Antibiotics as Inhibitor of Glutathione S-transferase: Biological Evaluation and Molecular Structure Studies

Page: [308 - 314] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: The glutathione S-transferases (GSTs) are family of enzymes that are notable for their role in phase II detoxification reactions. Antibiotics have been reported to have several adverse effects on the activity of the enzymes in mammals.

Aim: The aim of this study was the structural and biochemical characterization of rat erythrocyte GST and understanding the effects of gentamicin, clindamycin, cefazolin, ampicillin and scopolamine butylbromide on the activity of human erythrocyte GST using rat as a model.

Methods: The enzyme was purified by GSH-agarose affinity chromatography. In vitro GST enzyme activity was measured at 25°C using CDNB as a model substrate. IC50 of drugs was measured by activity % vs compound concentration graphs. Lineweaver Burk graphs were drawn to determine the inhibition type and Ki constants for the drugs. The structure of the enzyme was predicted via Protein Homology/analogy Recognition Engine.

Results: In this study, GST was purified from rat erythrocyte with a specific activity of 6.3 EU/mg protein, 44 % yield and 115 fold. Gentamicin and clindamycin inhibited the enzymatic activity with IC50 of 1.69 and 6.9 mM and Ki of 1.70 and 2.36 mM, respectively. Ampicillin and scopolamine butylbromide were activators of the enzyme, while the activity of the enzyme was insensitive to cefazolin. The enzyme was further characterized by homology modeling and sequence alignment revealing similarities with human GST.

Conclusion: Collectively, it could be concluded that gentamicin and clindamycin are the inhibitors of erythrocyte GST.

Keywords: Glutathione s-transferase, rat erythrocyte, gentamicin, clindamycin, ampicillin, cefazolin.

Graphical Abstract

[1]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv., 2015, 5(35), 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]
[2]
Young, I.S.; Woodside, J.V. Antioxidants in health and disease. J. Clin. Pathol., 2001, 54(3), 176-186.
[http://dx.doi.org/10.1136/jcp.54.3.176] [PMID: 11253127]
[3]
Armstrong, R.N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol., 1997, 10(1), 2-18.
[http://dx.doi.org/10.1021/tx960072x] [PMID: 9074797]
[4]
Ketterer, B.; Harris, J.M.; Talaska, G.; Meyer, D.J.; Pemble, S.E.; Taylor, J.B.; Lang, N.P.; Kadlubar, F.F. The human glutathione S-transferase supergene family, its polymorphism, and its effects on susceptibility to lung cancer. Environ. Health Perspect., 1992, 98, 87-94.
[http://dx.doi.org/10.1289/ehp.929887] [PMID: 1486868]
[5]
Neuefeind, T.; Reinemer, P.; Bieseler, B. Plant glutathione S-transferases and herbicide detoxification. Biol. Chem., 1997, 378(3-4), 199-205.
[PMID: 9165071]
[6]
Dixon, D.P.; Lapthorn, A.; Edwards, R. Plant glutathione S-transferases. Int. J. Biochem., 2002, 26, 295-308.
[7]
Awasthi, Y.C.; Sharma, R.; Singhal, S.S. Human glutathione S-transferases. Int. J. Biochem., 1994, 26(3), 295-308.
[http://dx.doi.org/10.1016/0020-711X(94)90050-7] [PMID: 8187927]
[8]
Gadagbui, B.K.M.; James, M.O. Activities of affinity-isolated glutathione S-transferase (GST) from channel catfish whole intestine. Aquat. Toxicol., 2000, 49(1-2), 27-37.
[http://dx.doi.org/10.1016/S0166-445X(99)00073-9] [PMID: 10814804]
[9]
Demirdag, R.; Yerlikaya, E.; Kufrevioglu, O.I.; Gundogdu, C. Purification of glutathione S-transferase isoenzymes from tumour and nontumour human stomach and inhibitory effects of some heavy metals on enzymes activities. J. Enzyme Inhib. Med. Chem., 2013, 28(5), 911-915.
[http://dx.doi.org/10.3109/14756366.2012.694878] [PMID: 22803665]
[10]
Akkemik, E.; Taser, P.; Bayindir, A.; Budak, H.; Ciftci, M. Purification and characterization of glutathione S-transferase from turkey liver and inhibition effects of some metal ions on enzyme activity. Environ. Toxicol. Pharmacol., 2012, 34(3), 888-894.
[http://dx.doi.org/10.1016/j.etap.2012.08.010] [PMID: 22989768]
[11]
Melgar Riol, M.J.; Nóvoa Valiñas, M.C.; García Fernández, M.A.; Pérez López, M. Glutathione S-transferases from rainbow trout liver and freshly isolated hepatocytes: purification and characterization. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2001, 128(2), 227-235.
[http://dx.doi.org/10.1016/S1532-0456(00)00196-4] [PMID: 11239835]
[12]
Iizuka, M.; Inoue, Y.; Murata, K.; Kimura, A. Purification and some properties of glutathione S-transferase from Escherichia coli B. J. Bacteriol., 1989, 171(11), 6039-6042.
[http://dx.doi.org/10.1128/JB.171.11.6039-6042.1989] [PMID: 2553668]
[13]
Zhang, C.H.; Wu, Z.Y.; Ting, J.U.; Ying, G.E. Purification and identification of glutathione S-transferase in rice root under cadmium stress. Rice Sci., 2013, 20(3), 173-178.
[http://dx.doi.org/10.1016/S1672-6308(13)60114-6]
[14]
Nicholls, F.A.; Ahokas, J.T. Inhibition of purified glutathione S-transferases by indomethacin. Biochem. Biophys. Res. Commun., 1984, 119(3), 1034-1038.
[http://dx.doi.org/10.1016/0006-291X(84)90878-7] [PMID: 6712662]
[15]
Türkan, F.; Huyut, Z.; Demir, Y.; Ertaş, F.; Beydemir, Ş. The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: an in vivo and in vitro study. Arch. Physiol. Biochem., 2019, 125(3), 235-243.
[http://dx.doi.org/10.1080/13813455.2018.1452037] [PMID: 29564935]
[16]
Türkan, F.; Huyut, Z.; Taslimi, P.; Gülçin, İ. The effects of some antibiotics from cephalosporin groups on the acetylcholinesterase and butyrylcholinesterase enzymes activities in different tissues of rats. Arch. Physiol. Biochem., 2019, 125(1), 12-18.
[http://dx.doi.org/10.1080/13813455.2018.1427766] [PMID: 29364753]
[17]
Türkan, F.; Huyut, Z.; Taslimi, P.; Huyut, M.T.; Gülçin, İ. Investigation of the effects of cephalosporin antibiotics on glutathione S-transferase activity in different tissues of rats in vivo conditions in order to drug development research. Drug Chem. Toxicol., 2020, 43(4), 423-428.
[http://dx.doi.org/10.1080/01480545.2018.1497644] [PMID: 30203679]
[18]
Özaslan, M.S.; Balcı, N.; Demir, Y.; Gürbüz, M.; Küfrevioğlu, Ö.İ. Inhibition effects of some antidepressant drugs on pentose phosphate pathway enzymes. Environ. Toxicol. Pharmacol., 2019, 72, 103244.
[http://dx.doi.org/10.1016/j.etap.2019.103244] [PMID: 31557707]
[19]
Aly, H. Testicular toxicity of gentamicin in adult rats: ameliorative effect of lycopene. Hum. Exp. Toxicol., 2019, 38(11), 1302-1313.
[http://dx.doi.org/10.1177/0960327119864160] [PMID: 31319718]
[20]
Murphy, P.B.; Le, J.K. Clindamycin; StatPearls Publishing: Treasure Island (FL), 2019.
[21]
Rastogi, S.; Gupta, S.; Haldar, C.; Chandra, D. Nephroprotective effect of melatonin and L-Ascorbic acid (Vitamin-C) against ampicillin-induced toxicity in Funambulus pennanti. EJBAS, 2020, 7(1), 8-19.
[http://dx.doi.org/10.1080/2314808X.2019.1707626]
[22]
Chen, B.; Gao, Z.Q.; Liu, Y.; Zheng, Y.M.; Han, Y.; Zhang, J.P.; Hu, C.Q. Embryo and developmental toxicity of cefazolin sodium impurities in zebrafish. Front. Pharmacol., 2017, 8, 403.
[http://dx.doi.org/10.3389/fphar.2017.00403] [PMID: 28694779]
[23]
Xu, L.J.; Liu, A.L.; Du, G.H. Scopolamine. In: Natural Small Molecule Drugs from Plants; Springer: Singapore, 2018; pp. 319-324.
[http://dx.doi.org/10.1007/978-981-10-8022-7_53]
[24]
Bayindir, S.; Temel, Y.; Ayna, A.; Ciftci, M. The synthesis of N-benzoylindoles as inhibitors of rat erythrocyte glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase. J. Biochem. Mol. Toxicol., 2018, 32(9), e22193.
[http://dx.doi.org/10.1002/jbt.22193] [PMID: 29992784]
[25]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[26]
Sievers, F.; Higgins, D.G. Clustal omega for making accurate alignments of many protein sequences. Protein Sci., 2018, 27(1), 135-145.
[http://dx.doi.org/10.1002/pro.3290] [PMID: 28884485]
[27]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[28]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[29]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1995, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[30]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsletter On Protein Crystallography, 2002, 40, 82-92.
[31]
Ruzza, P.; Rosato, A.; Rossi, C.R.; Floreani, M.; Quintieri, L. Glutathione transferases as targets for cancer therapy. Anticancer. Agents Med. Chem., 2009, 9(7), 763-777.
[http://dx.doi.org/10.2174/187152009789056895] [PMID: 19538171]
[32]
Eaton, D.L.; Bammler, T.K. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci., 1999, 49(2), 156-164.
[http://dx.doi.org/10.1093/toxsci/49.2.156] [PMID: 10416260]
[33]
Özaslan, M.S.; Demir, Y.; Aslan, H.E.; Beydemir, Ş.; Küfrevioğlu, Ö.İ. Evaluation of chalcones as inhibitors of glutathione S-transferase. J. Biochem. Mol. Toxicol., 2018, 32(5), e22047.
[http://dx.doi.org/10.1002/jbt.22047] [PMID: 29473699]
[34]
Turk, S.; Kulaksiz Erkmen, G.; Dalmizrak, O.; Ogus, I.H.; Ozer, N. S.; Erkmen, G.K.; Dalmizrak, O.; Ogus, I.H.; Ozer, N. Purification of glutathione S-transferase pi from erythrocytes and evaluation of the inhibitory effect of hypericin. Protein J., 2015, 34(6), 434-443.
[http://dx.doi.org/10.1007/s10930-015-9638-6] [PMID: 26614503]
[35]
Temel, Y.; Koçyigit, U.M.; Taysı, M.Ş.; Gökalp, F.; Gürdere, M.B.; Budak, Y.; Ceylan, M.; Gülçin, İ.; Çiftci, M. Purification of glutathione S-transferase enzyme from quail liver tissue and inhibition effects of (3aR,4S,7R,7aS)-2-(4-((E)-3-(aryl)acryloyl)phenyl)-3a,4,7,7a-tetrahydro-1H-4,7-methanoisoindole-1,3(2H)-dione derivatives on the enzyme activity. J. Biochem. Mol. Toxicol., 2018, 32(3), e22034.
[http://dx.doi.org/10.1002/jbt.22034] [PMID: 29350485]
[36]
Gülçin, İ.; Scozzafava, A.; Supuran, C.T.; Koksal, Z.; Turkan, F.; Çetinkaya, S.; Bingöl, Z.; Huyut, Z.; Alwasel, S.H. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1698-1702.
[http://dx.doi.org/10.3109/14756366.2015.1135914] [PMID: 26864149]
[37]
Gülçin, İ.; Scozzafava, A.; Supuran, C.T.; Akıncıoğlu, H.; Koksal, Z.; Turkan, F.; Alwasel, S. The effect of caffeic acid phenethyl ester (CAPE) on metabolic enzymes including acetylcholinesterase, butyrylcholinesterase, glutathione S-transferase, lactoperoxidase, and carbonic anhydrase isoenzymes I, II, IX, and XII. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1095-1101.
[http://dx.doi.org/10.3109/14756366.2015.1094470] [PMID: 26453427]
[38]
Adem, S.; Ciftci, M. Purification and biochemical characterization of glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase from rat lung and inhibition effects of some antibiotics. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1342-1348.
[http://dx.doi.org/10.3109/14756366.2015.1132711] [PMID: 26758606]
[39]
Wu, J.H.; Batist, G. Glutathione and glutathione analogues; therapeutic potentials. Biochim. Biophys. Acta, 2013, 1830(5), 3350-3353.
[http://dx.doi.org/10.1016/j.bbagen.2012.11.016] [PMID: 23201199]