In Vitro Screening for Cytotoxic, Anti-bacterial, Anti-HIV1-RT Activities and Chemical Constituents of Croton fluviatilis, Croton acutifolius, and Croton thorelii

Article ID: e160921190449 Pages: 99

  • * (Excluding Mailing and Handling)

Abstract

Background: Although the chemical constituents and biological activities of a large number of plants in the Croton genus have been studied, there are still recently discovered plants that need to be investigated.

Objective: 1. To investigate the anti-bacterial, anti-HIV1-RT, and cytotoxicity activities of crude extracts of these plants. 2. To investigate the chemical constituents of Croton fluviatilis, Croton acutifolius, and Croton thorelii.

Methods: The anti-bacterial, anti-HIV1-RT, and cytotoxicity of the three plants were evaluated by standard techniques. Extraction, separation, and purification of extracts of the three plants were performed.

Results: The ethyl acetate extract of C. fluviatilis showed low anti-bacterial activity against E. aerogenes, E. coli 0157: H7, and P. mirabilis, together with the ethyl acetate extract of C. acutifolius displayed low anti-bacterial activity against E. aerogenes, while all the crude extracts of C. thorelii were inactive. The ethyl acetate extracts of C. thorelii and C. fluviatilis showed strong HIV1-RT activities, whereas the ethyl acetate extract of C. acutifolius and the hexane extract of C. fluviatilis displayed moderate HIV1-RT activities. Cytotoxic properties of three Croton plants were specific to KKU-M213, MDA-MB-231, A-549, and MMNK-1. Especially, the ethyl acetate extract of C. acutifolius exhibited strong cytotoxic activities against MDA-MB-231, A-549, and MMNK-1. Furthermore, the ethyl acetate extract of C. thorelii showed high cytotoxic activities against KKUM213 and MDA-MB-231. Compounds 1 and 4 were found in C. fluviatilis. Compounds 2 and 4 were found in C. acutifolius. Moreover, compound 3 was only found in C. thorelii.

Conclusion: The present study revealed that the three Croton species are good sources of flavonoid compounds, and further investigation of the chemical constituents from these plants may prove to be fruitful to discover more active compounds to be tested as potential medicines.

Keywords: Cytotoxicity, anti-bacterial, anti-HIV1-RT activities, Croton fluviatilis, Croton acutifolius, Croton thorelii.

Graphical Abstract

[1]
Maroyi, A. Ethnomedicinal uses and pharmacological activities of Croton megalobotrys Müll Arg: A systematic review. Trop J Pharm Res., 2017, 16(10), 2535-2543.
[2]
Chayamarit, C.; Suntisuk, T.; Larsen, K.; Welzen, P.V.; Esser, H.J.; Nanakorn, W.; Chantaranothai, P.; Boonthavikoon, T.; Pooma, R.; Phuphathanaphong, L.; Chantharaprasong, C.; Larsen, S. Systematic study of the family Euphorbiaceae in Thailand. BRT Research Report 2001 Biodiversity Research and Training Program; Baimai, V.; Kumhom, R., Eds.; Jiranat Express Co. Ltd.. Bangkok, Thailand, 2001, pp. 78-88.
[3]
Xu, W.H.; Liu, W.Y.; Liang, Q. Chemical constituents from Croton species and their biological activities. Molecules, 2018, 23(9), 2333.
[http://dx.doi.org/10.3390/molecules23092333] [PMID: 30213129]
[4]
Esser, H-J. Croton fluviatilis (Euphorbiaceae), a new species from thailand. Thai for Bull (Bot), 2010, 38, 33-36.
[5]
Esser, H-J.; Chayamarit, K. Two new species and a new name in Thai Croton (Euphorbiaceae). Thai Bull., 2001, 29, 51-57.
[6]
Ruangaram, W.; Kato, E. Selection of thai medicinal plants with anti-obesogenic potential via in vitro methods. Pharmaceuticals, 2020, 13(56), 1-12.
[http://dx.doi.org/10.3390/ph13040056] [PMID: 32235329]
[7]
Junsongduang, A.; Balslev, H.; Inta, A.; Jampeetong, A.; Wangpakapattanawong, P. Karen and Lawa medicinal plants use: Uniformity or ethic divergence. J. Ethnopharmacol., 2014, 151(1), 517-527.
[http://dx.doi.org/10.1016/j.jep.2013.11.009] [PMID: 24247077]
[8]
Siriarchavatana, P.; Phoonsiri, C.; Sematong, T.; Suntorntanasat, T. In: Immunostimulation of Croton thorelii gagnap on humoral immune response. In: The 8th NRCT-JSPS Joint Seminar “Innovative research in natural products for sustainable development”, Chulalongkorn University, Bangkok, Thailand, December 3-4 2008, pp. 171-172.
[9]
Nath, K.; Talukdar, A.D.; Bhattacharya, M.K.; Bhowmik, D.; Chetri, S.; Choudhury, D.; Mitra, A.; Bhattacharjee, A. Anti-bacterial activity of certain ferns against multi drug resistant organisms. JNR, 2018, 17(4), 144-153.
[10]
Tan, G.T.; Pezzuto, J.M.; Kinghorn, A.D.; Hughes, S.H. Evaluation of natural products as inhibitor of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. J. nat. Prod., 1991, 54(1), 143-154.
[http://dx.doi.org/10.1021/np50073a012] [PMID: 1710653]
[11]
Chailungka, A.; Junpirom, T.; Pompimon, W.; Nuntasaen, N.; Meepowpan, P. Two flavonoids first isolated from the seed of Syzygium nervosum and preliminary study of their anticancer and anti-HIV-1 reverse transcriptase activities. Maejo Int. J. Sci. Technol., 2017, 11(01), 58-67.
[12]
Thiplueang, C.; Punyanitya, S.; Udomputtimekakul, P.; Buayairaksa, M.; Nuntasaen, N.; Banjerdpongchai, R.; Wudtiwai, B.; Pompimon, W. Sawtehtetronenin and its cytotoxicity from Goniothalamus sawtehii. Nat. Prod. Commun., 2014, 9(12), 1769-1771.
[http://dx.doi.org/10.1177/1934578X1400901228] [PMID: 25632481]
[13]
Okoye, N.N.; Ajaghaku, D.L.; Okeke, H.N.; Ilodigwe, E.E.; Nworu, C.S.; Okoye, F.B. beta-Amyrin and alpha-amyrin acetate isolated from the stem bark of Alstonia boonei display profound anti-inflammatory activity. Pharm. Biol., 2014, 52(11), 1478-1486.
[http://dx.doi.org/10.3109/13880209.2014.898078] [PMID: 25026352]
[14]
Saeidnia, S.; Ara, L.; Hajimehdipoor, H.; Read, R.W.; Arshadi, S.; Nikan, M. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity. Res Pharm Sci., 2016, 11(1), 23-32.
[PMID: 27051429]
[15]
Vázquez, L.H.; Palazon, J.; Navarro-Ocana, A. The pentacyclic triterpenes , amyrins: A review of sources and biological activities. Phytochemicals –A global perspective of their role in nutrition and Health, Dr Venketeshwer Rao (Ed.).InTech; , 2012, 538, pp. 487-502.
[16]
Ragasa, C.Y.; Morales, E.; Rideout, J.A. A flavone from Vitex parviflora. Manila J. Sci., 2000, 3(2), 6-10.
[17]
Silva, M.; Mundaca, J.M.; Sammes, P.G. Flavoniod and triterpene constitutents of Baccaris rhomboidalis. Phytochemistry, 1971, 10, 1942-1943.
[http://dx.doi.org/10.1016/S0031-9422(00)86469-9]
[18]
Pateh, U.U.; Haruna, A.K.; Garba, M. 1Iliya, I.; Sule, I. M.; Abubakar, M. S.; Ambi A. A. Isolation of stigmasterol, β-sitosterol and 2-hydroxyhexadecanoic acid methyl ester from the rhizomes of Stylochiton lancifolius pyer and kotchy (araceae) Niger. J. Pharm. Sci., 2009, 8(1), 19-25.
[19]
Chaturvedula, P.V.S.; Prakash, I. Isolation of stigmasterol and β-sitosterol from the dichloromethane extract of Rubus suavissimus. Int. Curr. Pharm. J., 2012, 1(9), 239-242.
[http://dx.doi.org/10.3329/icpj.v1i9.11613]
[20]
Nyigo, V.A.; Peter, X.; Mabiki, F.; Malebo, H.M.; Mdegela, R.H.; Fouche, G. Isolation and identification of euphol and β-sitosterol from the dichloromethane extracts of Synadenium glaucescens. J. Phytopharmacol., 2016, 5(3), 100-104.
[21]
Pierre, L.L.; Moses, M.N. Isolation and characterisation of stigmasterol and β-Sitosterol from Odontonema strictum (Acanthaceae). Int. J. innov Pharm. Sci., 2015, 2(1), 88-95.
[22]
Funnimid, N.; Pompimon, W.; Nuntasaen, N. In vitro Evaluation of crude extracts and isolated compounds from Goniothalamus rongklanus and Goniothalamus latestigma for bioactive properties. J. Nat. Rem., 2019, 19(3), 146-152.
[http://dx.doi.org/10.18311/jnr/2019/23766]
[23]
Reutrakul, V.; Anantachoke, N.; Pohmakotr, M.; Jaipetch, T.; Sophasan, S.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Tuchinda, P. Cytotoxic and anti-HIV-1 caged xanthones from the resin and fruits of Garcinia hanburyi. Planta Medica, 2007, 73(1), 33-40.
[http://dx.doi.org/10.1055/s-2006-951748] [PMID: 17117343]
[24]
Parvez, M.K.; Alam, P.; Arbab, A.H.; Al-Dosari, M.S.; Alhowiriny, T.A.; Alqasoumi, S.I. Analysis of antioxidative and antiviral biomarkers β-amyrin, β-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm J., 2018, 26(5), 685-693.
[http://dx.doi.org/10.1016/j.jsps.2018.02.022] [PMID: 29991912]
[25]
Citoğlu, G.S.; Sever, B.; Antus, S.; Baitz-Gáacs, E.; Altanlar, N. Antifungal diterpenoids and flavonoids from Ballota inaequidens. Pharm. Biol., 2004, 42(8), 659-663.
[http://dx.doi.org/10.1080/13880200490902626]
[26]
Aiyelaagbe, O.O.; Hamid, A.A.; Fattorusso, E.; Taglialatela-Scafati, O.; Schroder, H.C.; MÜller, W.E.G. Cytotoxic activity of crude extracts as well as of pure components from Jatropha species, plants used extensively in african traditional medicine. Evid. Based Complement. Alternat. Med., 2011, 2011, 1-7.
[http://dx.doi.org/10.1155/2011/134954]