano-cube cuprous oxide/ferrocene/uricase modified glassy carbon electrode. Nature-. Sci. Rep., 2020, 10, 10607.
[38]
Pilo, M.; Farre, R.; Izabela Lachowicz, J.; Panzanelli, A.; Sanna, G.; Senes, N.; Sobral, A.; Spano, N. Design of amperometric biosensors for the detection of glucose prepared by immobilization of glucose oxidase on conducting (poly) thiophene films. J. Anal. Methods Chem., 2018, 2018, 1849439.
[39]
Rahman, G.; Mian, S.A. Recent trends in the development of electrochemical glucose biosensors. Biosens. Bioelectron., 2017, 3, 210-213.
[51]
Long, Feng. Shi, H.; Zhu, A. Recent advances in optical biosensors for environmental monitoring and early warning. Optical Biosensors., 2013, 13(10), 13928-13948.
[52]
Long, Feng. Shi, H.; Zhu, A. Recent advances in optical biosensors for environmental monitoring and early warning. Optical Biosensors., 2013, 13(10), 13928-13948.
[63]
Zhang, P.; Yang, S.; Pineda‐Gómez, R.; Ibarlucea, B.; Ma, J.; Lohe, M.R.; Akbar, T.F.; Baraban, L.; Cuniberti, G.; Feng, X. Electrochemically exfoliated high quality 2H‐MoS2 for multiflake thin film flexible biosensors. Small, 2019, 15(23), 1901265.
[67]
Pohanka, Miroslav. Vlcek, Vitezslav. Assay of glomalin using a quartz crystal microbalance biosensor. J. Electroanalysis, 2018, 30(3), 453-458.
[72]
Suh, K.Y.; Khademhosseini, A.; Yoo, P.J.; Langer, R. Fabrication of single or aggregated bacteria arrays using host parasite and virus antibody interactions. Biomed. Microdevices, 2004, 6, 223-229.
[79]
Muller, R.; Keck, C. Challenges and solutions for the delivery of biotech drugs- a review of drug nanocrystal technology and lipid nanoparticles. J. Biotechnol., 2004, 113(1-3), 151-170.
[80]
Kyakulaga, A. In vivo antidiarrheal activity of the ethanolic leaf extract of Catharanthusroseus Linn. (Apocyanaceae) in Wistar rats. Afr. J. Pharm. Pharmacol., 2011, 5(15), 1797-1800.
[82]
Zhang, W.; Cui, J.; Tao, C.A.; Wu, Y.; Li, Z.; Ma, L.; Wen, Y.; Li, G. A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach. Angewandte Chemie, 2009, 121(32), 5978-5982.
[93]
Malhotra, B.D.; Ali, M.A. Nanomaterials in Biosensors. Nanomaterials for biosensors, 2018, 1-74.
[98]
Sowmya, V.; Tharangattu, N.; Kiana, A.; Kathryn, D.F.; Jacobo, P.; Pulickel, M.A.; Slawomir, F.; Przemyslaw, M.; Cumhur, T.H.; Fatih, I.; Utkan, D.; Pingzuo, L.; Kirill, I.B.; Dorian, L.; Renugopalakrishanan, V. Graphene-Protein field effect biosensors: Glucose sensing. Mater. Today, 2015, 18.
[101]
Jeerapan, I.; Ma, N. Challenges and opportunities of carbon nanomaterials for biofuel cells and supercapacitors: personalized energy for futuristic self-sustainable devices. J. Carbon Res., 2019, 5(4), 62.
[103]
Kubik, T.; Bogunia-Kubik, K. Nanotechnology on duty in medical applications. Curr. Pharm. Biotechnol., 2005, 6, 17-33.