A Review on Synthesis, Reactions and Biological Properties of Seven Membered Heterocyclic Compounds: Azepine, Azepane, Azepinone

Page: [449 - 506] Pages: 58

  • * (Excluding Mailing and Handling)

Abstract

Seven membered heterocyclic Azepine and its derivatives have great pharmacological and therapeutic implications. In this review, the literature of the last fifty years has been exploited for the synthesis, reaction, and biological properties of these seven-member heterocyclic compounds. Most of the mechanisms involved the ring expansion of either five or six-membered compounds using various methods such as thermally, photo-chemically, and microwave irradiation. The systematically designed schemes involve the synthesis of different derivatives of azepine, azepinone, azepane, etc., using similar moieties by various researchers. However, there is much work yet to be done in the biological section, as it is not explored and reported in the literature; therefore, N-containing seven-membered heterocycles still have much scope for the researchers.

Keywords: Azepine, azepane, azepinone, benzazepine, dibenzazepinone, thiazipine.

Graphical Abstract

[1]
Balaban, A.T.; Oniciu, D.C.; Katritzky, A.R. Aromaticity as a cornerstone of heterocyclic chemistry. Chem. Rev., 2004, 104(5), 2777-2812.
[http://dx.doi.org/10.1021/cr0306790] [PMID: 15137807]
[2]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: a perfect synergy for eco-compatible organic synthesis. RSC Adv., 2012, 2(11), 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[3]
(a)Druzhinin, S.V.; Balenkova, E.S.; Nenajdenko, V.G. Recent advances in the chemistry of α, β-unsaturated trifluoromethylketones. Tetrahedron, 2007, 33(63), 7753-7808.
(b)Kaur, N. Synthesis of six-and seven-membered heterocycles under ultrasound irradiation. Synth. Commun., 2018, 48(11), 1235-1258.
[http://dx.doi.org/10.1080/00397911.2018.1434894]
[4]
Cotter, R.J.; Beach, W.F. Thermolysis of azidoformates in aromatic compounds. A synthesis of 1H-azepin-1-yl carboxylates. J. Org. Chem., 1964, 29(3), 751-754.
[http://dx.doi.org/10.1021/jo01026a502]
[5]
Kaur, R.; Rani, V.; Abbot, V. Recent synthetic and medicinal perspectives of pyrroles: an overview. J Pharm Chem Chem Sci., 2017, 1(1), 17-32.
[6]
Muneer, S.; Memon, S.; Pahnwar, Q.K.; Bhatti, A.A.; Khokhar, T.S. Synthesis and investigation of antimicrobial properties of pyrrolidine appended calix [4] arene. Anal. Sci. Technol., 2017, 8(1), 1-6.
[http://dx.doi.org/10.1186/s40543-017-0111-3]
[7]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur. J. Med. Chem., 2009, 44(10), 4244-4248.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.021] [PMID: 19540630]
[8]
Bhandari, K.; Srinivas, N.; Marrapu, V.K.; Verma, A.; Srivastava, S.; Gupta, S. Synthesis of substituted aryloxy alkyl and aryloxy aryl alkyl imidazoles as antileishmanial agents. Bioorg. Med. Chem. Lett., 2010, 20(1), 291-293.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.117] [PMID: 19913413]
[9]
Shalini, K.; Sharma, P.K.; Kumar, N. Imidazole and its biological activities: a review. Der. Chem. Sinica., 2010, 1(3), 36-47.
[10]
Siddiqui, N.; Arya, S.K.; Ahsan, W.; Azad, B. Diverse biological activities of thiazoles: a retrospect. Int. J. Drug Dev. Res., 2011, 3(4), 55-67.
[11]
Rawal, R.K.; Tripathi, R.; Katti, S.B.; Pannecouque, C.; De Clercq, E. Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. Eur. J. Med. Chem., 2008, 43(12), 2800-2806.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.015] [PMID: 18242784]
[12]
Malhi, D.S.; Kaur, M.; Sohal, H.S. Effect of substitutions on 1, 4-dihdropyridines to achieve potential anti-microbial drugs: a review. ChemistrySelect, 2019, 4(38), 11321-11336.
[http://dx.doi.org/10.1002/slct.201902354]
[13]
Arslan, S.; Loğoğlu, E.; Öktemer, A. Antimicrobial activity studies on some piperidine and pyrrolidine substituted halogenobenzene derivatives. J. Enzyme Inhib. Med. Chem., 2006, 21(2), 211-214.
[http://dx.doi.org/10.1080/14756360600563063] [PMID: 16789435]
[14]
Lv, K.; Tao, Z.; Liu, Q.; Yang, L.; Wang, B.; Wu, S.; Wang, A.; Huang, M.; Liu, M.; Lu, Y. Design, synthesis and antitubercular evaluation of benzothiazinones containing a piperidine moiety. Eur. J. Med. Chem., 2018, 151, 1-8.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.060] [PMID: 29601990]
[15]
Sharma, V.; Chitranshi, N.; Agarwal, AK. Significance and biological importance of pyrimidine in the microbial world. Int. J. Med. Chem., 2014, 2014202784
[http://dx.doi.org/10.1155/2014/202784]
[16]
Singh, K.; Siddiqui, H.H.; Shakya, P.; Kumar, A.; Khalid, M.; Arif, M.; Alok, S. Piperazine-A biologically active scaffold. Int. J. Pharm. Sci. Res., 2015, 6(10), 4145-4158.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.6(10).4145-58 ]
[17]
(a)Sharma, A.; Appukkuttan, P.; Van der Eycken, E. Microwave-assisted synthesis of medium-sized heterocycles. Chem. Commun. (Camb.), 2012, 48(11), 1623-1637.
[http://dx.doi.org/10.1039/C1CC15238F] [PMID: 22031184]
(b)Singh, A.K.; Raj, V.; Saha, S. Indole-fused azepines and analogues as anticancer lead molecules: privileged findings and future directions. Eur. J. Med. Chem., 2017, 142, 244-265.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.042] [PMID: 28803677]
(c)Ryan, J.H.; Smith, J.A.; Hyland, C.; Meyer, A.G.; Williams, C.C.; Bissember, A.C.; Just, J. Seven-membered ringsIn: Progress in Heterocyclic Chemistry; , 2014, 26, pp. 521-571.
[http://dx.doi.org/10.1016/B978-0-08-100017-5.00016-9]
(d)Gholamzadeh, P. The Pictet–Spengler reaction: a powerful strategy for the synthesis of heterocycles. Adv. Heterocyc. Chem., 2019, 127, 153-226.
[http://dx.doi.org/10.1016/bs.aihch.2018.09.002]
(e)Coote, S.C. 4-π-Photocyclization: scope and synthetic applications. Eur. J. Org. Chem. 2020, 2020, (10), 1405-1423.
[http://dx.doi.org/10.1002/ejoc.201901230]
(f)Wang, J.; Liu, C.F.; Zheng, Q.; Rao, G.W. C-H functionalization of biaryl compounds. Eur. J. Org. Chem., 2020, 2020(25), 3737-3765.
[http://dx.doi.org/10.1002/ejoc.202000071]
(g)Afanasyev, O.I.; Kuchuk, E.; Usanov, D.L.; Chusov, D. Reductive amination in the synthesis of pharmaceuticals. Chem. Rev., 2019, 119(23), 11857-11911.
[http://dx.doi.org/10.1021/acs.chemrev.9b00383] [PMID: 31633341]
[18]
Yin, Z.; He, Y.; Chiu, P. Application of (4+3) cycloaddition strategies in the synthesis of natural products. Chem. Soc. Rev., 2018, 47(23), 8881-8924.
[http://dx.doi.org/10.1039/C8CS00532J] [PMID: 30394457]
[19]
Fukuda, H.; Ito, S.; Watari, K.; Mogi, C.; Arisawa, M.; Okajima, F.; Kurose, H.; Shuto, S. Identification of a potent and selective GPR4 antagonist as a drug lead for the treatment of myocardial infarction. ACS Med. Chem. Lett., 2016, 7(5), 493-497.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00014] [PMID: 27190599]
[20]
(a)Singh, H.; Gupta, N.; Kumar, P.; Dubey, S.K.; Sharma, P.K. A new industrial process for 10-methoxyiminostilbene: key intermediate for the synthesis of oxcarbazepine. Org. Process Res. Dev., 2009, 13(5), 870-874.
(b)Tsvelikhovsky, D.; Buchwald, S.L. Synthesis of heterocycles via Pd-ligand controlled cyclization of 2-chloro-N-(2-vinyl) aniline: preparation of carbazoles, indoles, dibenzazepines, and acridines. J. Am. Chem. Soc., 2010, 132(40), 14048-14051.
[PMID: 20858012]
[21]
Kastrinsky, D.B.; Sangodkar, J.; Zaware, N.; Izadmehr, S.; Dhawan, N.S.; Narla, G.; Ohlmeyer, M. Reengineered tricyclic anti-cancer agents. Bioorg. Med. Chem., 2015, 23(19), 6528-6534.
[http://dx.doi.org/10.1016/j.bmc.2015.07.007] [PMID: 26372073]
[22]
Al-Qawasmeh, R.A.; Lee, Y.; Cao, M.Y.; Gu, X.; Viau, S.; Lightfoot, J.; Wright, J.A.; Young, A.H. 11-Phenyl-[b,e]-dibenzazepine compounds: novel antitumor agents. Bioorg. Med. Chem. Lett., 2009, 19(1), 104-107.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.001] [PMID: 19027297]
[23]
Motornov, V.; Beier, P. Chemoselective aza-[4+3]-annulation of N-perfluoroalkyl-1,2,3-triazoles with 1,3-dienes: access to N-perfluoroalkyl-substituted azepines. J. Org. Chem., 2018, 83(24), 15195-15201.
[http://dx.doi.org/10.1021/acs.joc.8b02472] [PMID: 30516987]
[24]
Kostis, J.B.; Packer, M.; Black, H.R.; Schmieder, R.; Henry, D.; Levy, E. Omapatrilat and enalapril in patients with hypertension: the Omapatrilat Cardiovascular Treatment vs. Enalapril (OCTAVE) trial. Am. J. Hypertens., 2004, 17(2), 103-111.
[http://dx.doi.org/10.1016/j.amjhyper.2003.09.014] [PMID: 14751650]
[25]
Sattar, S.P.; Bhatia, S.C.; Petty, F. Potential benefits of quetiapine in the treatment of substance dependence disorders. J. Psychiatry Neurosci., 2004, 29(6), 452-457.
[PMID: 15644986]
[26]
Horita, Y.; Tadokoro, M.; Taura, K.; Suyama, N.; Taguchi, T.; Miyazaki, M.; Kohno, S. Low-dose combination therapy with temocapril and losartan reduces proteinuria in normotensive patients with immunoglobulin a nephropathy. Hypertens. Res., 2004, 27(12), 963-970.
[http://dx.doi.org/10.1291/hypres.27.963] [PMID: 15894837]
[27]
Rajput, R.; Prakash, A.; Aggarwal, R. Newer antidiabetic drugs in the pipeline. Diabetes Manage., 2019, 18, 28-33.
[28]
Gumusay, O.; Vitiello, P.P.; Wabl, C.; Corcoran, R.B.; Bardelli, A.; Rugo, H.S. Strategic combinations to prevent and overcome resistance to targeted therapies in oncology. Am. Soc. Clin. Oncol. Educ. Book, 2020, 40, e292-e308.
[http://dx.doi.org/10.1200/EDBK_280845] [PMID: 32453634]
[29]
Liu, X.; Wang, P.; Yu, S.; Wu, L. Eleclazine, a novel and selective late sodium current inhibitor, suppresses ventricular arrhythmias induced by acute global low-flow ischemia. Circulation, 2017, 136(Suppl. 1), A17138-A17138.
[30]
Berkowitz, L.R.; Orringer, E.P. Effect of cetiedil, an in vitro antisickling agent, on erythrocyte membrane cation permeability. J. Clin. Invest., 1981, 68(5), 1215-1220.
[http://dx.doi.org/10.1172/JCI110367] [PMID: 7298848]
[31]
Haupt, E.; Köberich, W.; Beyer, J.; Schöffling, K. Pharmacodynamic aspects of tolbutamide, glibenclamide, glibornuride, and glisoxepide. II. Repeated administration in combination with glucose. Diabetologia, 1971, 7(6), 455-460.
[http://dx.doi.org/10.1007/BF01212062] [PMID: 5004179]
[32]
Abe, T.; Omata, T.; Yoshida, K.; Matsumura, T.; Ikeda, Y.; Segawa, Y.; Matsuda, K.; Nagai, H. Antiallergic effect of ZCR-2060: antihistaminic action. Jpn. J. Pharmacol., 1994, 66(1), 87-94.
[http://dx.doi.org/10.1254/jjp.66.87] [PMID: 7861672]
[33]
Firth, R.G.; Bell, P.M.; Rizza, R.A. Effects of tolazamide and exogenous insulin on insulin action in patients with non-insulin-dependent diabetes mellitus. N. Engl. J. Med., 1986, 314(20), 1280-1286.
[http://dx.doi.org/10.1056/NEJM198605153142003] [PMID: 3517644]
[34]
Leimgruber, W.; Stefanović, V.; Schenker, F.; Karr, A.; Berger, J. Isolation and characterization of anthramycin, a new antitumor antibiotic. J. Am. Chem. Soc., 1965, 87(24), 5791-5793.
[http://dx.doi.org/10.1021/ja00952a050] [PMID: 5845427]
[35]
Bennabi, D.; Charpeaud, T.; Yrondi, A.; Genty, J.B.; Destouches, S.; Lancrenon, S.; Alaïli, N.; Bellivier, F.; Bougerol, T.; Camus, V.; Dorey, J.M.; Doumy, O.; Haesebaert, F.; Holtzmann, J.; Lançon, C.; Lefebvre, M.; Moliere, F.; Nieto, I.; Rabu, C.; Richieri, R.; Schmitt, L.; Stephan, F.; Vaiva, G.; Walter, M.; Leboyer, M.; El-Hage, W.; Llorca, P.M.; Courtet, P.; Aouizerate, B.; Haffen, E. Clinical guidelines for the management of treatment-resistant depression: French recommendations from experts, the French Association for Biological Psychiatry and Neuropsychopharmacology and the foundation FondaMental. BMC Psychiatry, 2019, 19(1), 262.
[http://dx.doi.org/10.1186/s12888-019-2237-x] [PMID: 31455302]
[36]
Yang, L.; Liu, N.; Zhao, W.; Li, X.; Han, L.; Zhang, Z.; Wang, Y.; Mao, B. Angiogenic function of astragaloside IV in rats with myocardial infarction occurs via the PKD1-HDAC5-VEGF pathway. Exp. Ther. Med., 2019, 17(4), 2511-2518.
[http://dx.doi.org/10.3892/etm.2019.7273] [PMID: 30906439]
[37]
Messerli, F.H.; Oparil, S.; Feng, Z. Comparison of efficacy and side effects of combination therapy of angiotensin-converting enzyme inhibitor (benazepril) with calcium antagonist (either nifedipine or amlodipine) versus high-dose calcium antagonist monotherapy for systemic hypertension. Am. J. Cardiol., 2000, 86(11), 1182-1187.
[http://dx.doi.org/10.1016/S0002-9149(00)01199-1] [PMID: 11090788]
[38]
Nanaki, S.G.; Spyrou, K.; Bekiari, C.; Veneti, P.; Baroud, T.N.; Karouta, N.; Grivas, I.; Papadopoulos, G.C.; Gournis, D.; Bikiaris, D.N. Hierarchical porous carbon-PLLA and PLGA hybrid nanoparticles for intranasal delivery of galantamine for Alzheimer’s disease therapy. Pharmaceutics, 2020, 12(3), 227.
[http://dx.doi.org/10.3390/pharmaceutics12030227] [PMID: 32143505]
[39]
Kim, J.E.; Song, Y.J. Anti-varicella-zoster virus activity of cephalotaxine esters in vitro. J. Microbiol., 2019, 57(1), 74-79.
[http://dx.doi.org/10.1007/s12275-019-8514-z] [PMID: 30456755]
[40]
Cabré, A.; Verdaguer, X.; Riera, A. Enantioselective synthesis of β-methyl amines via iridium-catalyzed asymmetric hydrogenation of N-sulfonyl allyl amines. Adv. Synth. Catal., 2019, 361(18), 4196-4200.
[http://dx.doi.org/10.1002/adsc.201900748]
[41]
Wang, S.; An, X.D.; Li, S.S.; Liu, X.; Liu, Q.; Xiao, J. Hydride transfer initiated ring expansion of pyrrolidines toward highly functionalized tetrahydro-1-benzazepines. Chem. Commun. (Camb.), 2018, 54(98), 13833-13836.
[http://dx.doi.org/10.1039/C8CC08238C] [PMID: 30467575]
[42]
Böhm, H.J.; Flohr, A.; Stahl, M. Scaffold hopping. Drug Discov. Today. Technol., 2004, 1(3), 217-224.
[http://dx.doi.org/10.1016/j.ddtec.2004.10.009] [PMID: 24981488]
[43]
Su, J.B. Cardioprotective effects of the If current inhibition by ivabradine during cardiac dysfunction. Curr. Pharm. Biotechnol., 2014, 14(14), 1213-1219.
[http://dx.doi.org/10.2174/1389201015666140515143624] [PMID: 24831809]
[44]
Lamara, K.; Smalley, R.K. 3H-Azepines and related systems. Part 4. Preparation of 3H-azepin-2-ones and 6H-azepino [2, 1-b] quinazolin-12-ones by photo-induced ring expansions of aryl azides. Tetrahedron, 1991, 47(12-13), 2277-2290.
[http://dx.doi.org/10.1016/S0040-4020(01)96138-1]
[45]
Bou-Hamdan, F.R.; Lévesque, F.; O’Brien, A.G.; Seeberger, P.H. Continuous flow photolysis of aryl azides: preparation of 3H-azepinones. Beilstein J. Org. Chem., 2011, 7(1), 1124-1129.
[http://dx.doi.org/10.3762/bjoc.7.129] [PMID: 21915216]
[46]
Wenk, H.H.; Sander, W. 2,3,5,6-Tetrafluorphenylnitren-4-yl: ein Nitrenradikal mit Quartett-Grundzustand. Angew. Chem., 2002, 114(15), 2873-2876.
[http://dx.doi.org/10.1002/1521-3757(20020802)114:15<2873:AID-ANGE2873>3.0.CO;2-G]
[47]
Bräse, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed. Engl., 2005, 44(33), 5188-5240.
[http://dx.doi.org/10.1002/anie.200400657] [PMID: 16100733]
[48]
Gritsan, N.P.; Zhu, Z.; Hadad, C.M.; Platz, M.S. Laser flash photolysis and computational study of singlet phenylnitrene. J. Am. Chem. Soc., 1999, 121(6), 1202-1207.
[http://dx.doi.org/10.1021/ja982661q]
[49]
Karney, W.L.; Borden, W.T. Why does o-fluorine substitution raise the barrier to ring expansion of phenylnitrene? J. Am. Chem. Soc., 1997, 119(14), 3347-3350.
[http://dx.doi.org/10.1021/ja9644440]
[50]
Coleman, R.; Scriver, E.F.V.; Suschitsky, H.; Thomas, D.R. Photolysis of phenyl azide in the presence of “naked” anions. Chem. Ind., 1981, 1981, 249-250.
[51]
Sashida, H.; Fujii, A.; Tsuchiya, T. Studies on diazepines. XXIX. Syntheses of 3H-and 5H-1, 4-benzodiazepines from 3-azidoquinolines. Chem. Pharm. Bull. (Tokyo), 1987, 35(10), 4110-4116.
[http://dx.doi.org/10.1248/cpb.35.4110]
[52]
Iddon, B.; Meth-Cohn, O.; Scriven, E.F.V.; Suschitzky, H.; Gallagher, P.T. Entwicklungen in der arylnitren-chemie: synthesen und mechanismen. Angew. Chem., 1979, 91, 965-982.
[http://dx.doi.org/10.1002/ange.19790911205]
[53]
Kotzyba-Hibert, F.; Kapfer, I.; Goeldner, M. Recent trends in photoaffinity labeling. Angew. Chem., 1995, 34(12), 1296-1312.
[http://dx.doi.org/10.1002/anie.199512961]
[54]
Sydnes, M.O.; Doi, I.; Ohishi, A.; Kuse, M.; Isobe, M. Determination of solvent-trapped products obtained by photolysis of aryl azides in 2,2,2-trifluoroethanol. Chem. Asian J., 2008, 3(1), 102-112.
[http://dx.doi.org/10.1002/asia.200700211] [PMID: 18041017]
[55]
Nielsen, P.E.; Buchardt, O. Aryl azides as photoaffinity labels. A photochemical study of some 4-substituted aryl azides. Photochem. Photobiol., 1982, 35(3), 317-323.
[http://dx.doi.org/10.1111/j.1751-1097.1982.tb02568.x]
[56]
Reiser, A.; Bowes, G.; Horne, R.J. Photolysis of aromatic azides. Part 1.-Electronic spectra of aromatic nitrenes and their parent azides. Trans. Faraday Soc., 1966, 62, 3162-3169.
[http://dx.doi.org/10.1039/TF9666203162]
[57]
Lamara, K.; Redhouse, A.D.; Smalley, R.K.; Thompson, J.R. 3H-Azepines and related systems. Part 5. Photo-induced ring expansions of o-azidobenzonitriles to 3-cyano-and 7-cyano-3H-azepin-2 (1H)-ones. Tetrahedron, 1994, 50(18), 5515-5526.
[http://dx.doi.org/10.1016/S0040-4020(01)80706-7]
[58]
O’Hagan, D. Pyrrole, pyrrolidine pyridine, piperidine, azepine and tropane alkaloids. Nat. Prod. Rep., 1997, 14(6), 637-651.
[http://dx.doi.org/10.1039/np9971400637]
[59]
Mazzocchi, P.H.; Minamikawa, S.; Wilson, P. Competetive photochemical. sigma. 2+. pi. 2 addition and electron transfer in the N-methylphthalimide-alkene system. J. Org. Chem., 1985, 50(15), 2681-2684.
[http://dx.doi.org/10.1021/jo00215a017]
[60]
(a)Maruyama, K.; Kubo, Y. Photochemistry of phthalimides with olefins. Solvent-incorporated addition vs. cycloaddition to imide C (= O)-N bond accompanying ring enlargement. J. Org. Chem., 1985, 50(9), 1426-1435.
[http://dx.doi.org/10.1021/jo00209a015]
(b)McDermott, G.; Yoo, D.J.; Oelgemöller, M. Photochemical addition reactions involving phthalimides. Heterocycles, 2005, 65(9), 2221-2257.
[http://dx.doi.org/10.3987/REV-05-601]
[61]
Maruyama, K.; Kubo, Y. Photo-induced solvent-incorporated addition of N-methylphthalimide to olefins. Reactions promoted by way of initial one electron transfer. Chem. Lett., 1978, 7(8), 851-854.
[http://dx.doi.org/10.1246/cl.1978.851]
[62]
Griesbeck, A.G.; Henz, A.; Peters, K.; Peters, E.M.; von Schnering, H.G. Photo electron transfer induced macrocyclization of N-phtha-loyl- ω-aminocarboxylic acids. Angew. Chem., 1995, 34(4), 474-476.
[http://dx.doi.org/10.1002/anie.199504741]
[63]
Warzecha, K.D.; Görner, H.; Griesbeck, A.G. Photoinduced decarboxylative benzylation of phthalimide triplets with phenyl acetates: a mechanistic study. J. Phys. Chem. A, 2006, 110(10), 3356-3363.
[http://dx.doi.org/10.1021/jp055878x] [PMID: 16526613]
[64]
Carlier, P.R.; Zhao, H.; MacQuarrie-Hunter, S.L.; DeGuzman, J.C.; Hsu, D.C. Enantioselective synthesis of diversely substituted quaternary 1,4-benzodiazepin-2-ones and 1,4-benzodiazepine-2,5-diones. J. Am. Chem. Soc., 2006, 128(47), 15215-15220.
[http://dx.doi.org/10.1021/ja0640142] [PMID: 17117873]
[65]
Griesbeck, A.G.; Kramer, W.; Lex, J. Diastereo-and enantioselective synthesis of pyrrolo [1, 4] benzodiazepines through decarboxylative photocyclization. Angew. Chem., 2001, 40(3), 577-579.
[http://dx.doi.org/10.1002/1521-3773(20010202)40:3<577:AID-ANIE577>3.0.CO;2-L]
[66]
Fuji, K.; Kawabata, T. Memory of chirality-a new principle in enolate chemistry. Chemistry, 1998, 4(3), 373-376.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19980310)4:3<373:AID-CHEM373>3.0.CO;2-O]
[67]
Griesbeck, A.G.; Kramer, W.; Bartoschek, A.; Schmickler, H. Photocyclization of 2-azabicyclo[3.3.0]octane-3-carboxylate derivatives: induced and noninduced diastereoselectivity. Org. Lett., 2001, 3(4), 537-539.
[http://dx.doi.org/10.1021/ol006943i] [PMID: 11178819]
[68]
Machida, M. Photochemical synthesis of multicyclic fused imidazolidines, hydropyrazines, and hydro-1, 4-diazepines. Synthesis, 1982, 12, 1078-1080.
[http://dx.doi.org/10.1055/s-1982-30075]
[69]
Takechi, H. Photoreactions of Succinimides with an N-acyl group in the side chain. Synthesis and stereochemistry of tricyclic pyrrolo [1, 2-α] pyrazine ring systems. Chem. Pharm. Bull. (Tokyo), 1986, 34(8), 3142-3152.
[http://dx.doi.org/10.1248/cpb.34.3142]
[70]
Oelgemöller, M.; Griesbeck, A.G.; Lex, J.; Haeuseler, A.; Schmittel, M.; Niki, M.; Hesek, D.; Inoue, Y. Structural, CV and IR spectroscopic evidences for preorientation in PET-active phthalimido carboxylic acids. Org. Lett., 2001, 3(11), 1593-1596.
[http://dx.doi.org/10.1021/ol0155900] [PMID: 11405663]
[71]
Mazzocchi, P.H.; Minamikawa, S.; Wilson, P.; Bowen, M.; Narian, N. Photochemical additions of alkenes to phthalimides to form benzazepinediones. Additions of dienes, alkenes, vinyl ethers, vinyl esters, and an allene. J. Org. Chem., 1981, 46(24), 4846-4851.
[http://dx.doi.org/10.1021/jo00337a005]
[72]
Bryant, L.R.; Coyle, J.D. Photochemical hydrogen abstraction and cyclisation in maleimide derivatives. Tetrahedron Lett., 1983, 24(17), 1841-1844.
[http://dx.doi.org/10.1016/S0040-4039(00)81786-4]
[73]
Wu, Y.J.; Zhang, Y.; Toyn, J.H.; Macor, J.E.; Thompson, L.A. Synthesis of pyrimido[4,5-c]azepine- and pyrimido[4,5-c]oxepine-based γ-secretase modulators. Bioorg. Med. Chem. Lett., 2016, 26(6), 1554-1557.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.016] [PMID: 26898338]
[74]
Martínez-Mingo, M.; Rodríguez, N.; Gómez Arrayás, R.; Carretero, J.C. Access to benzazepinones by Pd-catalyzed remote C–H carbonylation of γ-arylpropylamine derivatives. Org. Lett., 2019, 21(11), 4345-4349.
[http://dx.doi.org/10.1021/acs.orglett.9b01523] [PMID: 31117716]
[75]
Wei, S.; Zheng, L.; Wang, S.R.; Tang, Y. Catalytic diastereoselective [5 + 2] annulation of N-acryloyl indoles with cyclic sulfonyl enamides: facile access to isoeburnamonine. Org. Lett., 2020, 22(3), 1013-1017.
[http://dx.doi.org/10.1021/acs.orglett.9b04556] [PMID: 31971396]
[76]
Kozlovskiĭ, A.G.; Solov’eva, T.F.; Sakharovskiĭ, V.G.; Adanin, V.M. Biosynthesis of “unusual” ergot alkaloids by the fungus Penicillium aurantio-virens. Dokl. Akad. Nauk SSSR, 1981, 260(1), 230-233.
[PMID: 7307906]
[77]
Yamada, K.; Namerikawa, Y.; Haruyama, T.; Miwa, Y.; Yanada, R.; Ishikura, M. Concise synthesis of (±)-aurantioclavine through a base-promoted Pictet–Spengler reaction. Eur. J. Org. Chem., 2009, (33), 5752-5759.
[http://dx.doi.org/10.1002/ejoc.200900742]
[78]
Qu, S.J.; Liu, Q.W.; Tan, C.H.; Jiang, S.H.; Zhu, D.Y. New indole N-oxide alkaloids from Evodia fargesii. Planta Med., 2006, 72(3), 264-266.
[http://dx.doi.org/10.1055/s-2005-873195] [PMID: 16534733]
[79]
Abe, T.; Yamada, K. Concise syntheses of Hyrtioreticulins C and D via a C-4 Pictet–Spengler reaction: revised signs of specific rotations. J. Nat. Prod., 2017, 80(2), 241-245.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00008] [PMID: 28134528]
[80]
Sharma, S.K.; Sharma, S.; Agarwal, P.K.; Kundu, B. Application of 7-endo-trig Pictet–Spengler cyclization to the formation of the benzazepine ring: synthesis of benzazepinoindoles. Eur. J. Org. Chem., 2009, 2009(9), 1309-1312.
[http://dx.doi.org/10.1002/ejoc.200801201]
[81]
Kahar, N.; Jadhav, P.; Reddy, R.V.R.; Dawande, S. A rhodium(II) catalysed domino synthesis of azepino fused diindoles from isatin tethered N-sulfonyl-1,2,3-triazoles and indoles. Chem. Commun. (Camb.), 2020, 56(8), 1207-1210.
[http://dx.doi.org/10.1039/C9CC08377D] [PMID: 31895362]
[82]
Jida, M.; Betti, C.; Urbanczyk-Lipkowska, Z.; Tourwé, D.; Ballet, S. Highly diastereoselective synthesis of 1-carbamoyl-4-aminoindoloazepinone derivatives via the Ugi reaction. Org. Lett., 2013, 15(22), 5866-5869.
[http://dx.doi.org/10.1021/ol402940x] [PMID: 24160404]
[83]
Yokosaka, T.; Nakayama, H.; Nemoto, T.; Hamada, Y. Acid-promoted cascade cyclization to produce fused-polycyclic indole derivatives. Org. Lett., 2013, 15(12), 2978-2981.
[http://dx.doi.org/10.1021/ol401128h] [PMID: 23745602]
[84]
Zhang, D.H.; Tang, X.Y.; Wei, Y.; Shi, M. Rhodium(I)-catalyzed cycloisomerization of nitrogen-tethered indoles and alkylidenecyclopropanes: convenient access to polycyclic indole derivatives. Chemistry, 2013, 19(41), 13668-13673.
[http://dx.doi.org/10.1002/chem.201302331] [PMID: 24092539]
[85]
Gillmore, A.T.; Badland, M.; Crook, C.L.; Castro, N.M.; Critcher, D.J.; Fussell, S.J.; Jones, K.J.; Jones, M.C.; Kougoulos, E.; Mathew, J.S.; McMillan, L. Multkilogram scale-up of a reductive alkylation route to a novel PARP inhibitor. Org. Process Res. Dev., 2012, 16(12), 1897-1904.
[http://dx.doi.org/10.1021/op200238p]
[86]
Arigela, R.K.; Sharma, S.K.; Kumar, B.; Kundu, B. Microwave-assisted three-component domino reaction: synthesis of indolodiazepinotriazoles. Beilstein J. Org. Chem., 2013, 9(1), 401-405.
[http://dx.doi.org/10.3762/bjoc.9.41] [PMID: 23504610]
[87]
Liu, S.; Qu, J.; Wang, B. Substrate-controlled divergent synthesis of polycyclic indoloazepines and indolodiazepines via 1,5-hydride shift/7-cyclization cascades. Chem. Commun. (Camb.), 2018, 54(57), 7928-7931.
[http://dx.doi.org/10.1039/C8CC03804J] [PMID: 29951657]
[88]
Lombardo, V.M.; Thomas, C.D.; Scheidt, K.A. A tandem isomerization/prins strategy: iridium(III)/Brønsted acid cooperative catalysis. Angew. Chem. Int. Ed. Engl., 2013, 52(49), 12910-12914.
[http://dx.doi.org/10.1002/anie.201306462] [PMID: 24218144]
[89]
Putey, A.; Joucla, L.; Picot, L.; Besson, T.; Joseph, B. Synthesis of latonduine derivatives via intramolecular Heck reaction. Tetrahedron, 2007, 63(4), 867-879.
[http://dx.doi.org/10.1016/j.tet.2006.11.042]
[90]
Avila-Zárraga, J.G.; Lujan-Montelongo, A.; Covarrubias-Zúñiga, A.; Romero-Ortega, M. New Heck coupling strategies for the synthesis of paullone and dimethyl paullone. Tetrahedron Lett., 2006, 47(45), 7987-7989.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.118]
[91]
Joucla, L.; Putey, A.; Joseph, B. Synthesis of fused heterocycles with a benzazepinone moiety via intramolecular Heck coupling. Tetrahedron Lett., 2005, 46(47), 8177-8179.
[http://dx.doi.org/10.1016/j.tetlet.2005.09.122]
[92]
Phutdhawong, W.S.; Ruensamran, W.; Phutdhawong, W.; Taechowisan, T. Synthesis of 1,6,7,8-tetrahydro-naphtho[2,3-d]-azepino[4,5-b]indole-9,14-diones and their inhibitory effects on pro-inflammatory cytokines. Bioorg. Med. Chem. Lett., 2009, 19(19), 5753-5756.
[http://dx.doi.org/10.1016/j.bmcl.2009.07.154] [PMID: 19716300]
[93]
Li, Z.; Lu, N.; Wang, L.; Zhang, W. Synthesis of Paullone and Kenpaullone derivatives by photocyclization of 2-(2-chloro-1H-indol-3-yl)- N-aryla-cetamides. Eur. J. Org. Chem., 2012, 2012(5), 1019-1024.
[http://dx.doi.org/10.1002/ejoc.201101508]
[94]
Zhang, Y.S.; Tang, X.Y.; Shi, M. Divergent synthesis of indole-fused polycycles via Rh (II)-catalyzed intramolecular [3+2] cycloaddition and C–H functionalization of indolyltriazoles. Org. Chem. Front., 2015, 2(11), 1516-1520.
[http://dx.doi.org/10.1039/C5QO00216H]
[95]
Keller, L.; Beaumont, S.; Liu, J.M.; Thoret, S.; Bignon, J.S.; Wdzieczak-Bakala, J.; Dauban, P.; Dodd, R.H. New C5-alkylated indolobenzazepinones acting as inhibitors of tubulin polymerization: cytotoxic and antitumor activities. J. Med. Chem., 2008, 51(12), 3414-3421.
[http://dx.doi.org/10.1021/jm701466p] [PMID: 18503262]
[96]
Soto, S.; Vaz, E.; Dell’Aversana, C.; Álvarez, R.; Altucci, L.; de Lera, Á.R. New synthetic approach to paullones and characterization of their SIRT1 inhibitory activity. Org. Biomol. Chem., 2012, 10(10), 2101-2112.
[http://dx.doi.org/10.1039/c2ob06695e] [PMID: 22286328]
[97]
White, A.W.; Carpenter, N.; Lottin, J.R.; McClelland, R.A.; Nicholson, R.I. Synthesis and evaluation of novel anti-proliferative pyrroloazepinone and indoloazepinone oximes derived from the marine natural product hymenialdisine. Eur. J. Med. Chem., 2012, 56, 246-253.
[http://dx.doi.org/10.1016/j.ejmech.2012.08.022] [PMID: 22995819]
[98]
Beaumont, S.; Retailleau, P.; Dauban, P.; Dodd, R.H. Synthesis of indolobenzazepinones by application of an isocyanide-based multicomponent reaction. Eur. J. Org. Chem., 2008, 2008(30), 5162-5175.
[http://dx.doi.org/10.1002/ejoc.200800643]
[99]
Shiva Kumar, K.; Siddi Ramulu, M.; Rajesham, B.; Kumar, N.P.; Voora, V.; Kancha, R.K. FeCl3 catalysed 7-membered ring formation in a single pot: a new route to indole-fused oxepines/azepines and their cytotoxic activity. Org. Biomol. Chem., 2017, 15(20), 4468-4476.
[http://dx.doi.org/10.1039/C7OB00715A] [PMID: 28497830]
[100]
Bremner, J.B.; Sengpracha, W. An iodoacetamide-based free radical cyclisation approach to the 7, 12-dihydro-indolo [3, 2-d][1] benzazepin-6 (5H)-one (paullone) system. Tetrahedron, 2005, 61(23), 5489-5498.
[http://dx.doi.org/10.1016/j.tet.2005.03.133]
[101]
Yang, J.M.; Li, P.H.; Wei, Y.; Tang, X.Y.; Shi, M. Gold(I)-catalyzed highly stereoselective synthesis of polycyclic indolines: the construction of four contiguous stereocenters. Chem. Commun. (Camb.), 2016, 52(2), 346-349.
[http://dx.doi.org/10.1039/C5CC08381H] [PMID: 26516925]
[102]
Shenje, R.; Martin, M.C.; France, S. A catalytic diastereoselective formal [5+2] cycloaddition approach to azepino[1,2-a]indoles: putative donor-acceptor cyclobutanes as reactive intermediates. Angew. Chem. Int. Ed. Engl., 2014, 53(50), 13907-13911.
[http://dx.doi.org/10.1002/anie.201408429] [PMID: 25339510]
[103]
Prasad, K.S.; Costa, R.A.; Branches, A.D.; Oliveira, K.M. Novel route for the synthesis of azepine derivative using tin-based catalyst: spectroscopic characterization and theoretical investigations. J. Mol. Struct., 2019, 1178, 491-499.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.050]
[104]
Kotipalli, T.; Janreddy, D.; Kavala, V.; Kuo, C.W.; Kuo, T.S.; Chen, M.L.; He, C.H.; Yao, C.F. BF3•OEt2-mediated one pot synthesis of 10-indolyldibenzo [b, f] azepine derivatives via tandem ring expansion and C–C bond formation. RSC Adv., 2014, 4(88), 47833-47840.
[http://dx.doi.org/10.1039/C4RA08723B]
[105]
Zhu, W.; Zhao, L.; Wang, M.X. Synthesis of 2, 3-dihydro-1H-azepine and 1H-azepin-2 (3H)-one derivatives from intramolecular condensation between stable tertiary enamides and aldehydes. J. Org. Chem., 2015, 80(24), 12047-12057.
[106]
Song, H.J.; Yoon, E.; Heo, J.N. Efficient synthesis of dibenzazepine lactams via a sequential Pd-catalyzed amination and aldol condensation reaction. Tetrahedron Lett., 2020, 61(9), 151536-151547.
[http://dx.doi.org/10.1016/j.tetlet.2019.151536]
[107]
El Bakri, Y.; Subramani, K.; Ben-Yahya, A.; Essassi, E.M. Synthesis, spectroscopic characterizations, DFT, molecular docking and molecular dynamics simulations of a novel 2-methyl-3H-benzimidazolo [1, 2-b][1, 2, 4] triazepin-4 (5H)-one. J. Mol. Struct., 2020, 1202, 127317-127344.
[http://dx.doi.org/10.1016/j.molstruc.2019.127317]
[108]
Kumar, S.; Pratap, R.; Kumar, A.; Kumar, B.; Tandon, V.K.; Ram, V.J. Synthesis of dibenzo [d, f] diazepinones and alkenylindolinones through ring transformation of 2H-pyran-2-one-3-carbonitriles by indolin-2-ones. Tetrahedron, 2013, 69(24), 4857-4865.
[http://dx.doi.org/10.1016/j.tet.2013.04.053]
[109]
Kumar, S.; Pratap, R.; Kumar, A.; Kumar, B.; Tandon, V.K.; Ram, V.J. Direct alkenylation of indolin-2-ones by 6-aryl-4-methylthio-2H-pyran-2-one-3-carbonitriles: a novel approach. Beilstein J. Org. Chem., 2013, 9(1), 809-817.
[http://dx.doi.org/10.3762/bjoc.9.92] [PMID: 23766794]
[110]
Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737]
[111]
Gao, Z.H.; Chen, K.Q.; Zhang, Y.; Kong, L.M.; Li, Y.; Ye, S. Enantioselective N-heterocyclic carbene-catalyzed synthesis of spirocyclic oxindole-benzofuroazepinones. J. Org. Chem., 2018, 83(24), 15225-15235.
[http://dx.doi.org/10.1021/acs.joc.8b02497] [PMID: 30468074]
[112]
Kim, S.; Kim, H.; Um, K.; Lee, P.H. Synthesis of azepinoindoles via rhodium-catalyzed formal aza-[4 + 3] cycloaddition reaction of 3-diazoindolin-2-imines with 1,3-dienes in one-pot. J. Org. Chem., 2017, 82(18), 9808-9815.
[http://dx.doi.org/10.1021/acs.joc.7b01150] [PMID: 28795809]
[113]
Ciofi, L.; Trabocchi, A.; Lalli, C.; Menchi, G.; Guarna, A. One-pot sequential Ti-/Cu-catalysis for tandem amidation/Ullmann-type cyclization: synthesis of model benzodiazepine(di)ones promoted by microwave irradiation. Org. Biomol. Chem., 2012, 10(14), 2780-2786.
[http://dx.doi.org/10.1039/c2ob07063d] [PMID: 22371225]
[114]
Yang, T.; Lin, C.; Fu, H.; Jiang, Y.; Zhao, Y. Copper-catalyzed synthesis of medium- and large-sized nitrogen heterocycles via N-arylation of phosphoramidates and carbamates. Org. Lett., 2005, 7(21), 4781-4784.
[http://dx.doi.org/10.1021/ol052126c] [PMID: 16209534]
[115]
Han, C.; Lee, J.P.; Lobkovsky, E.; Porco, J.A. Jr Catalytic ester-amide exchange using group (IV) metal alkoxide-activator complexes. J. Am. Chem. Soc., 2005, 127(28), 10039-10044.
[http://dx.doi.org/10.1021/ja0527976] [PMID: 16011366]
[116]
Wang, H.; Jiang, Y.; Gao, K.; Ma, D. Facile synthesis of 1, 4-benzodiazepin-3-ones from o-bromobenzylamines and amino acids via a cascade coupling/condensation process. Tetrahedron, 2009, 65(44), 8956-8960.
[http://dx.doi.org/10.1016/j.tet.2009.06.104]
[117]
Liu, Y.; Wan, J.P. Tandem reactions initiated by copper-catalyzed cross-coupling: a new strategy towards heterocycle synthesis. Org. Biomol. Chem., 2011, 9(20), 6873-6894.
[http://dx.doi.org/10.1039/c1ob05769c] [PMID: 21879127]
[118]
Ohta, Y. Concise synthesis of indole-fused 1, 4-diazepines through copper (I)-catalyzed domino three-component coupling-cyclization-N-arylation under microwave irradiation. Org. Lett., 2011, 10(16), 3535-3538.
[http://dx.doi.org/10.1021/ol801383b]
[119]
Kaur, N.; Kishore, D. Microwave-assisted synthesis of seven-and higher-membered N-heterocycles. Synth. Commun., 2014, 44(18), 2577-2614.
[http://dx.doi.org/10.1080/00397911.2013.783922]
[120]
Dey, R.; Banerjee, P. Metal-free ring-opening cyclization of cyclopropane carbaldehydes and N-benzyl anilines: an eco-friendly access to functionalized benzo [b] azepine derivatives. Adv. Synth. Catal., 2019, 361(12), 2849-2854.
[http://dx.doi.org/10.1002/adsc.201801714]
[121]
Kaur, N. Application of microwave irradiation in the synthesis of fused six-membered heterocycles with N-heteroatom. Synth. Commun., 2015, 45(2), 173-201.
[http://dx.doi.org/10.1080/00397911.2013.816734]
[122]
Jones, G.O.; Liu, P.; Houk, K.N.; Buchwald, S.L. Computational explorations of mechanisms and ligand-directed selectivities of copper-catalyzed Ullmann-type reactions. J. Am. Chem. Soc., 2010, 132(17), 6205-6213.
[http://dx.doi.org/10.1021/ja100739h] [PMID: 20387898]
[123]
Lu, X.; Shi, L.; Zhang, H.; Jiang, Y.; Ma, D. Assembly of N-substituted pyrrolo [2, 1-c][1, 4] benzodiazepine-5, 11-diones via copper catalyzed aryl amination. Tetrahedron, 2010, 66(30), 5714-5718.
[http://dx.doi.org/10.1016/j.tet.2010.04.127]
[124]
Casnati, A.; Motti, E.; Ca, N.D. Cis, exo-1, 2, 3, 4, 4a, 13b-hexahydro-1, 4-methano-5-isopropoxy-9H-tribenzo [b, f] azepine. Molbank, 2018, 2018(1), M988-M993.
[http://dx.doi.org/10.3390/M988]
[125]
Ma, D.; Xia, C. CuI-catalyzed coupling reaction of β-amino acids or esters with aryl halides at temperature lower than that employed in the normal Ullmann reaction. Facile synthesis of SB-214857. Org. Lett., 2001, 3(16), 2583-2586.
[http://dx.doi.org/10.1021/ol016258r] [PMID: 11483066]
[126]
Miller, W.H.; Ku, T.W.; Ali, F.E.; Bondinell, W.E.; Calvo, R.R.; Davis, L.D.; Erhard, K.F.; Hall, L.B.; Huffman, W.F.; Keenan, R.M.; Kwon, C. Enantiospecific synthesis of SB 214857, a potent, orally active, nonpeptide fibrinogen receptor antagonist. Tetrahedron Lett., 1995, 36(52), 9433-9436.
[http://dx.doi.org/10.1016/0040-4039(95)02054-3]
[127]
Guastavino, J.F.; Buden, M.E.; Garcia, C.S.; Rossi, R.A. Synthesis of ε-oxo acids by photostimulated reactions of 2-(2-iodophenyl)acetate ion with carbanions by the SRN1 mechanism. Synthesis of novel 3-benzazepin-2-ones; Arkat. ARKIVOC, 2011, 2011(7), 389-405.
[http://dx.doi.org/10.3998/ark.5550190.0012.732]
[128]
Peisino, L.E.; Pierini, A.B. Experimental and computational study of 6-exo and 7-endo cyclization of aryl radicals followed by tandem S(RN)1 substitution. J. Org. Chem., 2013, 78(10), 4719-4729.
[http://dx.doi.org/10.1021/jo4001788] [PMID: 23594125]
[129]
Kaper, T.; Doye, S. Hydroaminoalkylation/Buchwald-Hartwig amination sequences for the synthesis of benzo-annulated seven-membered nitrogen heterocycles. Tetrahedron, 2019, 75(32), 4343-4350.
[http://dx.doi.org/10.1016/j.tet.2019.04.041]
[130]
Li, L.; Wang, M.; Zhang, X.; Jiang, Y.; Ma, D. Assembly of substituted 3-methyleneisoindolin-1-ones via a CuI/l-proline-catalyzed domino reaction process of 2-bromobenzamides and terminal alkynes. Org. Lett., 2009, 11(6), 1309-1312.
[http://dx.doi.org/10.1021/ol9000922] [PMID: 19226134]
[131]
Couty, S.; Meyer, C.; Cossy, J. A short synthesis of lennoxamine via ynamides. Tetrahedron Lett., 2006, 47(5), 767-769.
[http://dx.doi.org/10.1016/j.tetlet.2005.11.093]
[132]
Clement, J.B.; Hayes, J.F.; Sheldrake, H.M.; Sheldrake, P.W.; Wells, A.S. Synthesis of SB-214857 using copper catalysed amination of arylbromides with L-aspartic acid. Synlett, 2001, 2001(09), 1423-1427.
[http://dx.doi.org/10.1055/s-2001-16780]
[133]
Casnati, A.; Fontana, M.; Coruzzi, G.; Aresta, B.M.; Corriero, N.; Maggi, R.; Maestri, G.; Motti, E.; Ca, D.N. Enhancing reactivity and selectivity of aryl bromides: a complementary approach to dibenzo [b, f] azepine derivatives. ChemCatChem, 2018, 10(19), 4346-4352.
[http://dx.doi.org/10.1002/cctc.201800940]
[134]
Shen, Y.B.; Wang, L.X.; Sun, Y.M.; Dong, F.Y.; Yu, L.; Liu, Q.; Xiao, J. Hexafluoroisopropanol-mediated redox-neutral α-C(sp3)-H functionalization of cyclic amines via hydride transfer. J. Org. Chem., 2020, 85(4), 1915-1926.
[http://dx.doi.org/10.1021/acs.joc.9b02606] [PMID: 31823616]
[135]
Sirindil, F.; Golling, S.; Lamare, R.; Weibel, J.M.; Pale, P.; Blanc, A. Synthesis of indolizine and pyrrolo[1,2-a]azepine derivatives via a gold(I)-catalyzed three-step cascade. Org. Lett., 2019, 21(22), 8997-9000.
[http://dx.doi.org/10.1021/acs.orglett.9b03402] [PMID: 31651173]
[136]
Rodríguez, A.; Albert, J.; Ariza, X.; Garcia, J.; Granell, J.; Farràs, J.; La Mela, A.; Nicolás, E. Catalytic C-H activation of phenylethylamines or benzylamines and their annulation with allenes. J. Org. Chem., 2014, 79(20), 9578-9585.
[http://dx.doi.org/10.1021/jo501658s] [PMID: 25229754]
[137]
Acosta, L.M.; Jurado, J.; Palma, A.; Cobo, J.; Glidewell, C. Five closely related 4-chloro-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepines: similar molecular structures but different supramolecular assemblies. Acta Crystallogr. C Struct. Chem., 2015, 71(Pt 12), 1062-1068.
[http://dx.doi.org/10.1107/S2053229615020811] [PMID: 26632832]
[138]
Albano, G.; Aronica, L.A. Potentiality and synthesis of O-and N-heterocycles: Pd-catalyzed cyclocarbonylative Sonogashira coupling as a valuable route to phthalans, isochromans, and isoindolines. Microreview, 2017, 2017, 7204-7221.
[http://dx.doi.org/10.1002/ejoc.201701041]
[139]
Bhowmik, S.; Bhattacharyya, S.; Batra, S. An alternate route to substituted 6, 7-dihydro 5H-dibenz [c, e] azepines from allylbenzamides derived from the Morita–Baylis–Hillman adducts. Tetrahedron, 2014, 70(26), 4031-4037.
[http://dx.doi.org/10.1016/j.tet.2014.04.055]
[140]
Bulman Page, P.C.; Pearce, C.A.; Chan, Y.; Parker, P.; Buckley, B.R.; Rassias, G.A.; Elsegood, M.R. Atropo- and diastereoselective construction of tetracyclic biphenylazepinium salts derived from aminoalcohols: use as catalysts in enantioselective asymmetric epoxidation. J. Org. Chem., 2015, 80(16), 8036-8045.
[http://dx.doi.org/10.1021/acs.joc.5b01157] [PMID: 26204427]
[141]
Chwastek, M.; Pieczykolan, M.; Stecko, S. The synthesis of 5-amino-dihydrobenzo[b]oxepines and 5-amino-dihydrobenzo[b]azepines via Ichikawa rearrangement and ring-closing metathesis. J. Org. Chem., 2016, 81(19), 9046-9074.
[http://dx.doi.org/10.1021/acs.joc.6b01691] [PMID: 27574830]
[142]
David, E.; Rangheard, C.; Pellet-Rostaing, S.; Lemaire, M. Synthesis of benz [c] benzothiopheno [2, 3-e] azepines via Heck-type coupling and Pictet-Spengler reaction. Synlett, 2006, 2006(13), 2016-2020.
[http://dx.doi.org/10.1055/s-2006-947351]
[143]
Kundu, B.; Sawant, D.; Partani, P.; Kesarwani, A.P. New application of Pictet-Spengler reaction leading to the synthesis of an unusual seven-membered heterocyclic ring system. J. Org. Chem., 2005, 70(12), 4889-4892.
[http://dx.doi.org/10.1021/jo050384h] [PMID: 15932339]
[144]
Lee, C.H.; Wu, W.C.; Dangate, P.S.; Shen, L.C.; Chung, W.S.; Sun, C.M. Skeletally diverse synthesis of innovative [2,1-c]-1,4-oxazepine and [1,4]-quinoxaline systems. ACS Comb. Sci., 2015, 17(10), 623-630.
[http://dx.doi.org/10.1021/acscombsci.5b00093] [PMID: 26379108]
[145]
Karuppasamy, M.; Vachan, B.S.; Vinoth, P.; Muthukrishnan, I.; Nagarajan, S.; Ielo, L.; Pace, V.; Banik, S.; Maheswari, C.U.; Sridharan, V. Direct access to 9-chloro-1H-benzo[b]furo[3,4-e]azepin-1-ones via Palladium(II)-catalyzed intramolecular syn-oxypalladation/olefin insertion/sp2-C-H bond activation cascade. Org. Lett., 2019, 21(15), 5784-5788.
[http://dx.doi.org/10.1021/acs.orglett.9b01482] [PMID: 31310552]
[146]
Pagar, V.V.; Liu, R.S. Gold-catalyzed cycloaddition reactions of ethyl diazoacetate, nitrosoarenes, and vinyldiazo carbonyl compounds: synthesis of isoxazolidine and benzo[b]azepine derivatives. Angew. Chem. Int. Ed. Engl., 2015, 54(16), 4923-4926.
[http://dx.doi.org/10.1002/anie.201500340] [PMID: 25702833]
[147]
Marepu, N.; Yeturu, S.; Pal, M. Synthesis and cytotoxicity of (±)-9-hydroxy-5-oxo-2, 3, 4, 5-tetrahydro-1H-benzo [b] azepine-2- carboxamide: an active component of Juglans regia. Asian J. Org. Chem., 2018, 7(9), 1806-1809.
[http://dx.doi.org/10.1002/ajoc.201800425]
[148]
Qiao, H.; Zhang, S.; Li, K.; Cao, Z.; Zeng, F. Palladium(II)/Lewis acid cocatalyzed oxidative annulation of 2-alkenylanilines and propargylic esters: an access to benzo[b]azepines. J. Org. Chem., 2019, 84(17), 10843-10851.
[http://dx.doi.org/10.1021/acs.joc.9b01406] [PMID: 31385504]
[149]
Ramig, K.; Subramaniam, G.; Karimi, S.; Szalda, D.J.; Ko, A.; Lam, A.; Li, J.; Coaderaj, A.; Cavdar, L.; Bogdan, L.; Kwon, K.; Greer, E.M. Interplay of nitrogen-atom inversion and conformational inversion in enantiomerization of 1H-1-benzazepines. J. Org. Chem., 2016, 81(8), 3313-3320.
[http://dx.doi.org/10.1021/acs.joc.6b00319] [PMID: 27003109]
[150]
Xu, Z.; Wang, Q.; Zhu, J. Enantioselective total syntheses of leuconolam-leuconoxine-mersicarpine group monoterpene indole alkaloids. J. Am. Chem. Soc., 2013, 135(51), 19127-19130.
[http://dx.doi.org/10.1021/ja4115192] [PMID: 24328133]
[151]
Iwama, Y.; Okano, K.; Sugimoto, K.; Tokuyama, H. Enantiocontrolled total synthesis of (-)-mersicarpine. Chemistry, 2013, 19(28), 9325-9334.
[http://dx.doi.org/10.1002/chem.201301040] [PMID: 23729297]
[152]
Deb, P.K.; Sharma, S.; Borude, A.; Singh, R.P.; Kumar, D.; Reddy, L.K. An efficient one-pot microwave assisted synthesis of dibenzoazepinones. Tetrahedron Lett., 2013, 54(23), 2916-2919.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.065]
[153]
Rohlmann, R.; Daniliuc, C.G.; Mancheño, O.G. Highly enantioselective synthesis of chiral 7-ring O- and N-heterocycles by a one-pot nitro-Michael-cyclization tandem reaction. Chem. Commun. (Camb.), 2013, 49(99), 11665-11667.
[http://dx.doi.org/10.1039/c3cc47397j] [PMID: 24190160]
[154]
Ji, F.; Lv, M.F.; Yi, W.B.; Cai, C. Synthesis of 1, 4-benzoxazepine derivatives via a novel domino aziridine ring-opening and isocyanide-insertion reaction. Adv. Synth. Catal., 2013, 355(17), 3401-3406.
[http://dx.doi.org/10.1002/adsc.201300650]
[155]
Sang, P.; Yu, M.; Tu, H.; Zou, J.; Zhang, Y. Highly regioselective synthesis of fused seven-membered rings through copper-catalyzed cross-coupling. Chem. Commun. (Camb.), 2013, 49(7), 701-703.
[http://dx.doi.org/10.1039/C2CC37891D] [PMID: 23223387]
[156]
Liu, L.; Xu, S.; Zhou, H. Silver carboxylate promoted lactonization: a general method applicable to prepare medium and large-sized lactones without high dilution or slow addition. Tetrahedron, 2013, 69(39), 8386-8391.
[http://dx.doi.org/10.1016/j.tet.2013.07.064]
[157]
Ellison, A.; Boyer, R.; Hoogestraat, P.; Bell, M. Microwave assisted synthesis of triazolobenzoxazepine and triazolobenzoxazocine heterocycles. Tetrahedron Lett., 2013, 54(45), 6005-6007.
[http://dx.doi.org/10.1016/j.tetlet.2013.08.065]
[158]
Xu, X.B.; Liu, J.; Zhang, J.J.; Wang, Y.W.; Peng, Y. Nickel-mediated inter- and intramolecular C-S coupling of thiols and thioacetates with aryl iodides at room temperature. Org. Lett., 2013, 15(3), 550-553.
[http://dx.doi.org/10.1021/ol303366u] [PMID: 23320949]
[159]
Qiao, Z.; Liu, H.; Xiao, X.; Fu, Y.; Wei, J.; Li, Y.; Jiang, X. Efficient access to 1,4-benzothiazine: palladium-catalyzed double C-S bond formation using Na2S2O3 as sulfurating reagent. Org. Lett., 2013, 15(11), 2594-2597.
[http://dx.doi.org/10.1021/ol400618k] [PMID: 23659388]
[160]
Kunick, C. Synthese [b]-kondensierter azepindione durch dealkoxycarbonylierung. Arch. Pharm. (Weinheim), 1991, 324(9), 579-581.
[http://dx.doi.org/10.1002/ardp.2503240910]
[161]
Link, A. Antitumoraktive Pyrido[3,2-d]-1-benzazepine; na, 1996.
[162]
Schultz, C. Antitumoraktive [d]-anellierte [1] Benzazepin-2-one; na, 1999.
[163]
Ohta, Y. Construction of indole- and isoquinoline-fused nitrogen-containing heterocycles through copper-catalyzed multi-component reaction. Yakugaku Zasshi, 2010, 130(7), 925-936.
[http://dx.doi.org/10.1248/yakushi.130.925] [PMID: 20606372]
[164]
Singh, A.K.; Raj, V.; Rai, A.; Keshari, A.K.; Saha, S. Indole-fused benzooxazepines: a new structural class of anticancer agents. Future Sci. OA, 2017, 3(1)FSO168
[http://dx.doi.org/10.4155/fsoa-2016-0079] [PMID: 28344831]
[165]
Liu, K.G.; Lo, J.R.; Comery, T.A.; Zhang, G.M.; Zhang, J.Y.; Kowal, D.M.; Smith, D.L.; Di, L.; Kerns, E.H.; Schechter, L.E.; Robichaud, A.J. A regiospecific synthesis of a series of 1-sulfonyl azepinoindoles as potent 5-HT6 ligands. Bioorg. Med. Chem. Lett., 2008, 18(14), 3929-3931.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.030] [PMID: 18583130]
[166]
Tsvelikhovsky, D.; Buchwald, S.L. Synthesis of heterocycles via Pd-ligand controlled cyclization of 2-chloro-N-(2-vinyl)aniline: preparation of carbazoles, indoles, dibenzazepines, and acridines. J. Am. Chem. Soc., 2010, 132(40), 14048-14051.
[http://dx.doi.org/10.1021/ja107511g] [PMID: 20858012]
[167]
Wang, Y.; Patil, P.; Kurpiewska, K.; Kalinowska-Tluscik, J.; Dömling, A. Diverse isoquinoline scaffolds by Ugi/Pomeranz-Fritsch and Ugi/Schlittler-Müller reactions. Org. Lett., 2019, 21(10), 3533-3537.
[http://dx.doi.org/10.1021/acs.orglett.9b00778] [PMID: 31033297]
[168]
Wu, Y.; Zhu, L.; Yu, Y.; Luo, X.; Huang, X. Polysubstituted 2-aminopyrrole synthesis via gold-catalyzed intermolecular nitrene transfer from vinyl azide to ynamide: reaction scope and mechanistic insights. J. Org. Chem., 2015, 80(22), 11407-11416.
[http://dx.doi.org/10.1021/acs.joc.5b02057] [PMID: 26503292]
[169]
Wu, L.; Meng, Y.; Ferguson, J.; Wang, L.; Zeng, F. Palladium-catalyzed oxidative annulation of ortho-alkenylanilines and allenes: an access to benzo [b] azepines. J. Org. Chem., 2017, 82(8), 4121-4128.
[http://dx.doi.org/10.1021/acs.joc.7b00012] [PMID: 28332392]
[170]
Yao, X.; Shao, Y.; Hu, M.; Xia, Y.; Cheng, T.; Chen, J. Palladium-catalyzed Cascade reaction of o-cyanobiaryls with arylboronic acids: synthesis of 5-arylidene-7-aryl-5H-dibenzo[c,e]azepines. Org. Lett., 2019, 21(19), 7697-7701.
[http://dx.doi.org/10.1021/acs.orglett.9b02351] [PMID: 31393128]
[171]
Kondapalli, V.; Yu, X.; Yamamoto, Y.; Bao, M. Synthesis of 5H-dibenzo[c,e]azepine-5,7(6H)-diones from benzamides via Palladium-catalyzed double C-H bond activation. J. Org. Chem., 2017, 82(4), 2288-2293.
[http://dx.doi.org/10.1021/acs.joc.6b03087] [PMID: 28124564]
[172]
Vaid, R.K.; Boini, S.K.; Alt, C.A.; Spitler, J.T.; Hadden, C.E.; Frank, S.A.; Moher, E.D. Synthesis of methyl 7, 9-dimethyl-5-oxo-2, 3, 4, 5-tetrahydro-1H-benzo [b] azepine-1-carboxylate and its analogues. Synthesis, 2014, 46(18), 2463-2470.
[http://dx.doi.org/10.1055/s-0034-1378279]
[173]
Saini, H.K.; Nandwana, N.K.; Dhiman, S.; Rangan, K.; Kumar, A. Sequential copper-catalyzed Sonogashira coupling, hydroamination and palladium-catalyzed intramolecular direct arylation: synthesis of azepino-fused isoindolinones. Eur. J. Org. Chem., 2017, (48), 7277-7282.
[http://dx.doi.org/10.1002/ejoc.201701379]
[174]
Sharif, S.A.; Calder, E.D.; Delolo, F.G.; Sutherland, A. Synthesis of 5-amino-2,5-dihydro-1H-benzo[b]azepines using a one-pot multibond forming process. J. Org. Chem., 2016, 81(15), 6697-6706.
[http://dx.doi.org/10.1021/acs.joc.6b01357] [PMID: 27414232]
[175]
Mariampillai, B.; Alberico, D.; Bidau, V.; Lautens, M. Synthesis of polycyclic benzonitriles via a one-pot aryl alkylation/cyanation reaction. J. Am. Chem. Soc., 2006, 128(45), 14436-14437.
[http://dx.doi.org/10.1021/ja064742p] [PMID: 17090008]
[176]
Donets, P.A.; Van der Eycken, E.V. Efficient synthesis of the 3-benzazepine framework via intramolecular Heck reductive cyclization. Org. Lett., 2007, 9(16), 3017-3020.
[http://dx.doi.org/10.1021/ol071079g] [PMID: 17608431]
[177]
Declerck, V.; Ribière, P.; Nédellec, Y.; Allouchi, H.; Martinez, J.; Lamaty, F. A microwave-assisted Heck reaction in poly (ethylene glycol) for the synthesis of benzazepines. Eur. J. Org. Chem., 2007, 2007(1), 201-208.
[http://dx.doi.org/10.1002/ejoc.200600680]
[178]
Riva, R.; Banfi, L.; Basso, A.; Cerulli, V.; Guanti, G.; Pani, M. A highly convergent synthesis of tricyclic N-heterocycles coupling an Ugi reaction with a tandem SN2′-Heck double cyclization. J. Org. Chem., 2010, 75(15), 5134-5143.
[http://dx.doi.org/10.1021/jo100859y] [PMID: 20575586]
[179]
Santagada, V.; Perissutti, E.; Fiorino, F.; Vivenzio, B.; Caliendo, G. Microwave enhanced solution synthesis of 1, 4-benzodiazepin-5-ones. Tetrahedron Lett., 2001, 42(12), 2397-2400.
[http://dx.doi.org/10.1016/S0040-4039(01)00155-1]
[180]
Neochoritis, C.G.; Tsoleridis, C.A.; Stephanidou-Stephanatou, J.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. 1,5-Benzoxazepines vs 1,5-benzo-diazepines. One-pot microwave-assisted synthesis and evaluation for antioxidant activity and lipid peroxidation inhibition. J. Med. Chem., 2010, 53(23), 8409-8420.
[http://dx.doi.org/10.1021/jm100739n] [PMID: 21049954]
[181]
Liu, J.F.; Kaselj, M.; Isome, Y.; Chapnick, J.; Zhang, B.; Bi, G.; Yohannes, D.; Yu, L.; Baldino, C.M. Microwave-assisted concise total syntheses of quinazolinobenzodiazepine alkaloids. J. Org. Chem., 2005, 70(25), 10488-10493.
[http://dx.doi.org/10.1021/jo051876x] [PMID: 16323862]
[182]
Tu, S.J.; Cao, X.D.; Hao, W.J.; Zhang, X.H.; Yan, S.; Wu, S.S.; Han, Z.G.; Shi, F. An efficient and chemoselective synthesis of benzo[e][1,4]thiazepin-2(1H,3H,5H)-ones via a microwave-assisted multi-component reaction in water. Org. Biomol. Chem., 2009, 7(3), 557-563.
[http://dx.doi.org/10.1039/b815879g] [PMID: 19156323]
[183]
Zhou, H.; Zhang, W.; Yan, B. Use of cyclohexylisocyanide and methyl 2-isocyanoacetate as convertible isocyanides for microwave-assisted fluorous synthesis of 1,4-benzodiazepine-2,5-dione library. J. Comb. Chem., 2010, 12(1), 206-214.
[http://dx.doi.org/10.1021/cc900157w] [PMID: 19947585]
[184]
An, X.D.; Duan, K.; Li, X.J.; Yang, J.M.; Lu, Y.N.; Liu, Q.; Xiao, J. Synthesis of tetrahydro[1,3,4]triazepines via redox-neutral α-C(sp3)-H amination of cyclic amines. J. Org. Chem., 2019, 84(18), 11839-11847.
[http://dx.doi.org/10.1021/acs.joc.9b01703] [PMID: 31433189]
[185]
Hu, T.; Ye, Z.; Zhu, K.; Xu, K.; Wu, Y.; Zhang, F. Synthesis of tribenzo[b,d,f]azepines via cascade π-extended decarboxylative annulation involving cyclic diaryliodonium salts. Org. Lett., 2020, 22(2), 505-509.
[http://dx.doi.org/10.1021/acs.orglett.9b04269] [PMID: 31904242]
[186]
Yu, Y.; Ma, L.; Xia, J.; Xin, L.; Zhu, L.; Huang, X. A modular approach to dibenzo-fused ε-lactams: palladium carbene bridging CH activation and its synthetic application. Angew. Chem., 2020, 59(41), 18261-18266.
[http://dx.doi.org/10.1002/anie.202007799] [PMID: 32619036]
[187]
Prasad, S.S.; Joshi, D.R.; Lee, J.H.; Kim, I. One-pot access to 2-amino-3-arylbenzofurans: direct entry to polyheterocyclic chemical space. Org. Biomol. Chem., 2020, 18(40), 8119-8140.
[http://dx.doi.org/10.1039/D0OB01715A] [PMID: 33016294]
[188]
Zuo, Z.; Liu, J.; Nan, J.; Fan, L.; Sun, W.; Wang, Y.; Luan, X. Highly stereoselective synthesis of imine-containing dibenzo[b,d]azepines by a palladium(II)-catalyzed [5+2] oxidative annulation of o-arylanilines with alkynes. Angew. Chem. Int. Ed. Engl., 2015, 54(51), 15385-15389.
[http://dx.doi.org/10.1002/anie.201508850] [PMID: 26768530]
[189]
Bai, L.; Wang, Y.; Ge, Y.; Liu, J.; Luan, X. Diastereoselective synthesis of dibenzo[b,d]azepines by Pd(II)-catalyzed [5 + 2] annulation of o-arylanilines with dienes. Org. Lett., 2017, 19(7), 1734-1737.
[http://dx.doi.org/10.1021/acs.orglett.7b00503] [PMID: 28294624]
[190]
Bai, P.; Huang, X.F.; Xu, G.D.; Huang, Z.Z. Cascade C-H functionalization/amidation reaction for synthesis of azepinone derivatives. Org. Lett., 2016, 18(13), 3058-3061.
[http://dx.doi.org/10.1021/acs.orglett.6b01140] [PMID: 27308722]
[191]
Fitt, J.J.; Gschwend, H.W.; Hamdan, A.; Boyer, S.K.; Haider, H.M. Practical synthesis of 9-chloro-7-(o-fluorophenyl)-5H-dibenz [c, e] azepine. J. Org. Chem., 1982, 47(19), 3658-3660.
[http://dx.doi.org/10.1021/jo00140a013]
[192]
Weitzberg, M.; Abu-Shakra, E.; Azeb, A.; Aizenshtat, Z.; Blum, J. Syntheses and chemistry of some dibenz [c, e] azepines. J. Org. Chem., 1987, 52(4), 529-536.
[http://dx.doi.org/10.1021/jo00380a010]
[193]
Cullen, K.E.; Sharp, J.T. Reactions of diene-conjugated 1, 3-dipolar intermediates: a versatile and efficient route to dibenz [c, e] azepines via benzonitrile o-arylbenzyl ylides. J. Chem. Soc. Perkin Trans., 1993, 1(23), 2961-2967.
[http://dx.doi.org/10.1039/P19930002961]
[194]
France, S.P.; Aleku, G.A.; Sharma, M.; Mangas-Sanchez, J.; Howard, R.M.; Steflik, J.; Kumar, R.; Adams, R.W.; Slabu, I.; Crook, R.; Grogan, G.; Wallace, T.W.; Turner, N.J. Biocatalytic routes to enantiomerically enriched dibenz [c, e] azepines. Angew. Chem. Int. Ed. Engl., 2017, 56(49), 15589-15593.
[http://dx.doi.org/10.1002/anie.201708453] [PMID: 29024400]
[195]
Yang, T.; Guo, X.; Yin, Q.; Zhang, X. Intramolecular asymmetric reductive amination: synthesis of enantioenriched dibenz[c,e]azepines. Chem. Sci. (Camb.), 2018, 10(8), 2473-2477.
[http://dx.doi.org/10.1039/C8SC04482A] [PMID: 30881676]
[196]
(a)Kishi, A.; Moriyama, K.; Togo, H. Preparation of phenanthridines from ocyanobiaryls via addition of organic lithiums to nitriles and imino radical cyclization with iodine. J. Org. Chem., 2018, 83(18), 11080-11088.
[http://dx.doi.org/10.1021/acs.joc.8b01688] [PMID: 30117737]
(b)Omura, Y.; Tachi, Y.; Okada, K.; Kozaki, M. Synthesis and properties of nitrogen-containing pyrenes. J. Org. Chem., 2019, 84(4), 2032-2038.
[http://dx.doi.org/10.1021/acs.joc.8b02962] [PMID: 30649881]
cTnay, Y.L.; Chen, C.; Chua, Y.Y.; Zhang, L.; Chiba, S. Copper-catalyzed aerobic spirocyclization of biaryl-N-H-imines via 1,4-aminooxygenation of benzene rings. Org. Lett., 2012, 14(13), 3550-3553.
[http://dx.doi.org/10.1021/ol301583y] [PMID: 22702395]
(d)Chen, Y.F.; Hsieh, J.C. Synthesis of polysubstituted phenanthridines via ligand-free copper-catalyzed annulation. Org. Lett., 2014, 16(17), 4642-4645.
[http://dx.doi.org/10.1021/ol502237a] [PMID: 25144729]
[197]
(a)Vasiliev, I.A. Azaheterocycles, combinatory library, focused library, pharmaceutical composition and methods for the production thereof. World Patent WO 2007/117180A1, October 18;2007
(b)Dömling, A.; Hamon, L. Cyclic biphenyls, method for the production thereof, and their use as medicaments. World Patent WO 01/25212A2, January 10;2002
(c)Goh, Y-H.; Kim, G.; Kim, B.T. Heo. J.-N. A concise synthesis of 6, 7-dihydro-5H-dibenz [c, e] azepin-5-one. Heterocycles, 2010, 80, 669-677.
[http://dx.doi.org/10.3987/COM-09-S(S)65]
[198]
Postikova, S.; Sabbah, M.; Wightman, D.; Nguyen, I.T.; Sanselme, M.; Besson, T.; Brière, J.F.; Oudeyer, S.; Levacher, V. Developments in Meyers’ lactamization methodology: en route to bi(hetero)aryl structures with defined axial chirality. J. Org. Chem., 2013, 78(16), 8191-8197.
[http://dx.doi.org/10.1021/jo401259w] [PMID: 23919590]
[199]
Mehta, V.P.; Modha, S.G.; Ruijter, E.; Van Hecke, K.; Van Meervelt, L.; Pannecouque, C.; Balzarini, J.; Orru, R.V.; Van der Eycken, E. A microwave-assisted diastereoselective multicomponent reaction to access diben-zo[c,e]azepinones: synthesis and biological evaluation. J. Org. Chem., 2011, 76(8), 2828-2839.
[http://dx.doi.org/10.1021/jo200251q] [PMID: 21391618]
[200]
Goetz, A.E.; Garg, N.K. Regioselective reactions of 3,4-pyridynes enabled by the aryne distortion model. Nat. Chem., 2013, 5(1), 54-60.
[http://dx.doi.org/10.1038/nchem.1504] [PMID: 23247178]
[201]
Huang, A.; Feng, L.; Qiao, Z.; Yu, W.; Zheng, Q.; Ma, C. Synthesis of pyrrolobenzoxazepinones by CuI/L-proline-catalyzed intramolecular coupling reactions. Tetrahedron, 2013, 69(2), 642-646.
[http://dx.doi.org/10.1016/j.tet.2012.11.009]
[202]
Zhao, Y.; Dai, Q.; Chen, Z.; Zhang, Q.; Bai, Y.; Ma, C. One pot regioselective synthesis of a small library of dibenzo[b,f][1,4]thiazepin-11(10H)-ones via Smiles rearrangement. ACS Comb. Sci., 2013, 15(2), 130-134.
[http://dx.doi.org/10.1021/co300139s] [PMID: 23316731]
[203]
Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, H.M. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety. Arch. Pharm. (Weinheim), 2013, 346(10), 766-773.
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[204]
Lam, H.; Tsoung, J.; Lautens, M. Synthesis of pyridobenzazepines using a one-pot Rh/Pd-catalyzed process. J. Org. Chem., 2017, 82(12), 6089-6099.
[http://dx.doi.org/10.1021/acs.joc.7b00568] [PMID: 28537390]
[205]
Zhang, Y.; Zheng, L.; Yang, F.; Zhang, Z.; Dang, Q.; Bai, X. Substituent-directed reduction of cyclic aminals leading to two different heterocycles selectively: syntheses of functionalized nicotines and pyrido [2, 3-b] azepines. Tetrahedron, 2015, 71(13), 1930-1939.
[http://dx.doi.org/10.1016/j.tet.2015.02.025]
[206]
Hassan, M.M.; Othman, E.S.; Abass, M. Substituted quinolinones. 18. 3-Acetyl-4-methylthioquinolin-2 (1H)-one as useful synthon intermediate for synthesis of some new quinolinones. Res. Chem. Intermed., 2013, 39(3), 1209-1225.
[http://dx.doi.org/10.1007/s11164-012-0678-7]
[207]
Ibrahim, S.M.; Baraka, M.M.; El-Sabbagh, O.I.; Kothayer, H. Synthesis of new benzotriazepin-5 (2H)-one derivatives of expected antipsychotic activity. Med. Chem. Res., 2013, 22(3), 1488-1496.
[http://dx.doi.org/10.1007/s00044-012-0102-2]
[208]
Taher, A.T.; Mohammed, L.W. Synthesis of new 1,3,4-benzotriazepin-5-one derivatives and their biological evaluation as antitumor agents. Arch. Pharm. Res., 2013, 36(6), 684-693.
[http://dx.doi.org/10.1007/s12272-013-0081-y] [PMID: 23504247]
[209]
Zhou, X.; Huang, F.; Tang, C.; Zhuo, Q.; Chen, Z.; Zhang, H.; Xia, H. A missing member of conjugated N-heterocycles: realizing pyrido[1,2-α]azepine by reacting ruthenium alkenylcarbene complex with alkyne. Chem. Commun. (Camb.), 2018, 54(32), 4009-4012.
[http://dx.doi.org/10.1039/C8CC00758F] [PMID: 29617019]
[210]
Kroc, M.A.; Markiewicz, M.; Pace, W.H.; Wink, D.J.; Anderson, L.L. Catalyst-controlled cascade synthesis of bridged bicyclic tetrahydrobenz[b]azepine-4-ones. Chem. Commun. (Camb.), 2019, 55(16), 2309-2312.
[http://dx.doi.org/10.1039/C8CC10313E] [PMID: 30720032]
[211]
Dai, Z.; Zhu, J.; Wang, J.; Su, W.; Yang, F.; Zhou, Q. Phosphine-catalyzed chemoselective [4+3] cycloaddition of alminine esters and β′-acetoxy allenoates for divergent synthesis of azepines. Adv. Synth. Catal., 2019, 362(3), 545-551.
[http://dx.doi.org/10.1002/adsc.201901132]
[212]
He, M.; Chen, N.; Liu, L.; Zhu, Y.; Li, Q.; Li, H.; Lang, M.; Wang, J.; Peng, S. Synthesis of 3-azabicyclo[m.2.0] ring systems via a copper-catalyzed Cascade reaction of diazo compounds with 1,n-allenynes. J. Org. Chem., 2020, 85(6), 4418-4429.
[http://dx.doi.org/10.1021/acs.joc.0c00149] [PMID: 32091906]
[213]
Jiang, B.; Liu, J.X.; Wei, Y.; Shi, M. Nickel-catalyzed synthesis of benzo[ b]naphtho[1,2- d]azepine via intramolecular radical tandem cyclization of alkyl bromide-tethered alkylidenecyclopropanes. Org. Lett., 2018, 20(19), 6229-6233.
[http://dx.doi.org/10.1021/acs.orglett.8b02699] [PMID: 30251543]
[214]
Hu, W.; Teng, F.; Hu, H.; Luo, S.; Zhu, Q. Pd-catalyzed C(sp2)-H imidoylative annulation: a general approach to construct dibenzoox(di)azepines. J. Org. Chem., 2019, 84(10), 6524-6535.
[http://dx.doi.org/10.1021/acs.joc.9b00683] [PMID: 31050283]
[215]
Božinović, N.S.; Novaković, I.T.; Kostić-Rajačić, S.; Opsenica, I.; Šolaja, B.A. Synthesis and antimicrobial activity of azepine and thiepine derivatives. J. Serb. Chem. Soc., 2015, 80(7), 839-852.
[http://dx.doi.org/10.2298/JSC150116013B]
[216]
Dobrowolski, J.C.; Nguyen, D.H.; Fraser, B.H.; Bhadbhade, M.; Black, D.S.; Kumar, N. A general synthesis of 7-phenyl-7, 13-dihydro-8H-benzo [6, 7] azepino [3, 2-c] quinolin-8-ones. Synlett, 2019, 30(05), 567-572.
[http://dx.doi.org/10.1055/s-0037-1612106]
[217]
Han, J.; Xu, B.; Hammond, G.B. Highly efficient Cu(I)-catalyzed synthesis of N-heterocycles through a cyclization-triggered addition of alkynes. J. Am. Chem. Soc., 2010, 132(3), 916-917.
[http://dx.doi.org/10.1021/ja908883n] [PMID: 20041710]
[218]
Xu, T.; Yang, Q.; Li, D.; Dong, J.; Yu, Z.; Li, Y. Iron(III)-catalyzed cyclization of alkynyl aldehyde acetals: experimental and computational studies. Chemistry, 2010, 16(30), 9264-9272.
[http://dx.doi.org/10.1002/chem.201000686] [PMID: 20583061]
[219]
Li, X.; Wang, S.; Li, S.; Li, K.; Mo, X.; Liu, L.; Chang, W.; Li, J. Temperature-controlled divergent hydroamination cyclization [2+2]-cycloaddition Cascade reactions of homopropargylic amines with 2-butynedioates: direct access to pyrrolo- b-cyclobutene and dihydro-1H-azepines. J. Org. Chem., 2019, 84(3), 1288-1298.
[http://dx.doi.org/10.1021/acs.joc.8b02730] [PMID: 30618254]
[220]
Zhang, Y.F.; Duan, W.D.; Chen, J.; Hu, Y. Base-promoted Cascade reactions of 3-(1-alkynyl)chromones with pyridinium ylides to chromeno[2,3- d]azepine derivatives. J. Org. Chem., 2019, 84(7), 4467-4472.
[http://dx.doi.org/10.1021/acs.joc.8b03210] [PMID: 30843702]
[221]
Palimkar, S.S.; Lahoti, R.J.; Srinivasan, K.V. A novel one-pot three-component synthesis of 2, 4-disubstituted-3 H-benzo [b][1, 4] diazepines in water. Green Chem., 2007, 9(2), 146-152.
[http://dx.doi.org/10.1039/B610523H]
[222]
Zhou, M.B.; Song, R.J.; Li, J.H. Hexafluoroantimonic acid catalysis: formal [3+2+2] cycloaddition of aziridines with two alkynes. Angew. Chem. Int. Ed. Engl., 2014, 53(16), 4196-4199.
[http://dx.doi.org/10.1002/anie.201310944] [PMID: 24615956]
[223]
Li, T.; Xu, F.; Li, X.; Wang, C.; Wan, B. Ruthenium-catalyzed C-C bond cleavage of 2H-azirines: a formal [3+2+2] cycloaddition to fused azepine skeletons. Angew. Chem. Int. Ed. Engl., 2016, 55(8), 2861-2865.
[http://dx.doi.org/10.1002/anie.201510820] [PMID: 26800151]
[224]
Liu, S.; Yang, P.; Peng, S.; Zhu, C.; Cao, S.; Li, J.; Sun, J. Gold-catalyzed sequential annulations towards 3,4-fused bi/tri-cyclic furans involving a [3+2+2]-cycloaddition. Chem. Commun. (Camb.), 2017, 53(6), 1152-1155.
[http://dx.doi.org/10.1039/C6CC09154G] [PMID: 28054079]
[225]
Feng, J.J.; Lin, T.Y.; Zhu, C.Z.; Wang, H.; Wu, H.H.; Zhang, J. The divergent synthesis of nitrogen heterocycles by rhodium (I)-catalyzed intermolecular cycloadditions of vinyl aziridines and alkynes. J. Am. Chem. Soc., 2016, 138(7), 2178-2181.
[http://dx.doi.org/10.1021/jacs.6b00386] [PMID: 26859710]
[226]
Singh, D.; Ha, H.J. Metal-free aza-Claisen type ring expansion of vinyl aziridines: an expeditious synthesis of seven membered N-heterocycles. Org. Biomol. Chem., 2019, 17(12), 3093-3097.
[http://dx.doi.org/10.1039/C8OB03029D] [PMID: 30644494]
[227]
Hu, C.; Song, R.J.; Hu, M.; Yang, Y.; Li, J.H.; Luo, S. [5+2] Cycloaddition of 2-(2-Aminoethyl)oxiranes with alkynes via epoxide ring-opening: a facile access to azepines. Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10423-10426.
[http://dx.doi.org/10.1002/anie.201604679] [PMID: 27457771]
[228]
Montero-Campillo, M.M.; Cabaleiro-Lago, E.M.; Rodríguez-Otero, J. A density functional theory study of rhodium-catalyzed hetero-[5+2]-cycloaddition of cyclopropyl imine derivatives and alkynes. J. Phys. Chem. A, 2008, 112(38), 9068-9074.
[http://dx.doi.org/10.1021/jp803785e] [PMID: 18759418]
[229]
Zhou, M.B.; Pi, R.; Teng, F.; Li, Y.; Li, J.H. Ring-opening formal hetero-[5+2] cycloaddition of 1-tosyl-2,3-dihydro-1H-pyrroles with terminal alkynes: entry to 1-tosyl-2,3-dihydro 2,3-dihydro-1H-azepines. Chem. Commun. (Camb.), 2019, 55(75), 11295-11298.
[http://dx.doi.org/10.1039/C9CC05082E] [PMID: 31475996]
[230]
Ajarul, S.; Kayet, A.; Pati, T.K.; Maiti, D.K. A competitive and highly selective 7-, 6- and 5-annulation with 1,3-migration through C-H and N-H - alkyne coupling. Chem. Commun. (Camb.), 2020, 56(3), 474-477.
[http://dx.doi.org/10.1039/C9CC07360D] [PMID: 31829322]
[231]
Feng, J.J.; Lin, T.Y.; Wu, H.H.; Zhang, J. Modular access to the stereoisomers of fused bicyclic azepines: rhodium-catalyzed intramolecular stereospecific hetero-[5+2] cycloaddition of vinyl aziridines and alkenes. Angew. Chem. Int. Ed. Engl., 2015, 54(52), 15854-15858.
[http://dx.doi.org/10.1002/anie.201509185] [PMID: 26555739]
[232]
Zhu, C.Z.; Feng, J.J.; Zhang, J. Rhodium(I)-catalyzed intermolecular aza-[4+3] cycloaddition of vinyl aziridines and dienes: atom-economical synthesis of enantiomerically enriched functionalized azepines. Angew. Chem. Int. Ed. Engl., 2017, 56(5), 1351-1355.
[http://dx.doi.org/10.1002/anie.201609608] [PMID: 27966804]
[233]
Schultz, E; Lindsay, V; Sarpong, R Expedient synthesis of fused azepine derivatives using a sequential rhodium (II)-catalyzed cyclopropanation/1-aza-cope rearrangement of dienyltriazoles. Ange. Chem. Int. Ed., 2014, 53(37), 9904-9908.
[234]
Tian, Y.; Wang, Y.; Shang, H.; Xu, X.; Tang, Y. Rhodium(II)-catalyzed intramolecular formal [4 + 3] cycloadditions of dienyltriazoles: rapid access to fused 2,5-dihydroazepines. Org. Biomol. Chem., 2015, 13(2), 612-619.
[http://dx.doi.org/10.1039/C4OB01910E] [PMID: 25382173]
[235]
Shang, H.; Wang, Y.; Tian, Y.; Feng, J.; Tang, Y. The divergent synthesis of nitrogen heterocycles by rhodium(II)-catalyzed cycloadditions of 1-sulfonyl 1,2,3-triazoles with 1,3-dienes. Angew. Chem. Int. Ed. Engl., 2014, 53(22), 5662-5666.
[http://dx.doi.org/10.1002/anie.201400426] [PMID: 24729335]
[236]
Shapiro, N.D.; Toste, F.D. Synthesis of azepines by a gold-catalyzed intermolecular [4 + 3]-annulation. J. Am. Chem. Soc., 2008, 130(29), 9244-9245.
[http://dx.doi.org/10.1021/ja803890t] [PMID: 18576648]
[237]
Liu, H.; Li, X.; Chen, Z.; Hu, W.X. Azepine synthesis from alkyl azide and propargylic ester via gold catalysis. J. Org. Chem., 2012, 77(11), 5184-5190.
[http://dx.doi.org/10.1021/jo300667a] [PMID: 22582768]
[238]
Pan, G.A.; Li, Y.; Li, J.H. Metal-free decarboxylative annulation of N-arylacrylamides with vinyl acids to synthesize benzo [b] azepin-2-ones. Org. Chem. Front., 2020, 7(17), 2486-2491.
[http://dx.doi.org/10.1039/D0QO00651C]
[239]
Zhan, G.; Shi, M.L.; He, Q.; Du, W.; Chen, Y.C. [4+ 3] Cycloadditions with bromo-substituted Morita–Baylis–Hillman adducts of isatins and N-(ortho-chloromethyl) aryl amides. Org. Lett., 2015, 17(19), 4750-4753.
[http://dx.doi.org/10.1021/acs.orglett.5b02279] [PMID: 26359687]
[240]
Insuasty, B.; Orozco, F.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J. Microwave induced synthesis of novel 8,9-dihydro-7H-pyrimido[4,5-b][1,4]diazepines as potential antitumor agents. Eur. J. Med. Chem., 2008, 43(9), 1955-1962.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.005] [PMID: 18222571]
[241]
Fadda, A.A.; Elattar, K.M. Utility of enaminonitriles in heterocyclic synthesis: synthesis of some new azepine, azocine, and pyrroldione derivatives. J. Heterocycl. Chem., 2014, 51(6), 1697-1704.
[http://dx.doi.org/10.1002/jhet.1829]
[242]
Winter, D.K.; Drouin, A.; Lessard, J.; Spino, C. Photochemical rearrangement of N-chlorolactams: a route to N-heterocycles through concerted ring contraction. J. Org. Chem., 2010, 75(8), 2610-2618.
[http://dx.doi.org/10.1021/jo100181h] [PMID: 20230016]
[243]
Lattes, A.; Oliveros, E.; Riviere, M.; Belzeck, C.; Mostowicz, D.; Abramskj, W.; Piccinni-Leopardi, C.; Germain, G.; Van Meerssche, M. Photochemical and thermal rearrangement of oxaziridines. Experimental evidence in support of the stereoelectronic control theory. J. Am. Chem. Soc., 1982, 104(14), 3929-3934.
[http://dx.doi.org/10.1021/ja00378a024]
[244]
Aube, J.; Wang, Y.; Hammond, M.; Tanol, M.; Takusagawa, F.; Vander Velde, D. Synthetic aspects of an asymmetric nitrogen-insertion process: preparation of chiral, non-racemic caprolactams and valerolactams. Total synthesis of (-)-alloyohimbane. J. Am. Chem. Soc., 1990, 112(12), 4879-4891.
[http://dx.doi.org/10.1021/ja00168a038]
[245]
Aubé, J.; Hammond, M. Directed regiochemical control in the ring expansion reactions of a substituted trans-decalone. Tetrahedron Lett., 1990, 31(21), 2963-2966.
[http://dx.doi.org/10.1016/S0040-4039(00)88999-6]
[246]
Cadogan, J.I.; Marshall, R.; Smith, D.M.; Todd, M.J. Reduction of nitro-and nitroso-compounds by tervalent phosphorus reagents. Part VIII. Syntheses of benzimidazoles and anthranils. J. Chem. Soc. C, 1970, (18), 2441-2443.
[http://dx.doi.org/10.1039/j39700002441]
[247]
Cadogan, JI; Todd, MJ On the mechanism of reductive cyclisation of nitro-compounds by tervalent organophosphorus compounds. ChemComm., 1967, 1967(4), 178-179.
[http://dx.doi.org/10.1039/c19670000178]
[248]
Cadogan, J.I. Reduction of nitro-and nitroso-compounds by tervalent phosphorus reagents. Q. Rev. Chem. Soc., 1968, 22(2), 222-251.
[http://dx.doi.org/10.1039/qr9682200222]
[249]
Sundberg, R.J.; Adams, W.G.; Smith, R.H.; Blackburn, D.E. Photochemical deoxygenation of aromatic nitro compounds in triethyl phosphite. Tetrahedron Lett., 1968, 9(7), 777-781.
[http://dx.doi.org/10.1016/S0040-4039(01)98851-3]
[250]
Zeng, Y.; Smith, B.T.; Hershberger, J.; Aubé, J. Rearrangements of bicyclic nitrones to lactams: comparison of photochemical and modified Barton conditions. J. Org. Chem., 2003, 68(21), 8065-8067.
[http://dx.doi.org/10.1021/jo035004b] [PMID: 14535783]
[251]
Beall, L.S.; Padwa, A. An approach to the cephalotaxine ring skeleton using an ammonium ylide/Stevens [1, 2]-rearrangement. Tetrahedron Lett., 1998, 39(24), 4159-4162.
[http://dx.doi.org/10.1016/S0040-4039(98)00774-6]
[252]
Hu, X.Q.; Chen, J.R.; Gao, S.; Feng, B.; Lu, L.Q.; Xiao, W.J. [4+3] Cycloaddition of in situ generated azoalkenes with C,N-cyclic azomethine imines: efficient synthesis of tetrazepine derivatives. Chem. Commun. (Camb.), 2013, 49(72), 7905-7907.
[http://dx.doi.org/10.1039/c3cc43888k] [PMID: 23900647]
[253]
Pilli, R.A.; Ferreira de Oliveira, M.C. Recent progress in the chemistry of the Stemona alkaloids. Nat. Prod. Rep., 2000, 17(1), 117-127.
[http://dx.doi.org/10.1039/a902437i] [PMID: 10714902]
[254]
Booker-Milburn, K.I.; Hirst, P.; Charmant, J.P.; Taylor, L.H. A rapid stereocontrolled entry to the ABCD tetracyclic core of neotuberostemonine. Angew. Chem. Int. Ed. Engl., 2003, 42(14), 1642-1644.
[http://dx.doi.org/10.1002/anie.200250507] [PMID: 12698465]
[255]
Romeo, G.; Prezzavento, O.; Intagliata, S.; Pittalà, V.; Modica, M.N.; Marrazzo, A.; Turnaturi, R.; Parenti, C.; Chiechio, S.; Arena, E.; Campisi, A.; Sposito, G.; Salerno, L. Synthesis, in vitro and in vivo characterization of new benzoxazole and benzothiazole-based sigma receptor ligands. Eur. J. Med. Chem., 2019, 174, 226-235.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.056] [PMID: 31042618]
[256]
Bian, M.; Ma, K.; Mawjuda, H.; Yu, X.; Li, X.; Gao, H.; Zhou, Z.; Yi, W. Rhodium(III)-catalyzed chemoselective C-H functionalization of benzamides with methyleneoxetanones controlled by the solvent. Org. Biomol. Chem., 2019, 17(25), 6114-6118.
[http://dx.doi.org/10.1039/C9OB00645A] [PMID: 31066436]
[257]
Stockerl, S.; Danelzik, T.; Piekarski, D.G.; García Mancheño, O. Mild, metal-free oxidative ring-expansion approach for the synthesis of benzo[b]azepines. Org. Lett., 2019, 21(12), 4535-4539.
[http://dx.doi.org/10.1021/acs.orglett.9b01433] [PMID: 31184182]
[258]
Zubenko, A.A.; Morkovnik, A.S.; Divaeva, L.N.; Kartsev, V.G.; Anisimov, A.A.; Suponitsky, K.Y. Pyridine—azepine structural modification of 3, 4-dihydro-nor-isoharmine. Russ. J. Org., 2019, 55(1), 74-82.
[http://dx.doi.org/10.1134/S1070428019010081]
[259]
Pan, X.; Tao, L.; Ji, M.; Chen, X.; Liu, Z. Synthesis and cytotoxicity of novel imidazo[4,5-d]azepine compounds derived from marine natural product ceratamine A. Bioorg. Med. Chem. Lett., 2018, 28(5), 866-868.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.004] [PMID: 29433924]
[260]
Luan, L.B.; Song, Z.J.; Li, Z.M.; Wang, Q.R.; Wang, J.M. Synthesis of triazolodiazepinium salts: sequential [3+2] cycloaddition/rearrangement reaction of 1-aza-2-azoniaallenium cation intermediates generated from piperidin-4-ones. J. Org. Chem., 2018, 83(7), 3441-3452.
[http://dx.doi.org/10.1021/acs.joc.7b02742] [PMID: 29498285]
[261]
Wlodarczyk, N.; Gilleron, P.; Millet, R.; Houssin, R.; Hénichart, J.P. Synthesis of 1, 4-diazepin-5-ones under microwave irradiation and their reduction products. Tetrahedron Lett., 2007, 48(14), 2583-2586.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.021]
[262]
Vyas, V.K.; Bhanage, B.M. Asymmetric transfer hydrogenation of seven membered tricyclic ketones: N-substituted dibenzo [b, e] azepine-6, 11-dione driven by nonclassical CH/O interactions. Org. Chem. Front., 2016, 3(5), 614-619.
[http://dx.doi.org/10.1039/C6QO00036C]
[263]
Gini, A.; Mancheno, O.G. Mild radical oxidative sp3-carbon–hydrogen functionalization: innovative construction of isoxazoline and dibenz [b, f] oxepine/azepine derivatives. Synlett, 2016, 27(04), 526-539.
[http://dx.doi.org/10.1055/s-0035-1560908]
[264]
Mahmoud, M.R.; El-Azm, F.A. Synthesis and spectral study of novel benzopyrone and quinolinone derivatives. J. Chem. Res., 2013, 37(9), 535-541.
[http://dx.doi.org/10.3184/174751913X13738962423671]
[265]
Singh, R.; Parai, M.K.; Mondal, S.; Panda, G. Contiguous generation of quaternary and tertiary stereocenters: one-pot synthesis of chroman-fused S-proline-derived chiral oxazepinones. Synth. Commun., 2013, 43(2), 253-259.
[http://dx.doi.org/10.1080/00397911.2011.596301]
[266]
Rakhimova, E.B.; Ismagilov, R.A.; Zainullin, R.A.; Ibragimov, A.G.; Dzhemilev, U.M. New methods for the synthesis of α, ω-bis-1, 5, 3-dithiazepanes on the basis of aliphatic α, ω-diamines. Chem. Heterocycl. Compd., 2013, 49(8), 1237-1242.
[http://dx.doi.org/10.1007/s10593-013-1368-0]
[267]
Tolkunov, A.S.; Mazepa, A.V.; Palamarchuk, G.V.; Shishkin, O.V.; Sujkov, S.Y.; Bogza, S.L. Pictet–Spengler reaction in the synthesis of condensed benzodiazepines: synthesis of 11-hetaryl derivatives of 11, 12-dihydroquinazolino [3, 2-c][2, 3] benzodiazepin-14 (6H)-ones. Monatsh. Chem., 2017, 148(4), 695-701.
[http://dx.doi.org/10.1007/s00706-016-1861-0]
[268]
Ren, A.; Lang, B.; Lin, J.; Lu, P.; Wang, Y. 4-Diazoisochroman-3-imines: a class of metal carbene precursors for the synthesis of isochromene derivatives. J. Org. Chem., 2017, 82(20), 10953-10959.
[http://dx.doi.org/10.1021/acs.joc.7b01860] [PMID: 28952315]
[269]
Gerard, B.; Lee, M.D., IV; Dandapani, S.; Duvall, J.R.; Fitzgerald, M.E.; Kesavan, S.; Lowe, J.T.; Marié, J-C.; Pandya, B.A.; Suh, B-C.; O’Shea, M.W.; Dombrowski, M.; Hamann, D.; Lemercier, B.; Murillo, T.; Akella, L.B.; Foley, M.A.; Marcaurelle, L.A. Synthesis of stereochemically and skeletally diverse fused ring systems from functionalized C-glycosides. J. Org. Chem., 2013, 78(11), 5160-5171.
[http://dx.doi.org/10.1021/jo4000916] [PMID: 23692141]
[270]
Vamos, M.; Welsh, K.; Finlay, D.; Lee, P.S.; Mace, P.D.; Snipas, S.J.; Gonzalez, M.L.; Ganji, S.R.; Ardecky, R.J.; Riedl, S.J.; Salvesen, G.S.; Vuori, K.; Reed, J.C.; Cosford, N.D.P. Expedient synthesis of highly potent antagonists of inhibitor of apoptosis proteins (IAPs) with unique selectivity for ML-IAP. ACS Chem. Biol., 2013, 8(4), 725-732.
[http://dx.doi.org/10.1021/cb3005512] [PMID: 23323685]
[271]
Gharpure, S.J.; Prasad, J.V. Stereoselective synthesis of substituted 1, 4-oxazepanes by intramolecular reductive etherification. Eur. J. Org. Chem., 2013, 2013(11), 2076-2079.
[http://dx.doi.org/10.1002/ejoc.201300135]
[272]
Dell’Amico, L.; Companyo, X.; Naicker, T.; Bräuer, T.M.; Jørgensen, K.A. Asymmetric organocatalytic benzylation of α, β-unsaturated aldehydes with toluenes. Eur. J. Org. Chem., 2013, 2013(24), 5262-5265.
[http://dx.doi.org/10.1002/ejoc.201300899]
[273]
Stalling, T.; Saak, W.; Martens, J. Rearrangement in the synthesis of annulated lactams starting from benzothiazines. Eur. J. Org. Chem., 2013, 2013(28), 6291-6297.
[http://dx.doi.org/10.1002/ejoc.201300768]
[274]
Ouchakour, L.; Nonn, M.; D’hooghe, M.; Kiss, L. A de novo synthetic method to the access of N-substituted benzazepines. J. Fluor. Chem., 2020, 232.
[http://dx.doi.org/10.1016/j.jfluchem.2020.109466]
[275]
Batanero, B.; Barba, F.; Martin, A. One-pot formation of 1,3,4-oxadiazol-2(3H)-ones and dibenzo[c,e]azepines by concomitant cathodic reduction of diazonium salts and phenanthrenequinones. J. Org. Chem., 2013, 78(18), 9477-9481.
[http://dx.doi.org/10.1021/jo401264w] [PMID: 23957625]
[276]
Truong, P.M.; Mandler, M.D.; Zavalij, P.Y.; Doyle, M.P. Tetrahydroquinolines and benzazepines through catalytic diastereoselective formal [4 + 2]-cycloaddition reactions between donor-acceptor cyclopropenes and imines. Org. Lett., 2013, 15(13), 3278-3281.
[http://dx.doi.org/10.1021/ol401308d] [PMID: 23777207]
[277]
Wang, Y.; Jia, S.; Li, E.Q.; Duan, Z. Phosphine/palladium cooperative catalysis: (4 + 3) annulations of Morita-Baylis-Hillman carbonates and vinyl benzoxazinanones. J. Org. Chem., 2019, 84(23), 15323-15330.
[http://dx.doi.org/10.1021/acs.joc.9b02349] [PMID: 31696707]
[278]
Bosque, I.; Foubelo, F.; Gonzalez-Gomez, J.C. A general protocol to afford enantioenriched linear homoprenylic amines. Org. Biomol. Chem., 2013, 11(43), 7507-7515.
[http://dx.doi.org/10.1039/c3ob41804a] [PMID: 24084848]
[279]
Thiel, D.; Deska, J. On a chemoenzymatic desymmetrization–ring expansion strategy towards functionalized N-heterocycles. Synlett, 2013, 24(12), 1529-1532.
[http://dx.doi.org/10.1055/s-0033-1338960]
[280]
Nirmala, R.; Ponpandian, T.; Venkatraman, B.R.; Rajagopal, S. Nucleophilic behaviour of DBU towards imidazolides: one-pot synthesis of ε-caprolactam derived carbamates and amides. Tetrahedron Lett., 2013, 54(38), 5181-5184.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.056]
[281]
Acharya, A.; Eickhoff, J.A.; Jeffrey, C.S. Intramolecular aza-[4+ 3] cycloaddition reactions of α-halohydroxamates. Synthesis, 2013, 45(13), 1825-1836.
[http://dx.doi.org/10.1055/s-0033-1338883]
[282]
Kumar, H.V.; Gnanendra, C.R.; Naik, N. Synthesis of amino acid analogues of 5H-dibenz [b, f] azepine and evaluation of their radical scavenging activity. E-J. Chem., 2009, 6361490
[http://dx.doi.org/10.1155/2009/361490]
[283]
Rao, G.K.; Kaur, R.; Pai, P.S. Synthesis and biological evaluation of some dibenzazepine analogs. J. Chem. Pharm. Res., 2010, 2(1), 489-496.
[284]
Tian, M.; Abdelrahman, A.; Weinhausen, S.; Hinz, S.; Weyer, S.; Dosa, S.; El-Tayeb, A.; Müller, C.E. Carbamazepine derivatives with P2X4 receptor-blocking activity. Bioorg. Med. Chem., 2014, 22(3), 1077-1088.
[http://dx.doi.org/10.1016/j.bmc.2013.12.035] [PMID: 24411477]
[285]
Yang, Z.; Ding, Z.; Chen, F.; He, Y.M.; Yang, N.; Fan, Q.H. Asymmetric hydrogenation of cyclic imines of benzoazepines and benzodiazepines with chiral, cationic ruthenium–diamine catalysts. Eur. J. Org. Chem., 2017, (14), 1973-1977.
[http://dx.doi.org/10.1002/ejoc.201700236]
[286]
Cowan, D.J.; Collins, J.L.; Mitchell, M.B.; Ray, J.A.; Sutton, P.W.; Sarjeant, A.A.; Boros, E.E. Enzymatic- and iridium-catalyzed asymmetric synthesis of a benzothiazepinylphosphonate bile acid transporter inhibitor. J. Org. Chem., 2013, 78(24), 12726-12734.
[http://dx.doi.org/10.1021/jo402311e] [PMID: 24256447]
[287]
Banfi, L.; Bagno, A.; Basso, A.; De Santis, C.; Riva, R.; Rastrelli, F. Long-range diastereoselectivity in an Ugi reaction: stereocontrolled and diversity-oriented synthesis of tetrahydrobenzoxazepines. Eur. J. Org. Chem., 2013, 2013(23), 5064-5075.
[http://dx.doi.org/10.1002/ejoc.201300541]
[288]
Dragan, V.; McWilliams, J.C.; Miller, R.; Sutherland, K.; Dillon, J.L.; O’Brien, M.K. Asymmetric synthesis of vabicaserin via oxidative multicomponent annulation and asymmetric hydrogenation of a 3,4-substituted quinolinium salt. Org. Lett., 2013, 15(12), 2942-2945.
[http://dx.doi.org/10.1021/ol401029k] [PMID: 23751116]
[289]
Dinda, B.K.; Jana, A.K.; Mal, D. Anionic [4+3] heteroannulation of 2-azidoacrylates: a modular synthesis of 2-benzazepin-1-ones. Chem. Commun. (Camb.), 2012, 48(33), 3999-4001.
[http://dx.doi.org/10.1039/c2cc30279a] [PMID: 22422297]
[290]
Acosta Quintero, L.M.; Palma, A.; Choquesillo-Lazarte, D.; Cobo, J.; Glidewell, C. Monoclinic and orthorhombic forms of (RS)-(E)-4-[2-(4-chloroben-zylidene)hydrazinyl]-6,11-dimethyl-6,11-dihydro-5H-benzo[b]pyrimido[5,4-f]azepine: synthesis, concomitant polymorphism and supramolecular assembly mediated by C-H...N, C-H...π(arene) and C-Cl...π(arene) interactions. Acta Crystallogr. C Struct. Chem., 2019, 75(Pt 6), 686-693.
[http://dx.doi.org/10.1107/S205322961900617X] [PMID: 31166920]
[291]
Yin, C.; Yang, T.; Pan, Y.; Wen, J.; Zhang, X. h-catalyzed asymmetric hydrogenation of unsaturated medium-ring nh lactams: highly enantioselective synthesis of N-unprotected 2,3-dihydro-1,5-benzothiazepinones. Org. Lett., 2020, 22(3), 920-923.
[http://dx.doi.org/10.1021/acs.orglett.9b04478] [PMID: 31916777]