Novel Electrochemical Sensor for Rifampicin based on Ionic Liquid Functionalised TiO2 Nanoparticles

Page: [475 - 482] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Aim: The main strategy of this study is to develop a novel ionic liquid functionalized metal nanocomposite-based electrochemical sensor with potential applications for the sensitive electrochemical detection of rifampicin

Background: Tuberculosis (TB) is a widespread disease that is caused by gram-positive Mycobacterium tuberculosis (MTB). In addition, for several decades, TB has become a constant threat to human health; however, due to the accessibility of broad-spectrum antibiotics (rifampicin, pyrazinamide, isoniazid, and ethambutol), which are active against the bacterium, the social and economic burden for sufferers from the illness remains to be huge. Specially, in countries like India and sub-Saharan Africa, it is one of the common diseases affecting members of all age groups. So, this work is aimed at developing a novel electrochemical sensor for the determination of rifampicin (RIF) in pharmaceutical samples

Objective: The study aimed to synthesize and characterize the novel liquid functionalized metal nanocomposite. A glassy carbon electrode is fabricated with potent electrode modifiers whose applicability as electrocatalysis agents towards rifampicin is investigated.

Methods: In this work, a nanocomposite based on trihexyltetradecylphosphonium-bis-(2,4,4- trimethylpentyl)-phosphinate ([P14, 6, 6, 6] [(C8H17)2 PO2)]) ionic liquid functionalized titanium oxide nanoparticles (TiO2NPs) and multiwalled carbon nanotubes (MWCNTs) was used in the modification of a highly sensitive electrochemical sensor for quantification of rifampicin in pharmaceutical formulations. The modified glassy carbon electrode (GCE) was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD).

Results: The electrochemical behavior of RIF was studied on the modified electrode by the cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. At pH 6.0 in phosphate buffer solution (PBS), the anodic peak current value of RIF obtained with the fabricated electrode was 7 times greater than with the bare GCE electrode. The anodic peak current value and concentration of RIF showed a good linear relationship in the range of 0.015–2.8 μM, with the limit of detection (LOD) of 0.0218 μM and limit of quantification (LOQ) 0.3120 μM, respectively.

Conclusion: Under the optimal conditions, the IL-f-TiO2NPs-MWCNTs-GCE provided a relatively lower detection limit and wider linear range compared to other previous procedures. The proposed electrochemical sensor had a potent catalytic activity for RIF oxidation and provided important quantitatively reproducible analytical performance. Finally, this modified electrode was successfully applied to the determination of RIF in real pharmaceutical samples.

Keywords: Ionic liquid, electrochemical sensor, differential pulse voltammetry, pharmaceutical samples, rifampicin, Tuberculosis (TB).

Graphical Abstract

[1]
Chokkareddy, R. Fabrication of sensors for the sensitive electrochemical detection of anti-tuberculosis drugs. Doctoral Dissertation., 2018, 2018, 1.,
[2]
Chokkareddy, R.; Bhajanthri, N.K.; Redhi, G.G. An Enzyme-Induced novel biosensor for the sensitive electrochemical determination of isoniazid. Biosensors (Basel), 2017, 7(2), 21.
[http://dx.doi.org/10.3390/bios7020021] [PMID: 28587260]
[3]
Organization, W.H. Global Tuberculosis Report., 2016.
[4]
van den Boogaard, J.; Kibiki, G.S.; Kisanga, E.R.; Boeree, M.J.; Aarnoutse, R.E. New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development. Antimicrob. Agents Chemother., 2009, 53(3), 849-862.
[http://dx.doi.org/10.1128/AAC.00749-08] [PMID: 19075046]
[5]
Mani, S.; Cheemalapati, S.; Chen, S-M.; Devadas, B. Anti-tuberculosis drug pyrazinamide determination at multiwalled carbon nanotubes/graphene oxide hybrid composite fabricated electrode. Int. J. Electrochem. Sci., 2015, 10, 7049-7062.
[6]
Khuhawar, M.Y.; Rind, F.M. Liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin from pharmaceutical preparations and blood. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 766(2), 357-363.
[http://dx.doi.org/10.1016/S0378-4347(01)00510-2] [PMID: 11829003]
[7]
Nagaraja, P.; Srinivasa Murthy, K.C.; Yathirajan, H.S. Spectrophotometric determination of isoniazid with sodium 1,2-naphthoquinone-4-sulphonate and cetyltrimethyl ammonium bromide. Talanta, 1996, 43(7), 1075-1080.
[http://dx.doi.org/10.1016/0039-9140(95)01864-6] [PMID: 18966583]
[8]
Simioni, N.B.; Silva, T.A.; Oliveira, G.G.; Fatibello-Filho, O. A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuators B Chem., 2017, 250, 315-323.
[http://dx.doi.org/10.1016/j.snb.2017.04.175]
[9]
Madan, J.; Dwivedi, A.; Singh, S. Estimation of antitubercular drugs combination in pharmaceutical formulations using multivariate calibration. Anal. Chim. Acta, 2005, 538(1-2), 345-353.
[http://dx.doi.org/10.1016/j.aca.2005.02.015]
[10]
Maher, H.M.; Youssef, R.M. Simultaneous determination of ternary drug mixtures using square wave polarography subjected to non-parametric and chemometric peak convolution. Chemometr. Intell. Lab., 2008, 94(2), 95-103.
[http://dx.doi.org/10.1016/j.chemolab.2008.06.013]
[11]
Nahid, P.; Pai, M.; Hopewell, P.C. Advances in the diagnosis and treatment of tuberculosis. Proc. Am. Thorac. Soc., 2006, 3(1), 103-110.
[http://dx.doi.org/10.1513/pats.200511-119JH] [PMID: 16493157]
[12]
Lomillo, M.A.A.; Renedo, O.D.; Martínez, M.J.A. Optimization of a cyclodextrin-based sensor for rifampicin monitoring. Electrochim. Acta, 2005, 50(9), 1807-1811.
[http://dx.doi.org/10.1016/j.electacta.2004.08.032]
[13]
Ajayi, R.F.; Sidwaba, U.; Feleni, U.; Douman, S.F.; Tovide, O.; Botha, S. Chemically amplified cytochrome P450-2E1 drug metabolism nanobiosensor for rifampicin anti-tuberculosis drug. Electrochim. Acta, 2014, 128, 149-155.
[http://dx.doi.org/10.1016/j.electacta.2013.12.147]
[14]
Girousi, S.T.; Gherghi, I.Ch.; Karava, M.K. DNA-modified carbon paste electrode applied to the study of interaction between rifampicin (RIF) and DNA in solution and at the electrode surface. J. Pharm. Biomed. Anal., 2004, 36(4), 851-858.
[http://dx.doi.org/10.1016/j.jpba.2004.08.034] [PMID: 15533679]
[15]
Alonso Lomillo, M.A.; Kauffmann, J.M.; Arcos Martinez, M.J. HRP-based biosensor for monitoring rifampicin. Biosens. Bioelectron., 2003, 18(9), 1165-1171.
[http://dx.doi.org/10.1016/S0956-5663(02)00251-8] [PMID: 12788559]
[16]
Cui, S.; Canet, R.; Derre, A.; Couzi, M.; Delhaes, P. Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing. Carbon, 2003, 41(4), 797-809.
[http://dx.doi.org/10.1016/S0008-6223(02)00405-0]
[17]
Wu, X.; Chai, Y.; Yuan, R.; Zhong, X.; Zhang, J. Synthesis of multiwall carbon nanotubes-graphene oxide-thionine-Au nanocomposites for electrochemiluminescence detection of cholesterol. Electrochim. Acta, 2014, 129, 441-449.
[http://dx.doi.org/10.1016/j.electacta.2014.02.103]
[18]
Ma, M.; Miao, Z.; Zhang, D.; Du, X.; Zhang, Y.; Zhang, C.; Lin, J.; Chen, Q. Highly-ordered perpendicularly immobilized FWCNTs on the thionine monolayer-modified electrode for hydrogen peroxide and glucose sensors. Biosens. Bioelectron., 2015, 64, 477-484.
[http://dx.doi.org/10.1016/j.bios.2014.09.057] [PMID: 25286355]
[19]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2008, 108(6), 2064-2110.
[http://dx.doi.org/10.1021/cr068445e] [PMID: 18543879]
[20]
Loh, K-S.; Lee, Y.H.; Musa, A.; Salmah, A.A.; Zamri, I. Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2, 4-dichlorophenoxyacetic acid. Sensors (Basel), 2008, 8(9), 5775-5791.
[http://dx.doi.org/10.3390/s8095775] [PMID: 27873839]
[21]
Cao, X.; Wang, N. A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst (Lond.), 2011, 136(20), 4241-4246.
[http://dx.doi.org/10.1039/c1an15367f] [PMID: 21874198]
[22]
Chokkareddy, R.; Bhajanthri, N.; Redhi, G. A novel electrochemical biosensor for the detection of ethambutol.Indian J. Chem.,, 2018, 57(A), 887-895.
[23]
Wang, X.; Zheng, K.; Feng, X.; Xu, C.; Song, W. Polymeric ionic liquid functionalized MWCNTs as efficient electrochemical interface for biomolecules simultaneous determination. Sens. Actuators B Chem., 2015, 219, 361-369.
[http://dx.doi.org/10.1016/j.snb.2015.04.128]
[24]
Kilele, J.C.; Chokkareddy, R.; Rono, N.; Redhi, G.G. A novel electrochemical sensor for selective determination of theophylline in pharmaceutical formulations. J Taiwan Inst Chem Eng., 2020, 111, 228-238.
[http://dx.doi.org/10.1016/j.jtice.2020.05.007]
[25]
Bagheri, S.; Muhd Julkapli, N.; Bee Abd Hamid, S. Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J., 2014, 2014, Article ID 727496.,
[http://dx.doi.org/10.1155/2014/727496]
[26]
Asadpour-Zeynali, K.; Shabangoli, Y.; Nejati, K. Electrochemical synthesis of Fe/Al-layered double hydroxide on a glassy carbon electrode: Application for electrocatalytic reduction of isoniazid. J Iran Chem Soc., 2016, 13(1), 29-36.
[http://dx.doi.org/10.1007/s13738-015-0708-7]
[27]
You, T.; Niu, L.; Gui, J.Y.; Dong, S.; Wang, E. Detection of hydrazine, methylhydrazine and isoniazid by capillary electrophoresis with a 4-pyridyl hydroquinone self-assembled microdisk platinum electrode. J. Pharm. Biomed. Anal., 1999, 19(1-2), 231-237.
[http://dx.doi.org/10.1016/S0731-7085(98)00130-7] [PMID: 10698584]
[28]
Yusoff, N.; Rameshkumar, P.; Mehmood, M.S.; Pandikumar, A.; Lee, H.W.; Huang, N.M. Ternary nanohybrid of reduced graphene oxide-nafion@silver nanoparticles for boosting the sensor performance in non-enzymatic amperometric detection of hydrogen peroxide. Biosens. Bioelectron., 2017, 87, 1020-1028.
[http://dx.doi.org/10.1016/j.bios.2016.09.045] [PMID: 27697744]
[29]
Mu, Y.; Jia, D.; He, Y.; Miao, Y.; Wu, H-L. Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens. Bioelectron., 2011, 26(6), 2948-2952.
[http://dx.doi.org/10.1016/j.bios.2010.11.042] [PMID: 21167705]
[30]
Elancheziyan, M.; Manoj, D.; Saravanakumar, D.; Thenmozhi, K.; Senthilkumar, S. Amperometric sensing of catechol using a glassy carbon electrode modified with ferrocene covalently immobilized on graphene oxide. Mikrochim. Acta, 2017, 184(8), 2925-2932.
[http://dx.doi.org/10.1007/s00604-017-2312-2]
[31]
Chokkareddy, R.; Bhajanthri, N.K.; Redhi, G.G. A Novel electrode architecture for monitoring rifampicin in various pharmaceuticals. Int. J. Electrochem. Sci., 2017, 12, 9190-9203.
[http://dx.doi.org/10.20964/2017.10.13]
[32]
Sonkar, P.K.; Yadav, M.; Prakash, K.; Ganesan, V.; Sankar, M.; Yadav, D.K. Electrochemical sensing of rifampicin in pharmaceutical samples using meso-tetrakis (4-hydroxyphenyl) porphyrinato cobalt (II) anchored carbon nanotubes. J. Appl. Electrochem., 2018, 48(8), 937-946.
[http://dx.doi.org/10.1007/s10800-018-1221-3]
[33]
Pumera, M. Electrochemistry of graphene: New horizons for sensing and energy storage. Chem. Rec., 2009, 9(4), 211-223.
[http://dx.doi.org/10.1002/tcr.200900008] [PMID: 19739147]