Synthesis of Urease Inhibitory 2, 4-bis (4-cyanobenzyl)glycoluril using Sandmeyer Reaction and Density Functional Theory Investigation

Page: [592 - 597] Pages: 6

  • * (Excluding Mailing and Handling)

Abstract

Aims: The aim of the present research was to synthesize glycoluril derivative 2,4-Bis(4- cyanobenzyl)glycoluril through a convergent scheme.

Background: For this purpose, Sandmeyer reaction procedure was employed for the synthesis of said compound. The structure of the pure compound was confirmed by using different spectroscopic techniques, such as 1HNMR, 13C-NMR and (HR-MS) Mass spectrometry.

Objective: Convergent synthesis of 2,4-BIS (4-CYANOBENZYL)GLYCOLURIL USING SANDMEYER REACTION and urease inhibition study.

Methods: The structure of the pure compound was confirmed by using different spectroscopic techniques such as 1H-NMR, 13C-NMR and (HR-MS) Mass spectrometry. The electronic properties of the newly synthesized compound and thiourea were determined by using density functional theory.

Results: Furthermore, the compound was evaluated against urease enzyme and was found to be potent inhibitors with an IC50 value of 11.5 ± 1.50 μM when compared with standard inhibitor thiourea (IC50 = 21.0 ± 1.90 μM). The compound may serve as a lead compound to synthesize new cyano-based bambusuril in the future with enhanced biological properties.

Conclusion: We have synthesized a new glycoluril derivative 2,4-Bis(4-cyanobenzyl)glycoluril by the sandmeyer reaction. It has been obtained in the form of light yellowish powder in good yield (96%). Glycoluril based macrocycles have been used in various fields; starting from the 2,4-Bis(4-nitrobenzyl)glycoluril (already reported compound), which has undergone reduction (CH3OH,Pt/C) , diazotization (NaNO2/HCl), cyanation (CuCl/KCN), respectively in order to synthesize the desired new glycoluril derivative. The obtained product will be used as a building block for the synthesis of the cyano based bambusuril marcocycle in the future. The yield of the obtained product has been monitored by using different amounts of cyanating reagent, but the best results are shown by the use of 4 mmol of CuCl/KCN. KCN with CuCl assisted the conversion of diazo group into the cyano group with enhanced yield when used in excess amount. It acts as a catalyst. The solubility characteristic of 2,4-Bis(4-cyanobenzyl)glycoluril has also been determined in different organic solvents. 1H NMR technique proved to be very helpful for the structure determination of our desired product. Benzylic protons give signals at 7.5 ppm and 7.8 ppm, respectively. The downfield peaks confirm the presence of CN group near the benzylic protons. Methine protons show a signal at 5.2 ppm, which ensures the basic skeleton of glycoluril. Ureidyl protons also confirm the synthesis of the heterocyclic 2,4-Bis(4-cyanobenzyl)glycoluril compound. The negative and positive electrostatic potential sites, molecular descriptors, and charge density distribution of frontier molecular orbitals are revealing that 4a with promising sites for electrophilic and nucleophilic attacks would result to enhance the urease inhibition, which is in good agreement with the experimental data.

Keywords: Glycoluril derivative, sandmeyer reaction, 1H NMR, (HR-MS) mass spectrometry, urease enzyme, thiourea, IC50, density functional theory (DFT), bambusuril.

Graphical Abstract

[1]
Kim, K.; Selvapalam, N.; Ko, Y.H.; Park, K.M.; Kim, D.; Kim, J. Functionalized cucurbiturils and their applications. Chem. Soc. Rev., 2007, 36(2), 267-279.
[http://dx.doi.org/10.1039/B603088M] [PMID: 17264929]
[2]
Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. Engl., 2005, 44(31), 4844-4870.
[http://dx.doi.org/10.1002/anie.200460675] [PMID: 16052668]
[3]
Behrend, R.; Meyer, E.; Rusche, F.I. Ueber condensationsproducte aus glycoluril und formaldehyd. Justus Liebigs Ann. Chem., 1905, 339(1), 1-37.
[http://dx.doi.org/10.1002/jlac.19053390102]
[4]
Freeman, W.A.; Mock, W.L.; Shih, N.Y. Cucurbituril. J. Am. Chem. Soc., 1981, 103(24), 7367-7368.
[http://dx.doi.org/10.1021/ja00414a070]
[5]
Lee, J.W.; Samal, S.; Selvapalam, N.; Kim, H-J.; Kim, K. Cucurbituril homologues and derivatives: New opportunities in supramolecular chemistry. Acc. Chem. Res., 2003, 36(8), 621-630.
[http://dx.doi.org/10.1021/ar020254k] [PMID: 12924959]
[6]
Barrow, S.J.; Kasera, S.; Rowland, M.J.; del Barrio, J.; Scherman, O.A. Cucurbituril-based molecular recognition. Chem. Rev., 2015, 115(22), 12320-12406.
[http://dx.doi.org/10.1021/acs.chemrev.5b00341] [PMID: 26566008]
[7]
Kim, K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev., 2002, 31(2), 96-107.
[http://dx.doi.org/10.1039/a900939f] [PMID: 12109209]
[8]
Assaf, K.I.; Nau, W.M. Cucurbiturils: From synthesis to high-affinity binding and catalysis. Chem. Soc. Rev., 2015, 44(2), 394-418.
[http://dx.doi.org/10.1039/C4CS00273C] [PMID: 25317670]
[9]
Masson, E.; Ling, X.; Joseph, R.; Kyeremeh-Mensah, L.; Lu, X. Cucurbituril chemistry: A tale of supramolecular success. RSC Adv, 2012, 2(4), 1213-1247.
[http://dx.doi.org/10.1039/C1RA00768H]
[10]
Svec, J.; Necas, M.; Sindelar, V. Bambus[6]uril. Angew. Chem. Int. Ed. Engl., 2010, 49(13), 2378-2381.
[http://dx.doi.org/10.1002/anie.201000420] [PMID: 20217882]
[11]
Yawer, M.A.; Havel, V.; Sindelar, V. A bambusuril macrocycle that binds anions in water with high affinity and selectivity. Angew. Chem. Int. Ed. Engl., 2015, 54(1), 276-279.
[http://dx.doi.org/10.1002/anie.201409895] [PMID: 25385515]
[12]
Havel, V.; Svec, J.; Wimmerova, M.; Dusek, M.; Pojarova, M.; Sindelar, V. Bambus[n]urils: A new family of macrocyclic anion receptors. Org. Lett., 2011, 13(15), 4000-4003.
[http://dx.doi.org/10.1021/ol201515c] [PMID: 21707115]
[13]
Singh, M.; Solel, E.; Keinan, E.; Reany, O. Dual-functional semithiobambusurils. Chemistry, 2015, 21(2), 536-540.
[http://dx.doi.org/10.1002/chem.201404210] [PMID: 25417852]
[14]
Havel, V.; Sindelar, V. Anion binding inside a bambus[6]uril macrocycle in chloroform. ChemPlusChem, 2015, 80(11), 1601-1606.
[http://dx.doi.org/10.1002/cplu.201500345] [PMID: 31973379]
[15]
Révész, A.; Schröder, D.; Svec, J.; Wimmerová, M.; Sindelar, V. Anion binding by bambus[6]uril probed in the gas phase and in solution. J. Phys. Chem. A, 2011, 115(41), 11378-11386.
[http://dx.doi.org/10.1021/jp205218k] [PMID: 21888366]
[16]
Svec, J.; Dusek, M.; Fejfarova, K.; Stacko, P.; Klán, P.; Kaifer, A.E.; Li, W.; Hudeckova, E.; Sindelar, V. Anion-free bambus[6]uril and its supramolecular properties. Chemistry, 2011, 17(20), 5605-5612.
[http://dx.doi.org/10.1002/chem.201003683] [PMID: 21484899]
[17]
Vail, S.L.; Barker, R.H.; Mennitt, P.G. Formation and identification of cis- and trans-dihydroxyimidazolidinones from ureas and glyoxal. J. Org. Chem., 1965, 30(7), 2179-2182.
[http://dx.doi.org/10.1021/jo01018a015]
[18]
Grillon, E.; Gallo, R.; Pierrot, M.; Boileau, J.; Wimmer, E. Isolation and X-ray structure of the intermediate dihydroxyimidazolidine (DHI) in the synthesis of glycoluril from glyoxal and urea. Tetrahedron Lett., 1988, 29(9), 1015-1016.
[http://dx.doi.org/10.1016/0040-4039(88)85322-X]
[19]
Wazzan, N.; Irfan, A. Exploring the optoelectronic and charge transport properties of Pechmann dyes as efficient OLED materials. Optik (Stuttg.), 2019, 197163200
[http://dx.doi.org/10.1016/j.ijleo.2019.163200]
[20]
Shkir, M.; Irfan, A.; AlFaify, S.; Shankaragouda Patil, P.; Al-Sehemi, A.G. Linear, second and third order nonlinear optical properties of novel noncentrosymmetric donor-acceptor configure chalcone derivatives: A dual approach study. Optik (Stuttg.), 2019, 199163354
[http://dx.doi.org/10.1016/j.ijleo.2019.163354]
[21]
Abu-Izneid, T.; Rauf, A.; Saleem, M.; Mansour, N.; Abdelhady, M.I.S.; Ibrahim, M.M.; Patel, S. Urease inhibitory potential of extracts and active phytochemicals of Hypochaeris radicata (Asteraceae). Nat. Prod. Res., 2020, 34(4), 553-557.
[http://dx.doi.org/10.1080/14786419.2018.1489387] [PMID: 30317858]
[22]
Bashir, K.; Ahmad, B.; Rauf, A.; Bawazeer, S.; Rahman, K.U.; Rehman, T.; Saleem, M.; Ahmed, R.S.; Linfang, H.; Ikram, R. Urease inhibition potential and molecular docking of dihydroquercetin and dihydromyricetin isolated from Picea smithiana (wall). Boiss. Biomed. Res., 2017, 28(22), 10026-10032.
[23]
Rauf, A.; Raza, M.; Saleem, M.; Ozgen, U.; Karaoglan, E.S.; Renda, G.; Palaska, E.; Orhan, I.E. Carbonic anhydrase and urease inhibitory potential of various plant phenolics using in vitro and in silico methods. Chem. Biodivers., 2017, 14(6), 1-11.
[http://dx.doi.org/10.1002/cbdv.201700024] [PMID: 28207990]
[24]
Hameed, A.; Khan, I.; Azam, A.; Naz, S.S.; Khan, A.; Saleem, M.; Shah, M.R. Stability and enzyme inhibition activities of au nanoparticles using an aqueous extract of clove as a reducing and stabilizing agent.J. Chem. Soc. Pak 2014, 36(3), 542-547.
[25]
Ahmad, B.; Rizwan, M.; Rauf, A.; Mehsud, S.; Saleem, M.; Farooq, U.; Khan, A. Carbonic anhydrase and urease inhibition potential of soil borne fungi screlotium rolfsii and aspergillus flavus. J. Chem. Soc. Pak., 2017, 39(02), 315-318.
[26]
Irfan, A.; Mahmood, A.; Al-Sehemi, A.G.; Ahmad, F. Experimental and theoretical study of planar small molecule acceptor for organic solar cells. J. Mol. Struct., 2019, 1196, 169-175.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.035]
[27]
Irfan, A.; Chaudhry, A.R.; Al-Sehemi, A.G.; Assiri, M.A.; Ullah, S. Exploration of optoelectronic and photosensitization properties of triphenylamine-based organic dye on TiO2 surfaces. J. Comput. Electron., 2019, 18, 1119-1127.
[http://dx.doi.org/10.1007/s10825-019-01376-6]
[28]
Yawer, M.A.; Sleziakova, K.; Pavlovec, L.; Sindelar, V. Bambusurils bearing nitro groups and their further modifications. Eur. J. Org. Chem., 2018, 2018(1), 41-47.
[http://dx.doi.org/10.1002/ejoc.201701329]
[29]
Baccolini, G.; Boga, C.; Delpivo, C.; Micheletti, G. Facile synthesis of hydantoins and thiohydantoins in aqueous solution. Tetrahedron Lett., 2011, 52(14), 1713-1717.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.002]