Concepts on Smart Nano-Based Drug Delivery System

Page: [67 - 89] Pages: 23

  • * (Excluding Mailing and Handling)

Abstract

Abstract: Nanomedicine is a branch of healthcare, which has many clinical applications. Nanoscale science has to presume an attractive slot for the research in drug delivery as nanocarriers either through active or passive targeting approaches to cell-specific drug delivery. Liposomes, solid-lipid nanoparticles, dendrimers, polymeric nanoparticles, mesoporous silica nanoparticles, inorganic nanoparticles, nanotubes, quantum dots, and nanofibers are nanocarriers that are proven too smart a nano-based drug delivery system. The nanoparticulate system shows high stability, high specificity, high efficacy, and liability to form different dosages, used through different routes, as well as the ability to deliver hydrophobic as well as hydrophilic drugs. These nanoparticulate systems are showing wider applications to cure the disease through nanomedicines and biomedical applications viz. chemical and biological sensors, information storage systems, magneto-optic, optical devices, and fiber-optic systems. In this review article, the author describes various smart nano-based drug delivery systems along with their endocytic pathways used for the uptake of nanoparticles.

Keywords: Liposomes, solid lipid nanoparticles, dendrimers, polymeric nanoparticles, mesoporous silica nanoparticles.

Graphical Abstract

[1]
Schaming D. Remita HJFoC (2015) Nanotechnology: from the ancient time to nowadays 2015; 17(3): 187-205.
[2]
McCann JJJJoIS. Technology (1998) Color theory and color imaging systems: Past, present and future.. 1998; 42(1): 70-8.
[3]
MDJJopcm Haw. Colloidal suspensions, Brownian motion, molecular reality: a short history.. 2002; 14(33): 7769.
[4]
Hornyak GL, Dutta J, Tibbals HF, Rao A. Introduction to nanoscience. CRC press 2008.
[http://dx.doi.org/10.1201/b12835]
[5]
Chowdhury AH, Debnath R, Islam SM, Saha T. Impact of Nanoparticle Shape, Size, and Properties of Silver Nanocomposites and Their ApplicationsSustainable Polymer Composites and Nanocomposites. Springer 2019; pp. 1067-91.
[http://dx.doi.org/10.1007/978-3-030-05399-4_37]
[6]
Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 2011; 6(3): 491.
[http://dx.doi.org/10.1007/s11468-011-9228-1]
[7]
Lin YX, Wang Y, Wang H. Recent advances in nanotechnology for autophagy detection small 2017; 13(33): 1700996
[8]
Thassu D, Pathak Y, Deleers M. Nanoparticulate drug-delivery systems: an overviewNanoparticulate Drug Delivery Systems. CRC Press 2007; pp. 21-52.
[9]
Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An overview of preparation and characterization. J Appl Pharm Sci 2011; 1(6): 228-34.
[10]
Chavda VP. Nanobased Nano Drug Delivery: A Comprehensive ReviewApplications of Targeted Nano Drugs and Delivery Systems. Elsevier 2019; pp. 69-92.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00004-1]
[11]
Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano 2009; 3(1): 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[12]
Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 2002; 22(2): 129-50.
[http://dx.doi.org/10.1023/A:1020178304031] [PMID: 12428898]
[13]
Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 2008; 126(3): 187-204.
[http://dx.doi.org/10.1016/j.jconrel.2007.12.017] [PMID: 18261822]
[14]
Cheng R, Meng F, Deng C, Klok H-A, Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials 2013; 34(14): 3647-57.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[15]
Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Mater Today 2005; 8(8): 18-26.
[http://dx.doi.org/10.1016/S1369-7021(05)71033-6]
[16]
Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 2012; 161(2): 264-73.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.017] [PMID: 21872624]
[17]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[18]
Allaker RP, Ren G. Potential impact of nanotechnology on the control of infectious diseases. Trans R Soc Trop Med Hyg 2008; 102(1): 1-2.
[http://dx.doi.org/10.1016/j.trstmh.2007.07.003] [PMID: 17706258]
[19]
Silva GA. Nanotechnology applications and approaches for neuroregeneration and drug delivery to the central nervous system. Ann N Y Acad Sci 2010; 1199(1): 221-30.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05361.x] [PMID: 20633128]
[20]
Carvalho A, Fernandes AR, Baptista PV. Nanoparticles as Delivery Systems in Cancer Therapy: Focus on Gold Nanoparticles and DrugsApplications of Targeted Nano Drugs and Delivery Systems. Elsevier 2019; pp. 257-95.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00010-7]
[21]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[22]
Khan I, Saeed K. Nanoparticles: Properties, applications and toxicities 2019; 12(7): 908-31
[23]
Jeevanandam J, Barhoum A, Chan YS, Dufresne A. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations 2018; 9(1): 1050-74.
[24]
Ghosh Chaudhuri R. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications 2012; 112(4): 2373-433
[25]
Sperling RA. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles 2010; 368(1915): 1333-83.
[26]
Donahue ND, Acar H, Wilhelm S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv Drug Deliv Rev 2019; 143: 68-96.
[http://dx.doi.org/10.1016/j.addr.2019.04.008] [PMID: 31022434]
[27]
Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med 2017; 21(9): 1668-86.
[http://dx.doi.org/10.1111/jcmm.13110] [PMID: 28244656]
[28]
Lu Y, Qi J, Wu W. Lipid nanoparticles: in vitro and in vivo approaches in drug delivery and targetingDrug Targeting and Stimuli Sensitive Drug Delivery Systems. Elsevier 2018; pp. 749-83.
[http://dx.doi.org/10.1016/B978-0-12-813689-8.00020-3]
[29]
Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environ Toxicol Chem 2014; 33(3): 481-92.
[http://dx.doi.org/10.1002/etc.2470] [PMID: 24273100]
[30]
Swanson JA, Watts C. Macropinocytosis. Trends Cell Biol 1995; 5(11): 424-8.
[http://dx.doi.org/10.1016/S0962-8924(00)89101-1] [PMID: 14732047]
[31]
Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic 2009; 10(4): 364-71.
[http://dx.doi.org/10.1111/j.1600-0854.2009.00878.x] [PMID: 19192253]
[32]
Mercer J, Helenius A. Virus entry by macropinocytosis. Nat Cell Biol 2009; 11(5): 510-20.
[http://dx.doi.org/10.1038/ncb0509-510] [PMID: 19404330]
[33]
Lundmark R, Carlsson SR. Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosisSeminars in cell & developmental biology. Elsevier 2010; Vol. 4: pp. 363-70.
[http://dx.doi.org/10.1016/j.semcdb.2009.11.014]
[34]
McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2011; 12(8): 517-33.
[http://dx.doi.org/10.1038/nrm3151] [PMID: 21779028]
[35]
Maldonado-Báez L, Wendland B. Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol 2006; 16(10): 505-13.
[http://dx.doi.org/10.1016/j.tcb.2006.08.001] [PMID: 16935508]
[36]
Sochacki KA, Taraska JW. From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends Cell Biol 2018.
[PMID: 30598298]
[37]
Ungewickell EJ, Hinrichsen L. Endocytosis: clathrin-mediated membrane budding. Curr Opin Cell Biol 2007; 19(4): 417-25.
[http://dx.doi.org/10.1016/j.ceb.2007.05.003] [PMID: 17631994]
[38]
Sandvig K, Pust S, Skotland T, van Deurs B. Clathrin-independent endocytosis: mechanisms and function. Curr Opin Cell Biol 2011; 23(4): 413-20.
[http://dx.doi.org/10.1016/j.ceb.2011.03.007] [PMID: 21466956]
[39]
Fielding CJ, Fielding PE. Caveolae and intracellular trafficking of cholesterol. Adv Drug Deliv Rev 2001; 49(3): 251-64.
[http://dx.doi.org/10.1016/S0169-409X(01)00140-5] [PMID: 11551398]
[40]
Nassoy P, Lamaze C. Stressing caveolae new role in cell mechanics. Trends Cell Biol 2012; 22(7): 381-9.
[http://dx.doi.org/10.1016/j.tcb.2012.04.007] [PMID: 22613354]
[41]
Pedersen LB, Mogensen JB, Christensen ST. Endocytic control of cellular signaling at the primary cilium. Trends Biochem Sci 2016; 41(9): 784-97.
[http://dx.doi.org/10.1016/j.tibs.2016.06.002] [PMID: 27364476]
[42]
Donaldson JG, Porat-Shliom N, Cohen LA. Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signal 2009; 21(1): 1-6.
[http://dx.doi.org/10.1016/j.cellsig.2008.06.020] [PMID: 18647649]
[43]
Maldonado-Báez L, Williamson C, Donaldson JG. Clathrin-independent endocytosis: a cargo-centric view. Exp Cell Res 2013; 319(18): 2759-69.
[http://dx.doi.org/10.1016/j.yexcr.2013.08.008] [PMID: 23954817]
[44]
Howes MT, Mayor S, Parton RG. Molecules, mechanisms, and cellular roles of clathrin-independent endocytosis. Curr Opin Cell Biol 2010; 22(4): 519-27.
[http://dx.doi.org/10.1016/j.ceb.2010.04.001] [PMID: 20439156]
[45]
Esteban MÁ, Cuesta A, Chaves-Pozo E, Meseguer J. Phagocytosis in teleosts. Implications of the new cells involved. Biology (Basel) 2015; 4(4): 907-22.
[http://dx.doi.org/10.3390/biology4040907] [PMID: 26690236]
[46]
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Transport into the cell from the plasma membrane: endocytosisMolecular Biology of the Cell. 4th ed. Garland Science 2002.
[47]
Mirshafiee V, Kim R, Park S, Mahmoudi M, Kraft ML. Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials 2016; 75: 295-304.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.019] [PMID: 26513421]
[48]
Garin J, Diez R, Kieffer S, et al. The phagosome proteome: insight into phagosome functions. J Cell Biol 2001; 152(1): 165-80.
[http://dx.doi.org/10.1083/jcb.152.1.165] [PMID: 11149929]
[49]
Mindell JA. Lysosomal acidification mechanisms. Annu Rev Physiol 2012; 74: 69-86.
[http://dx.doi.org/10.1146/annurev-physiol-012110-142317] [PMID: 22335796]
[50]
López-Lorente ÁI, Valcárcel M. Analytical nanoscience and nanotechnology. Comprehensive Analytical Chemistry Elsevier 2014; Vol 66: 3-35.
[51]
Kammari R, Das NG, Das SK. Nanoparticulate systems for therapeutic and diagnostic applicationsEmerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. Elsevier 2017; pp. 105-44.
[http://dx.doi.org/10.1016/B978-0-323-42978-8.00006-1]
[52]
Baimova J, Korznikova E, Lobzenko I, Dmitriev S. DISCRETE BREATHERS IN CARBON AND HYDROCARBON NANOSTRUCTURES. Rev Adv Mater Sci 2015; 42(1)
[53]
Bangham AD, Horne RW. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J Mol Biol 1964; 8(5): 660-8.
[http://dx.doi.org/10.1016/S0022-2836(64)80115-7] [PMID: 14187392]
[54]
Horne RW, Bangham AD, Whittaker VP. Negatively stained lipoprotein membranes. Nature 1963; 200(4913): 1340-0.
[http://dx.doi.org/10.1038/2001340a0] [PMID: 14098499]
[55]
Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 2009; 30(11): 592-9.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[56]
Chrai SS, Murari R, Ahmad I. Liposomes (a review)-Part one: Manufacturing issues. Biopharm-the Applied Technologies of Biopharmaceutical Development 2001; 14(11): 10.
[57]
Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes J Drug Deliv 2011; 2011
[http://dx.doi.org/10.1155/2011/591325] [PMID: 21490754]
[58]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[59]
Huang Z, Li X, Zhang T, et al. Progress involving new techniques for liposome preparation asian journal of pharmaceutical sciences 2014; 9(4): 176-82
[60]
Pattni BS, Chupin VV, Torchilin VP. New developments in liposomal drug delivery. Chem Rev 2015; 115(19): 10938-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00046] [PMID: 26010257]
[61]
Walunj M, Doppalapudi S, Bulbake U. Preparation, characterization, and in vivo evaluation of cyclosporine cationic liposomes for the treatment of psoriasis 2020; 30(1): 68-79.
[62]
Shao J, Wen C, Xuan M, et al. Polyelectrolyte multilayer-cushioned fluid lipid bilayers: a parachute model 2017; 19(3): 2008-16.
[63]
Torres-Giner S, Gimenez E, Lagaron JMJFH. Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning 2008; 22(4): 601-14.
[64]
Kilic A, Kok FNJSI. Biomimetic lipid bilayers on solid surfaces: models for biological interactions 2016; 4(3): 141-57.
[65]
He W, Frueh J, Wu Z, He QJL. Leucocyte membrane-coated janus microcapsules for enhanced photothermal cancer treatment 2016; 32(15): 3637-44.
[66]
He W, Frueh J, Wu Z. How leucocyte cell membrane modified janus microcapsules are phagocytosed by cancer cells 2016; 8(7): 4407-15.
[67]
Geszke-Moritz M, Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater Sci Eng C 2016; 68: 982-94.
[http://dx.doi.org/10.1016/j.msec.2016.05.119] [PMID: 27524099]
[68]
Kumar N, Kumar R. Nanotechnology and Nanomaterials in the Treatment of Life-threatening Diseases. William Andrew 2013.
[69]
Dolatabadi JEN, Omidi Y. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. Trends Analyt Chem 2016; 77: 100-8.
[http://dx.doi.org/10.1016/j.trac.2015.12.016]
[70]
Feng L, Mumper RJ. A critical review of lipid-based nanoparticles for taxane delivery. Cancer Lett 2013; 334(2): 157-75.
[http://dx.doi.org/10.1016/j.canlet.2012.07.006] [PMID: 22796606]
[71]
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264: 306-32.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.033] [PMID: 28844756]
[72]
Pires VC, Magalhães CP, Ferrante M, et al. Solid lipid nanoparticles as a novel formulation approach for tanespimycin (17-AAG) against Leishmania infections: preparation, characterization and macrophage uptake. 2020; 105595..
[73]
Abbasi E, Aval SF, Akbarzadeh A, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 2014; 9(1): 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[74]
Boas U, Heegaard PM. Dendrimers in drug research. Chem Soc Rev 2004; 33(1): 43-63.
[http://dx.doi.org/10.1039/b309043b] [PMID: 14737508]
[75]
Pathak C, Vaidya FU, Pandey SM. Mechanism for Development of Nanobased Drug Delivery SystemApplications of Targeted Nano Drugs and Delivery Systems. Elsevier 2019; pp. 35-67.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00003-X]
[76]
Jeon I-Y, Noh H-J, Baek J-B. Hyperbranched macromolecules: From synthesis to applications. Molecules 2018; 23(3): 657.
[http://dx.doi.org/10.3390/molecules23030657] [PMID: 29538327]
[77]
Grayson SM, Godbey WT. The role of macromolecular architecture in passively targeted polymeric carriers for drug and gene delivery. J Drug Target 2008; 16(5): 329-56.
[http://dx.doi.org/10.1080/10611860801969616] [PMID: 18569279]
[78]
Fox LJ, Richardson RM, Briscoe WH. PAMAM dendrimer - cell membrane interactions. Adv Colloid Interface Sci 2018; 257: 1-18.
[http://dx.doi.org/10.1016/j.cis.2018.06.005] [PMID: 30008347]
[79]
García-Gallego S, Franci G, Falanga A, et al. Function oriented molecular design: dendrimers as novel antimicrobials. Molecules 2017; 22(10): 1581.
[http://dx.doi.org/10.3390/molecules22101581] [PMID: 28934169]
[80]
Márquez-Miranda V, Araya-Durán I, Camarada MB, Comer J, Valencia-Gallegos JA, González-Nilo FD. Self-assembly of amphiphilic dendrimers: The role of generation and alkyl chain length in siRNA interaction. Sci Rep 2016; 6: 29436.
[http://dx.doi.org/10.1038/srep29436] [PMID: 27377641]
[81]
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 2014; 6(3): 139-50.
[http://dx.doi.org/10.4103/0975-7406.130965] [PMID: 25035633]
[82]
Šebestík J, Reiniš M, Ježek J. Synthesis of dendrimers: convergent and divergent approachesBiomedical Applications of Peptide-, Glyco-and Glycopeptide Dendrimers, and Analogous Dendrimeric Structures. Springer 2012; pp. 55-81.
[http://dx.doi.org/10.1007/978-3-7091-1206-9_6]
[83]
Jain K. Dendrimers: Smart nanoengineered polymers for bioinspired applications in drug deliveryBiopolymer-Based Composites. Elsevier 2017; pp. 169-220.
[http://dx.doi.org/10.1016/B978-0-08-101914-6.00007-7]
[84]
Bugno J, Hsu HJ, Hong S. Tweaking dendrimers and dendritic nanoparticles for controlled nano-bio interactions: potential nanocarriers for improved cancer targeting. J Drug Target 2015; 23(7-8): 642-50.
[http://dx.doi.org/10.3109/1061186X.2015.1052077] [PMID: 26453160]
[85]
Ho MN, Bach LG, Nguyen DH, et al. PEGylated PAMAM dendrimers loading oxaliplatin with prolonged release and high payload without burst effect 2019; 110(7)e23272.
[86]
Patel T, Zhou J, Piepmeier JM, Saltzman WM. Polymeric nanoparticles for drug delivery to the central nervous system. Adv Drug Deliv Rev 2012; 64(7): 701-5.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[87]
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug deliveryCancer Nanotechnology. Springer 2010; pp. 163-75.
[http://dx.doi.org/10.1007/978-1-60761-609-2_11]
[88]
Mandal B, Bhattacharjee H, Mittal N, et al. Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine (Lond) 2013; 9(4): 474-91.
[http://dx.doi.org/10.1016/j.nano.2012.11.010] [PMID: 23261500]
[89]
Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm 2013; 85(3 Pt A): 427-43.
[http://dx.doi.org/10.1016/j.ejpb.2013.07.002] [PMID: 23872180]
[90]
Singh N, Joshi A, Toor AP, Verma G. Drug delivery: advancements and challengesNanostructures for Drug Delivery. Elsevier 2017; pp. 865-86.
[http://dx.doi.org/10.1016/B978-0-323-46143-6.00027-0]
[91]
Krishnaswamy K, Orsat V. Sustainable delivery systems through green nanotechnologyNano-and Microscale Drug Delivery Systems. Elsevier 2017; pp. 17-32.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00002-9]
[92]
Pund S, Joshi A. Nanoarchitectures for Neglected Tropical Protozoal Diseases: Challenges and State of the ArtNano-and Microscale Drug Delivery Systems. Elsevier 2017; pp. 439-80.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00023-6]
[93]
Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS Nano 2015; 9(5): 4686-97.
[http://dx.doi.org/10.1021/acsnano.5b01433] [PMID: 25938172]
[94]
Yu X, Sun L, Tan L, et al. Preparation and Characterization of PLGA–PEG–PLGA Nanoparticles Containing Salidroside and Tamoxifen for Breast Cancer Therapy 2020; 21(3): 85.
[95]
Avgoustakis KJCdd. Pegylated poly (lactide) and poly (lactide-coglycolide) nanoparticles: preparation, properties and possible applications in drug delivery. 2004; 1(4): 321-33. .
[96]
Jain AK, Swarnakar NK, Das M, Godugu C, Singh RP, Rao PR. Augmented anticancer efficacy of doxorubicin-loaded polymeric nanoparticles after oral administration in a breast cancer induced animal model 2011; 8(4): 1140-51.
[97]
Li W, Gai M, Rutkowski S, et al. An Automated Device for Layer-by-Layer Coating of Dispersed Superparamagnetic Nanoparticle Templates 2018; 80(6): 648-59.
[98]
Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018; 10(3): 118.
[http://dx.doi.org/10.3390/pharmaceutics10030118] [PMID: 30082647]
[99]
Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 2018; 8(2): 165-77.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
[100]
Sun Y, Ma K, Kao T, et al. Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling. Nat Commun 2017; 8(1): 252.
[http://dx.doi.org/10.1038/s41467-017-00351-8] [PMID: 28811480]
[101]
Wang Y, Zhao Q, Han N, et al. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond) 2015; 11(2): 313-27.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[102]
Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 2007; 46(40): 7548-58.
[http://dx.doi.org/10.1002/anie.200604488] [PMID: 17854012]
[103]
Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 2009; 117(1-2): 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2008.07.002]
[104]
Wu KC-W, Yamauchi Y. Controlling physical features of mesoporous silica nanoparticles (MSNs) for emerging applications. J Mater Chem 2012; 22(4): 1251-6.
[http://dx.doi.org/10.1039/C1JM13811A]
[105]
Cong VT, Gaus K, Tilley RD, Gooding JJ. Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opin Drug Deliv 2018; 15(9): 881-92.
[http://dx.doi.org/10.1080/17425247.2018.1517748] [PMID: 30173560]
[106]
Li Z, Zhang Y, Feng N. Mesoporous silica nanoparticles: synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin Drug Deliv 2019; 16(3): 219-37.
[http://dx.doi.org/10.1080/17425247.2019.1575806] [PMID: 30686075]
[107]
Lu H, Yang G, Ran F, et al. Polymer-functionalized mesoporous carbon nanoparticles on overcoming multiple barriers and improving oral bioavailability of Probucol 2020.229: 115508.
[108]
Xuan M, Wu Z, Shao J, Dai L, Si T. Near infrared light-powered Janus mesoporous silica nanoparticle motors 2016.138(20): 6492-7..
[109]
Dubey SP, Lahtinen M, Sillanpää M. Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids Surf A Physicochem Eng Asp 2010; 364(1-3): 34-41.
[http://dx.doi.org/10.1016/j.colsurfa.2010.04.023]
[110]
Safaei M, Taran M, Imani MMJMS. Preparation, structural characterization, thermal properties and antifungal activity of alginate-CuO bionanocomposite 2019.101: 323-9..
[111]
Wen W, Huang J-Y, Bao T, et al. Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. 2016; 83: 142-8..
[112]
Frueh J, Nakashima N, He Q. Effect of linear elongation on carbon nanotube and polyelectrolyte structures in PDMS-supported nanocomposite LbL films 2012; 116(40): 12257-62.
[113]
He W, Frueh J, Shao J, et al. Guidable GNR-Fe3O4-PEM@ SiO2 composite particles containing near infrared active nanocalorifiers for laser assisted tissue welding 2016; 511: 73-81
[114]
Rao CNR, Satishkumar BC, Govindaraj A, Nath M. Nanotubes. ChemPhysChem 2001; 2(2): 78-105.
[http://dx.doi.org/10.1002/1439-7641(20010216)2:2<78:AID-CPHC78>3.0.CO;2-7] [PMID: 23696434]
[115]
Saito S, Zettl A. Carbon nanotubes: quantum cylinders of graphene. Elsevier 2008; Vol. 3.
[116]
McDonald TO, Siccardi M, Moss D, et al. The application of nanotechnology to drug delivery in medicineNanoengineering. Elsevier 2015; pp. 173-223.
[http://dx.doi.org/10.1016/B978-0-444-62747-6.00007-5]
[117]
Phan QT, Patil MP, Tu TT, Le CM, Kim G-D, Lim KTJP. Polyampholyte-grafted single walled carbon nanotubes prepared via a green process for anticancer drug delivery application 2020.122340..
[118]
Unsoy G, Khodadust R, Yalcin S, Mutlu P. Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery 2014.62: 243-50..
[119]
Kim J-S, Liu Y, Zhu W, et al. Toward air-stable multilayer phosphorene thin-films and transistors 2015.5: 8989..
[120]
Matea CT, Mocan T, Tabaran F, et al. Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 2017; 12: 5421-31.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[121]
Chinnathambi S, Chen S, Ganesan S, Hanagata N. Silicon quantum dots for biological applications. Adv Healthc Mater 2014; 3(1): 10-29.
[http://dx.doi.org/10.1002/adhm.201300157] [PMID: 23949967]
[122]
Pleskova S, Mikheeva E, Gornostaeva E. Using of Quantum Dots in Biology and MedicineCellular and Molecular Toxicology of Nanoparticles. Springer 2018; pp. 323-34.
[http://dx.doi.org/10.1007/978-3-319-72041-8_19]
[123]
Onoshima D, Yukawa H, Baba Y. Multifunctional quantum dots-based cancer diagnostics and stem cell therapeutics for regenerative medicine. Adv Drug Deliv Rev 2015; 95: 2-14.
[http://dx.doi.org/10.1016/j.addr.2015.08.004] [PMID: 26344675]
[124]
Wang X, Feng Y, Dong P, Huang J. A Mini Review on Carbon Quantum Dots: Preparation, Properties, and Electrocatalytic Application. Front Chem 2019; 7: 671.
[http://dx.doi.org/10.3389/fchem.2019.00671] [PMID: 31637234]
[125]
Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 2004; 126(40): 12736-7.
[http://dx.doi.org/10.1021/ja040082h] [PMID: 15469243]
[126]
You Y, Tong X, Wang W, et al. Eco-Friendly Colloidal Quantum Dot-Based Luminescent Solar Concentrators. Adv Sci (Weinh) 2019; 6(9)
[http://dx.doi.org/10.1002/advs.201801967] [PMID: 31065522]
[127]
Das A, Snee PT. Synthetic developments of nontoxic quantum dots. ChemPhysChem 2016; 17(5): 598-617.
[http://dx.doi.org/10.1002/cphc.201500837] [PMID: 26548450]
[128]
Sheng Y, Dai W, Gao J, et al. pH-sensitive drug delivery based on chitosan wrapped graphene quantum dots with enhanced fluorescent stability 2020; 110888
[129]
Kajdič S, Planinšek O, Gašperlin M, Kocbek P. Electrospun nanofibers for customized drug-delivery systems. J Drug Deliv Sci Technol 2019.
[130]
Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. J Appl Polym Sci 2005; 96(2): 557-69.
[http://dx.doi.org/10.1002/app.21481]
[131]
Aruchamy K, Mahto A, Nataraj S. Electrospun nanofibers, nanocomposites and characterization of art: Insight on establishing fibers as product. Nano-Structures & Nano-Objects 2018; 16: 45-58.
[http://dx.doi.org/10.1016/j.nanoso.2018.03.013]
[132]
Wang Y, Chou J, Sun Y, Wen S, Vasilescu S, Zhang H. Supramolecular-based nanofibers. Mater Sci Eng C 2019; 101: 650-9.
[http://dx.doi.org/10.1016/j.msec.2019.04.021] [PMID: 31029359]
[133]
Li D, Xia Y. Electrospinning of nanofibers: reinventing the wheel? Adv Mater 2004; 16(14): 1151-70.
[http://dx.doi.org/10.1002/adma.200400719]
[134]
Xu C, Inai R, Kotaki M, Ramakrishna S. Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng 2004; 10(7-8): 1160-8.
[http://dx.doi.org/10.1089/ten.2004.10.1160] [PMID: 15363172]
[135]
Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG. Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers 2003; 15(9): 1860-4
[136]
Yarin AL, Koombhongse S, Reneker DH. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 2001; 90(9): 4836-46.
[http://dx.doi.org/10.1063/1.1408260]
[137]
Morie A, Garg T, Goyal AK, Rath G. Nanofibers as novel drug carrier--An overview. Artif Cells Nanomed Biotechnol 2016; 44(1): 135-43.
[http://dx.doi.org/10.3109/21691401.2014.927879] [PMID: 25016918]
[138]
Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci 2003; 8(1): 64-75.
[http://dx.doi.org/10.1016/S1359-0294(03)00004-9]
[139]
Wu X-F, Salkovskiy Y, Dzenis YA. Modeling of solvent evaporation from polymer jets in electrospinning. Appl Phys Lett 2011; 98(22)
[http://dx.doi.org/10.1063/1.3585148]
[140]
Kamble R, Mehtre R, Mehta P, Nangare P, Patil SJB. Albendazole Electrospun Nanofiber Films: In-vitro and Ex-vivo Assessment 2019; 9(3): 625-36
[141]
Kebarle P. Verkerk UHJMsrElectrospray: from ions in solution to ions in the gas phase, what we know now 2009; 28(6): 898-917
[142]
Xie J, Jiang J, Davoodi P, Srinivasan MP. Wang C-HJCes Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials 2015; 125: 32-57
[143]
Prasad R, Kumar V. KSJAJoB Prasad Nanotechnology in sustainable agriculture: present concerns and future aspects 2014; 13(6): 705-13
[144]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: recent developments and future prospects 2018; 16(1): 71.
[145]
Hedayatnasab Z, Abnisa F, Daud WMAWJM. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application 2017; 123(174)
[146]
Ganguly P, Breen A, Pillai SCJABS. Toxicity of nanomaterials: Exposure, pathways, assessment, and recent advances 2018; 4(7): 2237-75
[147]
El-Sawy HS, Al-Abd AM, Ahmed TA, El-Say KM. Torchilin VPJAnStimuli-responsive nano-architecture drug-delivery systems to solid tumor micromilieu: past, present, and future perspectives 2018; 12(11): 10636-64