Novel Strategies and Model Studies for Colon Targeted Drug Delivery

Page: [156 - 163] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Targeting drugs with controlled release characteristics to the colon is gaining importance for localized action as well as to improve the systemic availability of peptides and proteins.

The present manuscript aims to describe the various approaches and model studies for colon targeted drug delivery.

Drugs that have low absorption windows are targeted to the colonic regions using different novel technologies such as microparticulate systems, prodrugs, pH and time-dependent polymeric, effervescent and non-effervescent systems, etc. Along with this, this manuscript also describes the model study for colon targeting.

Colon targeted drug delivery system offers the potential therapeutic benefits to patients in terms of both local and systemic treatment. These drugs can be directly targeted to the colon, which helps in reducing the systemic side effects.

Keywords: colon targeting, drug targeting, drug delivery, model study, colon, microparticulate systems.

Graphical Abstract

[1]
Rohilla, S.; Bhatt, D.C.; Ahalwat, S. Fabrication of potential gastroretentive microspheres of itraconazole for stomach-specific delivery: Statistical optimization and in vitro evaluation. J. Appl. Pharm. Sci., 2020, 10(03), 119-127.
[http://dx.doi.org/10.7324/JAPS.2020.103016]
[2]
Raza, S.N.; Khan, N.A. HPMC-eudragit-based gastro-retentive hydrodynamically balanced system-suitable for sparingly soluble and freely soluble drugs: an in vitro study. J. Pharm. Innov., 2018, 13(4), 353-366.
[http://dx.doi.org/10.1007/s12247-018-9330-4]
[3]
Gulbake, A.; Jain, A.; Jain, A.; Jain, A.; Jain, S.K. Insight to drug delivery aspects for colorectal cancer. World J. Gastroenterol., 2016, 22(2), 582-599.
[http://dx.doi.org/10.3748/wjg.v22.i2.582] [PMID: 26811609]
[4]
Guo, Y.; Zong, S.; Pu, Y.; Xu, B.; Zhang, T.; Wang, B. Advances in pharmaceutical strategies enhancing the efficiencies of oral colon-targeted delivery systems in inflammatory bowel disease. Molecules, 2018, 23(7), 1-15.
[http://dx.doi.org/10.3390/molecules23071622] [PMID: 29973488]
[5]
Ren, Y.; Jiang, L.; Yang, S.; Gao, S.; Yu, H.; Hu, J.; Hu, D.; Mao, W.; Peng, H.; Zhou, Y. Design and preparation of a novel colon-targeted tablet of hydrocortisone. Braz. J. Pharm. Sci., 2017, 53(1), 1-11.
[http://dx.doi.org/10.1590/s2175-97902017000115009]
[6]
Kaplan, G.G.; Ng, S.C. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology, 2017, 152(2), 313-321.e2.
[http://dx.doi.org/10.1053/j.gastro.2016.10.020] [PMID: 27793607]
[7]
Zeeshan, M.; Ali, H.; Khan, S.; Khan, S.A.; Weigmann, B. Advances in orally-delivered pH-sensitive nanocarrier systems; an optimistic approach for the treatment of inflammatory bowel disease. Int. J. Pharm., 2019, 558, 201-214.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.074] [PMID: 30615925]
[8]
Taghipour, Y.D.; Bahramsoltani, R.; Marques, A.M.; Naseri, R.; Rahimi, R.; Haratipour, P.; Iranpanah, A.; Panah, A.I.; Farzaei, M.H.; Abdollahi, M. A systematic review of nano formulation of natural products for the treatment of inflammatory bowel disease: drug delivery and pharmacological targets. Daru, 2018, 26(2), 229-239.
[http://dx.doi.org/10.1007/s40199-018-0222-4] [PMID: 30382546]
[9]
Nidhi, ; Rashid, M.; Kaur, V.; Hallan, S.S.; Sharma, S.; Mishra, N. Microparticles as controlled drug delivery carrier for the treatment of ulcerative colitis: A brief review. Saudi Pharm. J., 2016, 24(4), 458-472.
[http://dx.doi.org/10.1016/j.jsps.2014.10.001] [PMID: 27330377]
[10]
Vaidya, A.; Jain, S.; Agrawal, R.K.; Jain, S.K. Pectin–metronidazole prodrug bearing microspheres for colon targeting. J. Saudi Chem. Soc., 2015, 19(3), 257-264.
[http://dx.doi.org/10.1016/j.jscs.2012.03.001]
[11]
Wong, C.Y.; Al-Salami, H.; Dass, C.R. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation. J. Drug Target., 2018, 26(7), 551-562.
[http://dx.doi.org/10.1080/1061186X.2017.1400552] [PMID: 29095650]
[12]
Philip, A.K.; Philip, B. Colon targeted drug delivery systems: a review on primary and novel approaches. Oman Med. J., 2010, 25(2), 79-87.
[http://dx.doi.org/10.5001/omj.2010.24] [PMID: 22125706]
[13]
Agüero, L.; Zaldivar-Silva, D.; Peña, L.; Dias, M.L. Alginate microparticles as oral colon drug delivery device: A review. Carbohydr. Polym., 2017, 168, 32-43.
[http://dx.doi.org/10.1016/j.carbpol.2017.03.033] [PMID: 28457455]
[14]
Bansal, V.; Malviya, R.; Malaviya, T.; Sharma, P.K. Novel prospective in colon specific drug delivery system. Polim. Med., 2014, 44(2), 109-118.
[PMID: 24967782]
[15]
Sanjay, S.T.; Zhou, W.; Dou, M.; Tavakoli, H.; Ma, L.; Xu, F.; Li, X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev., 2018, 128, 3-28.
[http://dx.doi.org/10.1016/j.addr.2017.09.013] [PMID: 28919029]
[16]
Zhang, S.; Langer, R.; Traverso, G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today, 2017, 16, 82-96.
[http://dx.doi.org/10.1016/j.nantod.2017.08.006] [PMID: 31186671]
[17]
Bardoliwala, D.; Baradia, D.; Amrutiya, J.; Misra, A. Applications of polymers in colon drug delivery. Appl. Polymers Drug Deliv., 2021, 187-220.
[http://dx.doi.org/10.1016/B978-0-12-819659-5.00007-0]
[18]
Garcia-Couce, J.; Bada-Rivero, N.; Lopez Hernandez, O.D.; Nogueira, A.; Caracciolo, P.C.; Abraham, G.A.; Ramon Hernandez, J.A.; Peniche, C. Dexamethasone-loaded chitosan beads coated with a ph-dependent interpolymer complex for colon-specific drug delivery. Int. J. Polym. Sci., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/4204375]
[19]
Bayan, M.F.; Bayan, R.F. Recent advances in mesalamine colonic delivery systems. Future J. Pharm. Sci., 2020, 6(1), 1-7.
[20]
Markovic, M.; Ben-Shabat, S.; Keinan, S.; Aponick, A.; Zimmermann, E.M.; Dahan, A. Lipidic prodrug approach for improved oral drug delivery and therapy. Med. Res. Rev., 2019, 39(2), 579-607.
[http://dx.doi.org/10.1002/med.21533] [PMID: 30320896]
[21]
Sheaikh, S.S. Current technologies for enhancing oral drug delivery system: a review. Int. J. Res. Pharmacy Biosci., 2017, 4(10), 1-10.
[22]
Zhang, L.; Sang, Y.; Feng, J.; Li, Z.; Zhao, A. Polysaccharide-based micro/nanocarriers for oral colon-targeted drug delivery. J. Drug Target., 2016, 24(7), 579-589.
[http://dx.doi.org/10.3109/1061186X.2015.1128941] [PMID: 26766303]
[23]
Kumari, B.; Upadhyay, P.K.; Kumar, M.; Narwal, S.; Pandurangan, A.; Malik, A. An update overview of recent advances on formulation development for colon targeting. Int. J. Pharm. Sci. Res., 2020, 11(4), 1000-1010.
[24]
Dugad, A.; Nalawade, P.; Thakhre, R.; Kakade, S. Colon targeted drug delivery system-a review. Curr. Pharma Res., 2018, 9(1), 2604-2635.
[http://dx.doi.org/10.33786/JCPR.2018.v09i01.007]
[25]
Lee, S.H.; Bajracharya, R.; Min, J.Y.; Han, J.W.; Park, B.J.; Han, H.K. Strategic approaches for colon targeted drug delivery: An overview of recent advancements. Pharmaceutics, 2020, 12(1), 1-20.
[http://dx.doi.org/10.3390/pharmaceutics12010068] [PMID: 31952340]
[26]
Ande, P.P. Formulation, evaluation, and optimization of budesonide pulsincap drug delivery system for chronotherapy of asthma. 2018, 12(01), 234-242.
[27]
Qureshi, A.M.; Momin, M.; Rathod, S.; Dev, A.; Kute, C. Colon targeted drug delivery system: A review on current approaches. Indian J. Pharm. Biol. Res., 2013, 1(04), 130-147.
[http://dx.doi.org/10.30750/ijpbr.1.4.24]
[28]
Singh, C.K.; Saxena, S.; Yadav, M.; Samson, A. A review on novel approaches for colon targeted drug delivery systems. Pharm. Tutor., 2018, 6(7), 11-22.
[http://dx.doi.org/10.29161/PT.v6.i7.2018.11]
[29]
Banerjee, A.; Pathak, S.; Subramanium, V.D.; G, D.; Murugesan, R.; Verma, R.S. Strategies for targeted drug delivery in treatment of colon cancer: current trends and future perspectives. Drug Discov. Today, 2017, 22(8), 1224-1232.
[http://dx.doi.org/10.1016/j.drudis.2017.05.006] [PMID: 28545838]
[30]
Muheem, A.; Shakeel, F.; Jahangir, M.A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J., 2016, 24(4), 413-428.
[http://dx.doi.org/10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[31]
Kumar, D.; Saroha, K.; Goyal, G.; Yadav, D.; Sorout, A.; Verma, S. Microspheres for colon targeted drug delivery: A comprehensive review. Int. J. Pharm. Sci. Res., 2016, 1(4), 39-45.
[32]
Gite, S.D.; Salunkhe, K.S.; Chintamani, R.B.; Shubhangi, S.G. Development and evaluation of colon targeted delivery of budesonide polymeric nanoparticles for colitis therapy. Int. J. Res. Pharm. Sci., 2020, 11(2), 2265-2277.
[http://dx.doi.org/10.26452/ijrps.v11i2.2187]
[33]
He, B.; Ge, J.; Yue, P.; Yue, X.; Fu, R.; Liang, J.; Gao, X. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chem., 2017, 221, 1671-1677.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.120] [PMID: 27979145]
[34]
Hoffmann, O.I.; Ilmberger, C.; Magosch, S.; Joka, M.; Jauch, K.W.; Mayer, B. Impact of the spheroid model complexity on drug response. J. Biotechnol., 2015, 205, 14-23.
[http://dx.doi.org/10.1016/j.jbiotec.2015.02.029] [PMID: 25746901]
[35]
Toiyama, Y.; Okugawa, Y.; Tanaka, K.; Araki, T.; Uchida, K.; Hishida, A.; Uchino, M.; Ikeuchi, H.; Hirota, S.; Kusunoki, M.; Boland, C.R.; Goel, A. A panel of methylated microRNA biomarkers for identifying high-risk patients with ulcerative colitis-associated colorectal cancer. Gastroenterology, 2017, 153(6), 1634-1646.e8.
[http://dx.doi.org/10.1053/j.gastro.2017.08.037] [PMID: 28847750]
[36]
Kim, G.M.; Reid, T.; Shin, S.J.; Rha, S.Y.; Ahn, J.B.; Lee, S.S.; Chung, H.C. A phase 1, open label, dose escalation study to investigate the safety, tolerability, and pharmacokinetics of MG1102 (apolipoprotein(a) Kringle V) in patients with solid tumors. Invest. New Drugs, 2017, 35(6), 773-781.
[http://dx.doi.org/10.1007/s10637-017-0460-1] [PMID: 28353123]
[37]
McIntyre, D.J.; Robinson, S.P.; Howe, F.A.; Griffiths, J.R.; Ryan, A.J.; Blakey, D.C.; Peers, I.S.; Waterton, J.C. Single dose of the antivascular agent, ZD6126 (N-acetylcolchinol-O-phosphate), reduces perfusion for at least 96 hours in the GH3 prolactinoma rat tumor model. Neoplasia, 2004, 6(2), 150-157.
[http://dx.doi.org/10.1593/neo.03247] [PMID: 15140404]
[38]
Zhou, H.; Qian, H. Preparation and characterization of pH-sensitive nanoparticles of budesonide for the treatment of ulcerative colitis. Drug Des. Devel. Ther., 2018, 12, 2601-2609.
[http://dx.doi.org/10.2147/DDDT.S170676] [PMID: 30174414]
[39]
Iannone, R.; Miele, L.; Maiolino, P.; Pinto, A.; Morello, S. Blockade of A2b adenosine receptor reduces tumor growth and immune suppression mediated by myeloid-derived suppressor cells in a mouse model of melanoma. Neoplasia, 2013, 15(12), 1400-1409.
[http://dx.doi.org/10.1593/neo.131748] [PMID: 24403862]
[40]
Tai, J.H.; Tessier, J.; Ryan, A.J.; Hoffman, L.; Chen, X.; Lee, T.Y. Assessment of acute antivascular effects of vandetanib with high-resolution dynamic contrast-enhanced computed tomographic imaging in a human colon tumor xenograft model in the nude rat. Neoplasia, 2010, 12(9), 697-707.
[http://dx.doi.org/10.1593/neo.10292] [PMID: 20824046]
[41]
Hajizadeh, F.; Masjedi, A.; Heydarzedeh Asl, S.; Karoon Kiani, F.; Peydaveisi, M.; Ghalamfarsa, G.; Jadidi-Niaragh, F.; Sevbitov, A. Adenosine and adenosine receptors in colorectal cancer. Int. Immunopharmacol., 2020, 87
[http://dx.doi.org/10.1016/j.intimp.2020.106853] [PMID: 32755765]
[42]
Akhtar, N.; Padilla, M.L.; Dickerson, E.B.; Steinberg, H.; Breen, M.; Auerbach, R.; Helfand, S.C. Interleukin-12 inhibits tumor growth in a novel angiogenesis canine hemangiosarcoma xenograft model. Neoplasia, 2004, 6(2), 106-116.
[http://dx.doi.org/10.1593/neo.03334] [PMID: 15140399]
[43]
Reichardt, W.; Hu-Lowe, D.; Torres, D.; Weissleder, R.; Bogdanov, A., Jr Imaging of VEGF receptor kinase inhibitor-induced antiangiogenic effects in drug-resistant human adenocarcinoma model. Neoplasia, 2005, 7(9), 847-853.
[http://dx.doi.org/10.1593/neo.05139] [PMID: 16229807]