Synthesis of endo-fused 5-unsubstituted Hexahydro-2H-pyrano[3,2-c]quinolinesvia Sequential Sc(OTf)3-catalyzed Cationic Imino-Diels-Alder Reaction/N-debenzylation using N-benzylanilines, 3,4-dihydro-2H-pyran and Paraformaldehyde under MW Irradiation

Page: [431 - 442] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Hexahydro-2H-pyrano[3,2-c]quinolines are known to have antibacterial, antifungal, and antitumor properties. Great efforts have been made to develop new synthetic methods that lead to the synthesis of valuable libraries. Extensive methodologies, low yields, excessive amounts of catalyst and expensive reactants are some of the limitations of current methodologies.

Aims and Objective: Developing a useful and efficient method to construct diversely substituted hexahydro-2Hpyrano[ 3,2-c]quinolines into good to excellent yields through a cationic imino-Diels-Alder/N-debenzylation methodology.

Method: The cationic imino-Diels-Alder/N-debenzylation methodology was used for the preparation of substituted hexahydro-2H-pyrano[3,2-c]quinolines. It involves the use of Sc(OTf)3 for activation of cationic imino- Diels-Alder cycloaddition reaction of N-benzylanilines, 3,4-dihydro-2H-pyran and paraformaldehyde in MeCN; and microwave irradiation to shorten reaction time to afford new 6-benzyl-hexahydro-2H-pyrano[3,2- c]quinolines whose catalytic transfer debenzylation reactions with HCO2NH4 in the presence of Pd/C (10%) and methanol give the new 5-unsubstituted pyrano[3,2-c]quinolines in excellent yields.

Results: We found that optimal conditions for the preparation of hexahydro-2H-pyrano[3,2-c]quinolines were Sc(OTf)3 0.5 % and acetonitrile at 160°C for 15 min; and using paraformaldehyde obtained the 6-benzylhexahydro- 2H-pyrano [3,2-c]quinolines with excellent yields, while the N-debenzylation process using ammonium formate in the presence of Pd/C and methanol resulted in the synthesis of hexahydro-2H-pyrano [3,2-c] quinolines with quantitative yields (95-98%).

Conclusion: We describe an efficient method to synthesize hexahydro-2H-pyrano[3,2-c]quinolines via the cationic imino-Diels-Alder/N-debenzylation methodology using Sc(OTf)3 0.5 % as Lewis Acid catalyst. Excellent yields of the products, use of MW irradiation, short times of reactions, and an efficient and highly diversified method are some of the main advantages of this new protocol.

Keywords: Cationic imine Diels-Alder, Lewis acid catalysis, scandium triflate, microwave irradiation, N-debenzylation, pyrano[3, 2-c]quinolones.

Graphical Abstract

[1]
Muthukrishnan, I.; Sridharan, V.; Menéndez, J.C. Progress in the chemistry of tetrahydroquinolines. Chem. Rev., 2019, 119(8), 5057-5191.
[http://dx.doi.org/10.1021/acs.chemrev.8b00567] [PMID: 30963764]
[2]
Shiro, T.; Fukaya, T.; Tobe, M. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. Eur. J. Med. Chem., 2015, 97, 397-408.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.004] [PMID: 25532473]
[3]
Katritzky, A.R.; Rachwal, S.; Rachwal, B. Recent progress in the synthesis of 1,2,3,4,-tetrahydroquinolines. Tetrahedron, 1996, 52(48), 15031-15070.
[http://dx.doi.org/10.1016/S0040-4020(96)00911-8]
[4]
Kouznetsov, V.; Palma, A.; Ewert, C.; Varlamov, A. Some aspects of reduced quinoline chemistry. J. Heterocycl. Chem., 1998, 35(4), 761-785.
[http://dx.doi.org/10.1002/jhet.5570350402]
[5]
Chung, P-Y.; Tang, J.C-O.; Cheng, C-H.; Bian, Z-X.; Wong, W-Y.; Lam, K-H.; Chui, C-H. Synthesis of hexahydrofuro[3,2-c]quinoline, a martinelline type analogue and investigation of its biological activity. Springerplus, 2016, 5(1), 271.
[http://dx.doi.org/10.1186/s40064-016-1890-5] [PMID: 27006880]
[6]
Kumar, A.; Srivastava, S.; Gupta, G.; Chaturvedi, V.; Sinha, S.; Srivastava, R. Natural product inspired diversity oriented synthesis of tetrahydroquinoline scaffolds as antitubercular agent. ACS Comb. Sci., 2011, 13(1), 65-71.
[http://dx.doi.org/10.1021/co100022h] [PMID: 21247127]
[7]
Nammalwar, B.; Bunce, R.A. Recent syntheses of 1,2,3,4-tetrahydroquinolines, 2,3-dihydro-4(1H)-quinolinones and 4(1H)-quinolinones using domino reactions. Molecules, 2013, 19(1), 204-232.
[http://dx.doi.org/10.3390/molecules19010204] [PMID: 24368602]
[8]
Kouznetsov, V.V.; Meléndez Gómez, C.M.; Derita, M.G.; Svetaz, L.; del Olmo, E.; Zacchino, S.A. Synthesis and antifungal activity of diverse C-2 pyridinyl and pyridinylvinyl substituted quinolines. Bioorg. Med. Chem., 2012, 20(21), 6506-6512.
[http://dx.doi.org/10.1016/j.bmc.2012.08.036] [PMID: 23036332]
[9]
Burai, R.; Ramesh, C.; Shorty, M.; Curpan, R.; Bologa, C.; Sklar, L.A.; Oprea, T.; Prossnitz, E.R.; Arterburn, J.B. Highly efficient synthesis and characterization of the GPR30-selective agonist G-1 and related tetrahydroquinolineanalogs. Org. Biomol. Chem., 2010, 8(9), 2252-2259.
[http://dx.doi.org/10.1039/c001307b] [PMID: 20401403]
[10]
Kantevari, S.; Yempala, T.; Yogeeswari, P.; Sriram, D.; Sridhar, B. Synthesis and antitubercular evaluation of amidoalkyldibenzofuranols and 1H-benzo[2,3]benzofuro[4,5-e][1,3]oxazin-3(2H)-ones. Bioorg. Med. Chem. Lett., 2011, 21(14), 4316-4319.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.054] [PMID: 21665469]
[11]
Díaz, J.L.; Christmann, U.; Fernández, A.; Luengo, M.; Bordas, M.; Enrech, R.; Carro, M.; Pascual, R.; Burgueño, J.; Merlos, M.; Benet-Buchholz, J.; Cerón-Bertran, J.; Ramírez, J.; Reinoso, R.F.; Fernández de Henestrosa, A.R.; Vela, J.M.; Almansa, C. Synthesis and biological evaluation of a new series of hexahydro-2H-pyrano[3,2-c]quinolines as novel selective σ1 receptor ligands. J. Med. Chem., 2013, 56(9), 3656-3665.
[http://dx.doi.org/10.1021/jm400181k] [PMID: 23560650]
[12]
Li, C.-J.; Zhang, J. Methods for synthesizing heterocycles and therapeutic use of the heterocycles for cancers. US7250423B2, 2002.
[13]
Schiemann, K.; Finsinger, D.; Zenke, F.; Amendt, C.; Knöchel, T.; Bruge, D.; Buchstaller, H-P.; Emde, U.; Stähle, W.; Anzali, S. The discovery and optimization of hexahydro-2H-pyrano[3,2-c]quinolines (HHPQs) as potent and selective inhibitors of the mitotic kinesin-5. Bioorg. Med. Chem. Lett., 2010, 20(5), 1491-1495.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.110] [PMID: 20149654]
[14]
Michellys, P.; Chen, J.-H.; Meyer, H.; Karanewsky, D. Substituted tetrahydroquinolines, phenylacetic acids and benzoic acids as hepatocyte nuclear factor 4 (hnf-4 ) modulator compounds. WO/2005/016255, 2005.
[15]
Prajapati, M.M.S.; Aza-Diels-Alder Reaction, D. An efficient approach for construction of heterocycles. Curr. Org. Chem., 2014, 18(12), 1586-1620.
[16]
Fochi, M.; Caruana, L.; Bernardi, L. Catalytic asymmetric aza-diels–alder reactions: The povarovcycloaddition reaction. Synthesis (Stuttg), 2013, 46, 135-157.
[http://dx.doi.org/10.1055/s-0033-1338581]
[17]
Jiang, X.; Wang, R. Recent developments in catalytic asymmetric inverse-electron-demand Diels-Alder reaction. Chem. Rev., 2013, 113(7), 5515-5546.
[http://dx.doi.org/10.1021/cr300436a] [PMID: 23521039]
[18]
Masson, G.; Lalli, C.; Benohoud, M.; Dagousset, G. Catalytic enantioselective [4 + 2]-cycloaddition: A strategy to access aza-hexacycles. Chem. Soc. Rev., 2013, 42(3), 902-923.
[http://dx.doi.org/10.1039/C2CS35370A] [PMID: 23172010]
[19]
Kouznetsov, V.V. Recent Synthetic developments in a powerful iminodiels–alder reaction (povarov reaction): Application to the synthesis of n-polyheterocycles and related alkaloids. Tetrahedron, 2009, 65(14), 2721-2750.
[http://dx.doi.org/10.1016/j.tet.2008.12.059]
[20]
He, C.; Cai, J.; Zheng, Y.; Pei, C.; Qiu, L.; Xu, X. Gold-catalyzedhydroalkoxylation/povarov reaction cascade of alkynols with n-aryl imines: Synthesis of tetrahydroquinolines. ACS Omega, 2019, 4(13), 15754-15763.
[http://dx.doi.org/10.1021/acsomega.9b02693] [PMID: 31572879]
[21]
Gharpure, S.J.; Vishwakarma, D.S. Lewis acid catalyzedintramolecular [4+2] cycloaddition of generated aza-quinonemethides for the stereoselective synthesis of furo/pyrano[3,2-c]tetrahydroquinolines. Eur. J. Org. Chem., 2019.
[22]
Rezende, T.R.M.; Varejão, J.O.S.; Sousa, A.L.L.A.; Castañeda, S.M.B.; Fernandes, S.A. Tetrahydroquinolines by the multicomponent Povarov reaction in water: calix[n]arene-catalysed cascade process and mechanistic insights. Org. Biomol. Chem., 2019, 17(11), 2913-2922.
[http://dx.doi.org/10.1039/C8OB02928H] [PMID: 30724962]
[23]
Meléndez Gómez, C.M.; Marsiglia, M.; Escarsena, R.; del Olmo, E.; Kouznetsov, V.V. Synthesis of 2,3-di(ω-hydroxyalkyl)quinolines from anilines and cyclic enols using sequential cycloaddition/aromatization reactions. Tetrahedron Lett., 2018, 59(1), 22-25.
[http://dx.doi.org/10.1016/j.tetlet.2017.11.034]
[24]
Kamble, V.T.; Ekhe, V.R.; Joshi, N.S.; Biradar, A.V. Magnesium perchlorate: An efficient catalyst for one-pot synthesis of pyrano- and furanoquinolines. Synlett, 2007, 2007(09), 1379-1382.
[http://dx.doi.org/10.1055/s-2007-980354]
[25]
Xia, M.; Lu, Y. Molecular iodine-catalyzedimino-diels-alder reactions: Efficient one-pot synthesis of pyrano[3,2-c]quinolines. Synlett, 2005, 2005(15), 2357-2361.
[http://dx.doi.org/10.1055/s-2005-872676]
[26]
Gharib, A.; Jahangir, M. Catalytic synthesis of pyrano- and furoquinolines using nano silica chromic acid at room temperature. Org. Chem. Int., 2013, 2013693763
[http://dx.doi.org/10.1155/2013/693763]
[27]
More, S.V.; Sastry, M.N.V.; Yao, C-F. TMSCl-catalyzedaza-diels-alder reaction: A simple and efficient synthesis of pyrano- and furanoquinolines. Synlett, 2006, 2006(09), 1399-1403.
[http://dx.doi.org/10.1055/s-2006-939711]
[28]
Cimarelli, C.; Bordi, S.; Piermattei, P.; Pellei, M.; Del Bello, F.; Marcantoni, E. An efficient lewis acid catalyzedpovarov reaction for the one-pot stereocontrolled synthesis of polyfunctionalizedtetrahydroquinolines. Synthesis, 2017, 49(24), 5387-5395.
[http://dx.doi.org/10.1055/s-0036-1589104]
[29]
Reddy, B.V.S.; Grewal, H. Iodine-Catalyzed Formation of Aza-Dienes: A novel synthesis of angularly fused hexahydropyrano- and furo[3,2-c]quinoline derivatives. Tetrahedron Lett., 2011, 52(7), 761-763.
[http://dx.doi.org/10.1016/j.tetlet.2010.12.003]
[30]
Ghashghaei, O.; Masdeu, C.; Alonso, C.; Palacios, F.; Lavilla, R. Recent advances of the Povarov reaction in medicinal chemistry. Drug Discov. Today. Technol., 2018, 29, 71-79.
[http://dx.doi.org/10.1016/j.ddtec.2018.08.004] [PMID: 30471676]
[31]
Martínez Bonilla, C.A.; Puerto Galvis, C.E.; Vargas Méndez, L.Y.; Kouznetsov, V.V. Ce(SO4)2-catalysed the highly diastereoselective synthesis of tetrahydroquinolinesvia an iminodiels alder abb′ type reaction and their in vivo toxicity and imaging in zebrafish embryos. RSC Advances, 2016, 6(44), 37478-37486.
[http://dx.doi.org/10.1039/C6RA04325A]
[32]
Kouznetsov, V.V.; Meléndez Gómez, C.M.; Rojas Ruíz, F.A.; del Olmo, E. Simple entry to new 2-alkyl-1,2,3,4-tetrahydroquinoline and 2,3-dialkylquinoline derivatives using bicl3-catalyzed three component reactions of anilines and aliphatic aldehydes in the presence (or lack) of n-vinyl amides. Tetrahedron Lett., 2012, 53(25), 3115-3118.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.008]
[33]
Kouznetsov, V.V.; Merchan Arenas, D.R.; Ortiz Areniz, C.J.; Meléndez Gómez, C.M. Inexpensive phthalic acid promoted domino povarov reaction between anilines and n-vinylamides: An efficient preparation of privileged 4-substituted 2-methyl-1,2,3,4-tetrahydroquinoline scaffolds. Synthesis, 2011, 2011(24), 4011-4016.
[http://dx.doi.org/10.1055/s-0031-1289591]
[34]
Shono, T.; Matsumura, Y.; Inoue, K.; Ohmizu, H.; Kashimura, S. Electroorganicchemistry. 62. Reaction of iminium ion with nucleophile: A versatile synthesis of tetrahydroquinolines and julolidines. J. Am. Chem. Soc., 1982, 104(21), 5753-5757.
[http://dx.doi.org/10.1021/ja00385a033]
[35]
Beifuss, U.; Ledderhose, S. Intermolecular polar [4π++ 2π] cycloadditions of cationic 2-azabutadienes from thiomethylamines: A new and efficient method for the regio- and diastereo-selective synthesis of 1,2,3,4-tetrahydroquinolines. J. Chem. Soc. Chem. Commun., 1995, (20), 2137-2138.
[http://dx.doi.org/10.1039/C39950002137]
[36]
Bohórquez, A.R.R.; Romero-Daza, J.; Acelas, M. Versatile and mild hcl-catalyzed cationic iminodiels-alder reaction for the synthesis of new tetrahydroquinoline derivatives. Synth. Commun., 2016, 46(4), 338-347.
[http://dx.doi.org/10.1080/00397911.2015.1136646]
[37]
Bohórquez, A.R.R.; Kouznetsov, V.V. An efficient and short synthesis of 4-aryl-3-methyltetrahydroquinolines from n -benzylanilines and propenylbenzenes through cationic iminodiels-alder reactions. Synlett, 2010, 2010(6), 970-972.
[http://dx.doi.org/10.1055/s-0029-1219571]
[38]
Castelló, L.M.; Nájera, C.; Sansano, J.M. Domino 1,3-dipolar cycloadditions of n-alkyl-α-amino esters with paraformaldehyde: A direct access to α-hydroxymethylα-amino acids. Synthesis, 2014, 46(07), 967-971.
[http://dx.doi.org/10.1055/s-0033-1340816]
[39]
Ram, S.; Spicer, L.D. Rapid debenzylation of n-benzylamino derivatives to amino-derivatives using ammonium formate as catalytic hydrogen transfer agent. Tetrahedron Lett., 1987, 28(5), 515-516.
[http://dx.doi.org/10.1016/S0040-4039(00)95769-1]
[40]
Abdel-Magid, A.F.; Carson, K.G.; Harris, B.D.; Maryanoff, C.A.; Shah, R.D. Reductive amination of aldehydes and ketones with sodium triacetoxyborohydride. Studies on direct and indirect reductive amination procedures(1). J. Org. Chem., 1996, 61(11), 3849-3862.
[http://dx.doi.org/10.1021/jo960057x] [PMID: 11667239]
[41]
Kobayashi, S.; Hachiya, I.; Araki, M.; Ishitani, H. Scandium trifluoromethanesulfonate (sc(otf)3). A novel reusable catalyst in the diels-alder reaction. Tetrahedron Lett., 1993, 34(23), 3755-3758.
[http://dx.doi.org/10.1016/S0040-4039(00)79220-3]
[42]
Helander, K.G. Formaldehyde prepared from paraformaldehyde is stable. Biotech. Histochem., 2000, 75(1), 19-22.
[http://dx.doi.org/10.3109/10520290009047980] [PMID: 10810978]
[43]
Li, M.; Chen, C.; He, F.; Gu, Y. Multicomponent reactions of 1,3-cyclohexanediones and formaldehyde in glycerol: Stabilization of paraformaldehyde in glycerol resulted from using dimedone as substrate. Adv. Synth. Catal., 2010, 352(2‐3), 519-530.
[http://dx.doi.org/10.1002/adsc.200900770]
[44]
Appukkuttan, P.; Mehta, V.P.; Van der Eycken, E.V. Microwave-Assisted cycloaddition reactions. Chem. Soc. Rev., 2010, 39(5), 1467-1477.
[http://dx.doi.org/10.1039/B815717K] [PMID: 20419202]
[45]
Rathi, A.K.; Gawande, M.B.; Zboril, R.; Varma, R.S. Microwave-assisted synthesis – Catalytic applications in aqueous media. Coord. Chem. Rev., 2015, 291, 68-94.
[http://dx.doi.org/10.1016/j.ccr.2015.01.011]
[46]
Rezai, N.; Meybodi, F.A.; Salehi, P. Protection of alcohols and phenols with dihydropyran and detetrahydropyranylation by ZrCl4. Synth. Commun., 2000, 30(10), 1799-1805.
[http://dx.doi.org/10.1080/00397910008087225]
[47]
Li, N.C.C.; Chu, T-L. Dielectric studies. VII. Dipole moment of acetonitrile in solvents of unknown molecular weights. J. Am. Chem. Soc., 1947, 69(3), 558-559.
[http://dx.doi.org/10.1021/ja01195a026]
[48]
Smith, S.G.; Goodman, J.M. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. J. Am. Chem. Soc., 2010, 132(37), 12946-12959.
[http://dx.doi.org/10.1021/ja105035r] [PMID: 20795713]
[49]
Azzena, U.; Carraro, M.; Pisano, L. Addressing stereochemistry of heterocyclic compounds by dftnmr calculations. Chem. Heterocycl. Compd., 2018, 54(4), 380-388.
[http://dx.doi.org/10.1007/s10593-018-2279-x]
[50]
Resende, G.C.; Alvarenga, E.S.; Willoughby, P.H. Isolation and stereochemical assignment of phthalides resulting from the diels–alder reaction between 5-isopropoxyfuran-2(5h)-one and cyclopentadiene. J. Mol. Struct., 2015, 1101, 212-218.
[http://dx.doi.org/10.1016/j.molstruc.2015.08.028]
[51]
Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem., 2015, 80(24), 12526-12534.
[http://dx.doi.org/10.1021/acs.joc.5b02396] [PMID: 26580165]
[52]
Grimblat, N.; Sarotti, A.M. Computational chemistry to the rescue: Modern toolboxes for the assignment of complex molecules by giaoNMR calculations. Chemistry, 2016, 22(35), 12246-12261.
[http://dx.doi.org/10.1002/chem.201601150] [PMID: 27405775]
[53]
Grimblat, N.; Gavín, J.A.; Hernández Daranas, A.; Sarotti, A.M. Combining the power of J coupling and dp4 analysis on stereochemical assignments: The J-DP4 Methods. Org. Lett., 2019, 21(11), 4003-4007.
[http://dx.doi.org/10.1021/acs.orglett.9b01193] [PMID: 31124687]
[54]
Domingo, L.R.; Aurell, M.J.; Sáez, J.A.; Mekelleche, S.M. Understanding the mechanism of the povarov reaction. ADFT study. RSC Advances, 2014, 4(48), 25268-25278.
[http://dx.doi.org/10.1039/c4ra02916j]
[55]
Domingo, L.R.; Ríos-Gutiérrez, M.; Emamian, S. Understanding the stereoselectivity in brønsted acid catalysed povarov reactions generating Cis/Trans CF3-substituted tetrahydroquinolines: A DFT study. RSC Advances, 2016, 6(21), 17064-17073.
[http://dx.doi.org/10.1039/C5RA27650K]
[56]
Ribelles, P.; Sridharan, V.; Villacampa, M.; Ramos, M.T.; Menéndez, J.C. Diastereoselective{,} multicomponent access to trans-2-aryl-4-arylamino-1{,}2{,}3{,}4-tetrahydroquinolines via an aa′bc sequential four-component reaction and their application to 2-arylquinoline synthesis. Org. Biomol. Chem., 2013, 11(4), 569-579.
[http://dx.doi.org/10.1039/C2OB26754C] [PMID: 23090014]
[57]
Abonia, R.; Rengifo, E.; Quiroga, J.; Insuasty, B.; Cobo, J.; Nogueras, M. Synthesis of novel hydropyrazolopyridine derivatives in solvent-free conditions viabenzotriazole methodology. Tetrahedron, 2004, 60(40), 8839-8843.
[http://dx.doi.org/10.1016/j.tet.2004.07.028]
[58]
Castillo, J-C.; Jiménez, E.; Portilla, J.; Insuasty, B.; Quiroga, J.; Moreno-Fuquen, R.; Kennedy, A.R.; Abonia, R. Application of a catalyst-free domino mannich/friedel-crafts alkylation reaction for the synthesis of novel tetrahydroquinolines of potential antitumor activity. Tetrahedron, 2018, 74(9), 932-947.
[http://dx.doi.org/10.1016/j.tet.2017.12.049]
[59]
Bagal, D.B.; Watile, R.A.; Khedkar, M.V.; Dhake, K.P.; Bhanage, B.M. PS-Pd–NHC: An efficient and heterogeneous recyclable catalyst for direct reductive amination of carbonyl compounds with primary/secondary amines in aqueous medium. Catal. Sci. Technol., 2012, 2(2), 354-358.
[http://dx.doi.org/10.1039/C1CY00392E]
[60]
Zhang, M.; Yang, H.; Zhang, Y.; Zhu, C.; Li, W.; Cheng, Y.; Hu, H. Direct reductive amination of aromatic aldehydes catalyzed by gold(I) complex under transfer hydrogenation conditions. Chem. Commun. (Camb.), 2011, 47(23), 6605-6607.
[http://dx.doi.org/10.1039/c1cc11201e] [PMID: 21541418]
[61]
Garibotto, F.M.; Sortino, M.A.; Kouznetsov, V.V.; Enriz, R.D.; Zacchino, S.A. Synthesis and antifungal activity of n-aryl-n-benzylamines and of their homoallyl analogues. ARKIVOC, 2011, 2011(7), 149.
[http://dx.doi.org/10.3998/ark.5550190.0012.713]
[62]
Sharma, U.; Verma, P.K.; Kumar, N.; Kumar, V.; Bala, M.; Singh, B. Phosphane-free green protocol for selective nitro reduction with an iron-based catalyst. Chemistry, 2011, 17(21), 5903-5907.
[http://dx.doi.org/10.1002/chem.201003621] [PMID: 21500293]
[63]
Likhar, P.R.; Arundhathi, R.; Kantam, M.L.; Prathima, P.S. Amination of alcohols catalyzed by copper-aluminium hydrotalcite: A green synthesis of amines. Eur. J. Org. Chem., 2009, 2009(31), 5383-5389.
[http://dx.doi.org/10.1002/ejoc.200900628]
[64]
Sreedhar, B.; Reddy, P.S.; Devi, D.K. Direct one-pot reductive amination of aldehydes with nitroarenes in a domino fashion: Catalysis by gum-acacia-stabilized palladium nanoparticles. J. Org. Chem., 2009, 74(22), 8806-8809.
[http://dx.doi.org/10.1021/jo901787t] [PMID: 19842684]
[65]
Pearson, W.H.; Fang, W.K. Reactions of azides with electrophiles: New methods for the generation of cationic 2-azabutadienes. Synthesis of 1,2,3,4-tetrahydroquinolines and 1,2-dihydroquinolines via a hetero diels-alder reaction. Isr. J. Chem., 1997, 37(1), 39-46.
[http://dx.doi.org/10.1002/ijch.199700007]