Biopharmaceutical and Pharmacokinetic Activities of Oxymatrine Determined by a Sensitive UHPLC-MS/MS Method

Page: [148 - 157] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Oxymatrine is known as one of the most promising alkaloids from Sophora flavescens for its excellent pharmacological effects.

Objective: The aim of this research is to assess the biopharmaceutical and pharmacokinetic activities of oxymatrine and clarify its mechanisms of absorption and metabolism.

Methods: The biological characteristics of oxymatrine were systematically investigated by UHPLC-MS/MS. The mechanisms of absorption and metabolism of oxymatrine were further clarified through incubation in rat liver microsomes and transport across the Caco-2 monolayer cell absorption model.

Results: It was found that the absolute oral bioavailability of oxymatrine was 26.43%, and the pharmacokinetic parameters Cmax, Tmax, and t1/2 were 605.5 ng/mL, 0.75 h, and 4.181 h after oral administration, indicating that oxymatrine can be absorbed quickly. The tissue distribution tests showed that oxymatrine distributed throughout all the organs, with the small intestine accumulating the highest level, followed by the kidney, stomach, and spleen. The Papp in Caco-2 cell line absorption model was over 1 × 10-5 and PDR 1.064, and t1/2 of oxymatrine in rat liver microsome in vitro was 1.042 h, indicating that oxymatrine can be absorbed easily through passive diffusion and CYP450 enzymes could be involved in its metabolism. The plasma protein binding rate of oxymatrine was 2.78 ± 0.85%.

Conclusion: Oxymatrine can be absorbed into blood easily through passive diffusion, mainly distributed in the intestine, stomach, liver, and spleen in vivo, and CYP450 enzymes in the liver could be involved in its metabolism.

Keywords: Oxymatrine, bioavailability, biopharmaceutics, absorption, metabolism, UHPLC-MS/MS.

Graphical Abstract

[1]
Kim, Y.K.; Min, B.S.; Bae, K.H. A cytotoxic constituent from Sophora flavescens. Arch. Pharm. Res., 1997, 20(4), 342-345.
[http://dx.doi.org/10.1007/BF02976197] [PMID: 18975176]
[2]
Cho, C.H.; Chuang, C.Y.; Chen, C.F. Study of the antipyretic activity of matrine. A lupin alkaloid isolated from Sophora subprostrata. Planta Med., 1986, (5), 343-345.
[http://dx.doi.org/10.1055/s-2007-969179] [PMID: 3797498]
[3]
Zhou, J.; Ma, W.; Wang, X.; Liu, H.; Miao, Y.; Wang, J.; Du, P.; Chen, Y.; Zhang, Y.; Liu, Z. Matrine suppresses Reactive Oxygen Species (ROS)-mediated MKKs/p38-induced inflammation in Oxidized Low-Density Lipoprotein (ox-LDL)-stimulated macrophages. Med. Sci. Monit., 2019, 25, 4130-4136.
[http://dx.doi.org/10.12659/MSM.917151] [PMID: 31156213]
[4]
Yang, Y.; Chen, S.; Tao, L.; Gan, S.; Luo, H.; Xu, Y.; Shen, X. Inhibitory effects of oxymatrine on transdifferentiation of neonatal rat cardiac fibroblasts to myofibroblasts induced by aldosterone via Keap1/Nrf2 signaling pathways in vitro. Med. Sci. Monit., 2019, 25, 5375-5388.
[http://dx.doi.org/10.12659/MSM.915542] [PMID: 31325292]
[5]
Halim, C.E.; Xinjing, S.L.; Fan, L.; Bailey Vitarbo, J.; Arfuso, F.; Tan, C.H.; Narula, A.S.; Kumar, A.P.; Sethi, G.; Ahn, K.S. Anti-cancer effects of oxymatrine are mediated through multiple molecular mechanism(s) in tumor models. Pharmacol. Res., 2019, 147104327
[http://dx.doi.org/10.1016/j.phrs.2019.104327] [PMID: 31283981]
[6]
Wang, Y.; Shou, Z.; Fan, H.; Xu, M.; Chen, Q.; Tang, Q.; Liu, X.; Wu, H.; Zhang, M.; Yu, T.; Deng, S.; Liu, Y. Protective effects of oxymatrine against DSS-induced acute intestinal inflammation in mice via blocking the RhoA/ROCK signaling pathway. Biosci. Rep., 2019, 39(7)BSR20182297
[http://dx.doi.org/10.1042/BSR20182297] [PMID: 31262973]
[7]
Guan, B.; Chen, R.; Zhong, M.; Liu, N.; Chen, Q. Protective effect of Oxymatrine against acute spinal cord injury in rats via modulating oxidative stress, inflammation and apoptosis. Metab. Brain Dis., 2020, 35(1), 149-157.
[http://dx.doi.org/10.1007/s11011-019-00528-8] [PMID: 31840202]
[8]
Lan, X.; Zhao, J.; Zhang, Y.; Chen, Y.; Liu, Y.; Xu, F. Oxymatrine exerts organ- and tissue-protective effects by regulating inflammation, oxidative stress, apoptosis, and fibrosis: From bench to bedside. Pharmacol. Res., 2020, 151104541
[http://dx.doi.org/10.1016/j.phrs.2019.104541] [PMID: 31733326]
[9]
Macáková, K.; Afonso, R.; Saso, L.; Mladěnka, P. The influence of alkaloids on oxidative stress and related signaling pathways. Free Radic. Biol. Med., 2019, 134, 429-444.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.01.026] [PMID: 30703480]
[10]
Zhu, T.; Zhou, D.; Zhang, Z.; Long, L.; Liu, Y.; Fan, Q.; Chen, F.; Zhang, X.; Wu, Y.; Zeng, H.; Verkhratsky, A.; Zhao, J.; Nie, H. Analgesic and antipruritic effects of oxymatrine sustained-release microgel cream in a mouse model of inflammatory itch and pain. Eur. J. Pharm. Sci., 2020, 141105110
[http://dx.doi.org/10.1016/j.ejps.2019.105110] [PMID: 31654757]
[11]
He, M.; Wu, Y.; Wang, M.; Chen, W.; Jiang, J. Meta-analysis of the clinical value of oxymatrine on sustained virological response in chronic hepatitis B. Ann. Hepatol., 2016, 15(4), 482-491.
[PMID: 27236147]
[12]
Liu, Y.; Yao, W.; Si, L.; Hou, J.; Wang, J.; Xu, Z.; Li, W.; Chen, J.; Li, R.; Li, P.; Bo, L.; Xiao, X.; Lan, J.; Xu, D. Chinese herbal extract Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant Hepatitis B Virus (HBV) in vitro and effectively suppressed HBV replication in mouse model. Antiviral Res., 2018, 155, 39-47.
[http://dx.doi.org/10.1016/j.antiviral.2018.04.017] [PMID: 29702120]
[13]
Wang, Y-P.; Zhao, W.; Xue, R.; Zhou, Z-X.; Liu, F.; Han, Y-X.; Ren, G.; Peng, Z-G.; Cen, S.; Chen, H-S.; Li, Y-H.; Jiang, J-D. Oxymatrine inhibits hepatitis B infection with an advantage of overcoming drug-resistance. Antiviral Res., 2011, 89(3), 227-231.
[http://dx.doi.org/10.1016/j.antiviral.2011.01.005] [PMID: 21277330]
[14]
Wu, X.N.; Wang, G.J. Experimental studies of oxymatrine and its mechanisms of action in hepatitis B and C viral infections. Chin. J. Dig. Dis., 2004, 5(1), 12-16.
[http://dx.doi.org/10.1111/j.1443-9573.2004.00146.x] [PMID: 15612666]
[15]
Dai, J-P.; Wang, Q-W.; Su, Y.; Gu, L-M.; Deng, H-X.; Chen, X-X.; Li, W-Z.; Li, K-S. Oxymatrine inhibits influenza A virus replication and inflammation via TLR4, p38 MAPK and NF-κB pathways. Int. J. Mol. Sci., 2018, 19(4)E965
[http://dx.doi.org/10.3390/ijms19040965] [PMID: 29570670]
[16]
Ding, Y.; Li, N.; Sun, J.; Zhang, L.; Guo, J.; Hao, X.; Sun, Y. Correction to: oxymatrine inhibits bocavirus MVC replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Virol. Sin., 2019, 34(6), 729.
[http://dx.doi.org/10.1007/s12250-019-00132-1] [PMID: 31270662]
[17]
Ding, Y.; Li, N.; Sun, J.; Zhang, L.; Guo, J.; Hao, X.; Sun, Y. Oxymatrine inhibits bocavirus MVC replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Virol. Sin., 2019, 34(1), 78-87.
[http://dx.doi.org/10.1007/s12250-019-00088-2] [PMID: 30805776]
[18]
Jiang, Y.; Zhu, Y.; Mu, Q.; Luo, H.; Zhi, Y.; Shen, X. Oxymatrine provides protection against Coxsackievirus B3-induced myocarditis in BALB/c mice. Antiviral Res., 2017, 141, 133-139.
[http://dx.doi.org/10.1016/j.antiviral.2017.01.013] [PMID: 28115196]
[19]
Chen, Y.; Chen, L.; Zhang, J-Y.; Chen, Z-Y.; Liu, T-T.; Zhang, Y-Y.; Fu, L-Y.; Fan, S-Q.; Zhang, M-Q.; Gan, S-Q.; Zhang, N-L.; Shen, X-C. Oxymatrine reverses epithelial-mesenchymal transition in breast cancer cells by depressing αVβ3 integrin/FAK/PI3K/Akt signaling activation. OncoTargets Ther., 2019, 12, 6253-6265.
[http://dx.doi.org/10.2147/OTT.S209056] [PMID: 31496729]
[20]
Guo, L.; Yang, T. Oxymatrine inhibits the proliferation and invasion of breast cancer cells via the PI3K pathway. Cancer Manag. Res., 2019, 11, 10499-10508.
[http://dx.doi.org/10.2147/CMAR.S221950] [PMID: 31853201]
[21]
Xie, W.; Zhang, Y.; Zhang, S.; Wang, F.; Zhang, K.; Huang, Y.; Zhou, Z.; Huang, G.; Wang, J. Oxymatrine enhanced anti-tumor effects of Bevacizumab against triple-negative breast cancer via abating Wnt/β-Catenin signaling pathway. Am. J. Cancer Res., 2019, 9(8), 1796-1814.
[PMID: 31497360]
[22]
Liang, L.; Wu, J.; Luo, J.; Wang, L.; Chen, Z.X.; Han, C.L.; Gan, T.Q.; Huang, J.A.; Cai, Z.W. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncol. Lett., 2020, 19(1), 519-526.
[PMID: 31897166]
[23]
Liu, Z-M.; Yang, X-L.; Jiang, F.; Pan, Y-C.; Zhang, L. Matrine involves in the progression of gastric cancer through inhibiting miR-93-5p and upregulating the expression of target gene AHNAK. J. Cell. Biochem., 2020, 121(3), 2467-2477.
[http://dx.doi.org/10.1002/jcb.29469] [PMID: 31736157]
[24]
Izdebska, M.; Zielińska, W.; Hałas-Wiśniewska, M.; Mikołajczyk, K.; Grzanka, A. The cytotoxic effect of oxymatrine on basic cellular processes of A549 non-small lung cancer cells. Acta Histochem., 2019, 121(6), 724-731.
[http://dx.doi.org/10.1016/j.acthis.2019.06.008] [PMID: 31262517]
[25]
Cang, S.; Liu, R.; Wang, T.; Jiang, X.; Zhang, W.; Bi, K.; Li, Q. Simultaneous determination of five active alkaloids from Compound Kushen Injection in rat plasma by LC-MS/MS and its application to a comparative pharmacokinetic study in normal and NSCLC nude rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1126-1127121734
[http://dx.doi.org/10.1016/j.jchromb.2019.121734] [PMID: 31401450]
[26]
Cheng, Y.; Chen, H.; Li, Y.; Chen, X.; Hu, Z. Separation and determination of aloperine, sophoridine, matrine and oxymatrine by combination of flow injection with microfluidic capillary electrophoresis. Talanta, 2004, 63(2), 491-496.
[http://dx.doi.org/10.1016/j.talanta.2003.11.027] [PMID: 18969458]
[27]
Fan, R.; Liu, R.; Ma, R.; Bi, K.; Li, Q. Determination of oxymatrine and its active metabolite matrine in human plasma after administration of oxymatrine oral solution by high-performance liquid chromatography coupled with mass spectrometry. Fitoterapia, 2013, 89, 271-277.
[http://dx.doi.org/10.1016/j.fitote.2013.05.024] [PMID: 23747322]
[28]
Wu, X.L.; Hang, T.J.; Shen, J.P.; Zhang, Y.D. Determination and pharmacokinetic study of oxymatrine and its metabolite matrine in human plasma by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal., 2006, 41(3), 918-924.
[http://dx.doi.org/10.1016/j.jpba.2006.01.029] [PMID: 16500065]
[29]
Wan, H.; Rehngren, M. High-throughput screening of protein binding by equilibrium dialysis combined with liquid chromatography and mass spectrometry. J. Chromatogr. A, 2006, 1102(1-2), 125-134.
[http://dx.doi.org/10.1016/j.chroma.2005.10.030] [PMID: 16266710]
[30]
Sun, S.; Zhang, H.; Sun, F.; Zhao, L.; Zhong, Y.; Chai, Y.; Zhang, G. Intestinal transport of sophocarpine across the Caco-2 cell monolayer model and quantification by LC/MS. Biomed. Chromatogr., 2014, 28(6), 885-890.
[http://dx.doi.org/10.1002/bmc.3195] [PMID: 24861759]
[31]
Zhang, H.; Wu, Q.; Li, W.; Sun, S.; Zhang, W.; Zhu, Z.; Zhang, G.; Chai, Y. Absorption and metabolism of three monoester-diterpenoid alkaloids in Aconitum carmichaeli after oral administration to rats by HPLC-MS. J. Ethnopharmacol., 2014, 154(3), 645-652.
[http://dx.doi.org/10.1016/j.jep.2014.04.039] [PMID: 24793215]
[32]
Wang, Y.; Ma, Y.; Li, X.; Qin, F.; Lu, X.; Li, F. Simultaneous determination and pharmacokinetic study of oxymatrine and matrine in beagle dog plasma after oral administration of Kushen formula granule, oxymatrine and matrine by LC-MS/MS. Biomed. Chromatogr., 2007, 21(8), 876-882.
[http://dx.doi.org/10.1002/bmc.834] [PMID: 17431934]
[33]
Qiu, F.; He, Z.G.; Li, H.Z. HPLC analyses and pharmacokinetic studies of baicalin and oxymatrine in rabbits. Pharmazie, 2003, 58(9), 616-619.
[PMID: 14531454]
[34]
Tang, L.; Dong, L.N.; Peng, X.J.; Li, Y.; Shi, J.; Zhou, F.Y.; Liu, Z.Q. Pharmacokinetic characterization of oxymatrine and matrine in rats after oral administration of radix Sophorae tonkinensis extract and oxymatrine by sensitive and robust UPLC-MS/MS method. J. Pharm. Biomed. Anal., 2013, 83, 179-185.
[http://dx.doi.org/10.1016/j.jpba.2013.05.003] [PMID: 23747747]