Recent Advancements in Fuzzy C-means Based Techniques for Brain MRI Segmentation

Page: [917 - 930] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques.

Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers.

Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging.

Conclusion: In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.

Keywords: FCM, brain MRI, brain tumor, fuzzy C-Means, tumor segmentation, magnetic resonance imaging.

Graphical Abstract

[1]
Nachimuthu DS, Baladhandapani A. Multidimensional texture characterization: on analysis for brain tumor tissues using MRS and MRI. J Digit Imaging 2014; 27(4): 496-506.
[http://dx.doi.org/10.1007/s10278-013-9669-5] [PMID: 24496552]
[2]
Latif G, Iskandar DA, Alghazo J, Jaffar A. Improving brain MR image classification for tumor segmentation using phase congruency. Curr Med Imaging 2018; 14(6): 914-22.
[http://dx.doi.org/10.2174/1573405614666180402150218]
[3]
Gu X, Knutsson H, Nilsson M, Eklund A. Generating diffusion MRI scalar maps from T1 weighted images using generative adversarial networks. Scandinavian Conference on Image Analysis. 489-98.
[http://dx.doi.org/10.1007/978-3-030-20205-7_40]
[4]
Latif G, Iskandar DA, Alghazo J, Butt M, Khan AH. Deep CNN based MR image denoising for tumor segmentation using watershed transform. Int J Eng Technol 2018; 7(2): 37-42.
[http://dx.doi.org/10.14419/ijet.v7i2.3.9964]
[5]
Gurusamy R, Subramaniam V. A machine learning approach for MRI brain tumor classification. Comput Mater Continua 2017; 53(2): 91-108.
[6]
Jaffar MA, Zia S, Latif G, et al. Anisotropic diffusion based brain MRI segmentation and 3D reconstruction. Int J Comput Intell Syst 2012; 5(3): 494-504.
[http://dx.doi.org/10.1080/18756891.2012.696913]
[7]
Latif G, Iskandar DA, Jaffar A, Butt MM. Multimodal brain tumor segmentation using neighboring image features. J Telecomm Electron Comput Eng 2017; 9(2-9): 37-42.
[8]
Lawrence GP, Tivas C, Wayte S, Multislice CT. Imaging with x-ray, MRI and ultrasound. Walter and Miller's Textbook of Radiotherapy E-book: Radiation Physics, Therapy and Oncology 2012.
[9]
Balafar MA. Fuzzy C-mean based brain MRI segmentation algorithms. Artif Intell Rev 2014; 41(3): 441-9.
[http://dx.doi.org/10.1007/s10462-012-9318-2]
[10]
Latif G, Awang Iskandar DNF, Alghazo J. Multiclass brain tumor classification using region growing based tumor segmentation and ensemble wavelet features. Proceedings of the 2018 International Conference on Computing and Big Data. 67-72.
[11]
Choudhry MS, Kapoor R. Performance analysis of fuzzy C-means clustering methods for MRI image segmentation. Procedia Comput Sci 2016; 89: 749-58.
[http://dx.doi.org/10.1016/j.procs.2016.06.052]
[12]
Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy c-means clustering algorithm. Comput Geosci 1984; 10(2-3): 191-203.
[http://dx.doi.org/10.1016/0098-3004(84)90020-7]
[13]
Jawer MA. The spiritual anatomy of emotion: How feelings link the brain, the body, and the sixth sense. Simon and Schuster 2009.
[14]
Nowinski WL. Introduction to brain anatomy: Biomechanics of the Brain. New York, NY: Springer 2011; pp. 5-40.
[15]
Sajjad M, Khan S, Muhammad K, Wu W, Ullah A, Baik SW. Multi-grade brain tumor classification using deep CNN with extensive data augmentation. J Comput Sci 2019; 30: 174-82.
[http://dx.doi.org/10.1016/j.jocs.2018.12.003]
[16]
Latif G, Butt MM, Khan AH, Butt O, Iskandar DA. Multiclass brain Glioma tumor classification using block-based 3D Wavelet features of MR images. 2017 4th International Conference on Electrical and Electronic Engineering (ICEEE). In: IEEE; 2017; pp. 333-7.
[17]
Walker EJ, Zhang C, Castelo-Branco P, et al. Monoallelic expression determines oncogenic progression and outcome in benign and malignant brain tumors. Cancer Res 2012; 72(3): 636-44.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2266] [PMID: 22144470]
[18]
Qurat-Ul-Ain GL, Kazmi SB, Jaffar MA, Mirza AM. Classification and segmentation of brain tumor using texture analysis. AIKED'10: Proceedings of the 9th WSEAS international conference on artificial intelligence, knowledge engineering and data bases 2010; 147-55.
[19]
Soher BJ, Wyatt C, Reeder SB, MacFall JR. Noninvasive temperature mapping with MRI using chemical shift water-fat separation. Magn Reson Med 2010; 63(5): 1238-46.
[http://dx.doi.org/10.1002/mrm.22310] [PMID: 20432295]
[20]
Lammertyn J, Dresselaers T, Van Hecke P, Jancsók P, Wevers M, Nicolaï BM. MRI and x-ray CT study of spatial distribution of core breakdown in ‘Conference’ pears. Magn Reson Imaging 2003; 21(7): 805-15.
[http://dx.doi.org/10.1016/S0730-725X(03)00105-X] [PMID: 14559346]
[21]
Baudrexel S, Nürnberger L, Rüb U, et al. Quantitative mapping of T1 and T2* discloses nigral and brainstem pathology in early Parkinson’s disease. Neuroimage 2010; 51(2): 512-20.
[http://dx.doi.org/10.1016/j.neuroimage.2010.03.005] [PMID: 20211271]
[22]
Latif G, Butt MM, Khan AH, Butt MO, Al-Asad JF. Automatic Multimodal Brain Image Classification Using MLP and 3D Glioma Tumor Reconstruction. 2017 9th IEEE-GCC Conference and Exhibition (GCCCE). In: IEEE; 2017; pp. 1-9.
[23]
Sheela CJ, Suganthi G. Automatic brain tumor segmentation from MRI using greedy snake model and fuzzy C-means optimization. J King Saud Univ Comput Inf Sci 2019. In press.
[24]
Ilhan U, Ilhan A. Brain tumor segmentation based on a new threshold approach. Procedia Comput Sci 2017; 120: 580-7.
[http://dx.doi.org/10.1016/j.procs.2017.11.282]
[25]
Kaur T, Saini BS, Gupta S. Optimized multi threshold brain tumor image segmentation using two dimensional minimum cross entropy based on co-occurrence matrix.Medical imaging in clinical applications. Cham: Springer 2016; pp. 461-86.
[26]
Laddha RR, Ladhake SA. A review on brain tumor detection using segmentation and threshold operations. Int J Comput Sci Inform Technol 2014; 5(1): 607-11.
[27]
Abdulbaqi HS, Mat MZ, Omar AF, Mustafa IS, Abood LK. Detecting brain tumor in magnetic resonance images using hidden markov random fields and threshold techniques. 2014 IEEE Student Conference on Research and Development. In: IEEE; 2014; pp. 1-5.
[http://dx.doi.org/10.1109/SCORED.2014.7072963]
[28]
Aslam A, Khan E, Beg MM. Improved edge detection algorithm for brain tumor segmentation. Procedia Comput Sci 2015; 58: 430-7.
[http://dx.doi.org/10.1016/j.procs.2015.08.057]
[29]
Işın A, Direkoğlu C, Şah M. Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 2016; 102: 317-24.
[http://dx.doi.org/10.1016/j.procs.2016.09.407]
[30]
Charutha S, Jayashree MJ. An efficient brain tumor detection by integrating modified texture based region growing and cellular automata edge detection. 2014 International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). 1193-9.
[http://dx.doi.org/10.1109/ICCICCT.2014.6993142]
[31]
Hasan AM, Meziane F, Aspin R, Jalab HA. Segmentation of brain tumors in MRI images using three-dimensional active contour without edge. Symmetry (Basel) 2016; 8(11): 132.
[http://dx.doi.org/10.3390/sym8110132]
[32]
Ilunga-Mbuyamba E, Avina-Cervantes JG, Cepeda-Negrete J, Ibarra-Manzano MA, Chalopin C. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation. Comput Biol Med 2017; 91: 69-79.
[http://dx.doi.org/10.1016/j.compbiomed.2017.10.003] [PMID: 29049909]
[33]
Hooda H, Verma OP, Singhal T. Brain tumor segmentation: A performance analysis using K-Means, Fuzzy C-Means and Region growing algorithm. 2014 IEEE International Conference on Advanced Communications, Control and Computing Technologies. In: IEEE; 2014; pp. 1621-6.
[34]
Zabir I, Paul S, Rayhan MA, Sarker T, Fattah SA, Shahnaz C. Automatic brain tumor detection and segmentation from multi-modal MRI images based on region growing and level set evolution. 2015 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). 503-6.
[http://dx.doi.org/10.1109/WIECON-ECE.2015.7443979]
[35]
Abdel-Maksoud E, Elmogy M, Al-Awadi R. Brain tumor segmentation based on a hybrid clustering technique. Egypt Inform J 2015; 16(1): 71-81.
[http://dx.doi.org/10.1016/j.eij.2015.01.003]
[36]
Jose A, Ravi S, Sambath M. Brain tumor segmentation using k-means clustering and fuzzy c-means algorithms and its area calculation. Int J Innov Res Comput Commun Eng 2014; 2(3): 3496-501.
[37]
Ain Q, Jaffar MA, Choi TS. Fuzzy anisotropic diffusion based segmentation and texture based ensemble classification of brain tumor. Appl Soft Comput 2014; 21: 330-40.
[38]
Latif G, Iskandar DA, Alghazo JM, Mohammad N. Enhanced MR image classification using hybrid statistical and wavelets features. IEEE Access 2018; 7: 9634-44.
[http://dx.doi.org/10.1109/ACCESS.2018.2888488]
[39]
Havaei M, Davy A, Warde-Farley D, et al. Brain tumor segmentation with deep neural networks. Med Image Anal 2017; 35: 18-31.
[http://dx.doi.org/10.1016/j.media.2016.05.004] [PMID: 27310171]
[40]
Latif G, Iskandar DN, Alghazo J, Butt MM. Brain MR image classification for glioma tumor detection using deep convolutional neural network features. Curr Med Imaging 2021; 17(1): 56-63.
[http://dx.doi.org/10.2174/1573405616666200311122429]
[41]
Menze BH, Jakab A, Bauer S, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2015; 34(10): 1993-2024.
[http://dx.doi.org/10.1109/TMI.2014.2377694] [PMID: 25494501]
[42]
Bal A, Banerjee M, Sharma P, Maitra M. Brain tumor segmentation on MR image using k-means and fuzzy-possibilistic clustering. 2018 2nd International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech). In: IEEE; 2018; pp. 1-8.
[http://dx.doi.org/10.1109/IEMENTECH.2018.8465390]
[43]
Dunn JC. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 1973; 3(3): 32-57.
[http://dx.doi.org/10.1080/01969727308546046]
[44]
Bezdek JC. A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans Pattern Anal Mach Intell 1980; 2(1): 1-8.
[http://dx.doi.org/10.1109/TPAMI.1980.4766964] [PMID: 22499617]
[45]
Bezdek JC, Hall LO, Clarke LP. Review of MR image segmentation techniques using pattern recognition. Med Phys 1993; 20(4): 1033-48.
[http://dx.doi.org/10.1118/1.597000] [PMID: 8413011]
[46]
Pham D, Prince JL, Xu C, Dagher AP. An automated technique for statistical characterization of brain tissues in magnetic resonance imaging. Int J Pattern Recognit Artif Intell 1997; 11(08): 1189-211.
[http://dx.doi.org/10.1142/S021800149700055X]
[47]
Xu C, Pham DL, Prince JL. Finding the brain cortex using fuzzy segmentation, isosurfaces, and deformable surface models. Biennial International Conference on Information Processing in Medical Imaging. 399-404.
[http://dx.doi.org/10.1007/3-540-63046-5_33]
[48]
Pham DL, Prince JL. Adaptive fuzzy c-means algorithm for image segmentation in the presence of intensity inhomogeneities. Int Soc Optics Photonics 1998; 3338: 555-63.
[http://dx.doi.org/10.1117/12.310864]
[49]
Dunn JC. A fuzzy relative of the ISODATA process and its use in detecting compact well-separatedclusters. J Cybern 1973; 3(3): 32-57.
[http://dx.doi.org/10.1080/01969727308546046]
[50]
Ahmed MN, Yamany SM, Mohamed N, Farag AA, Moriarty T. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans Med Imaging 2002; 21(3): 193-9.
[http://dx.doi.org/10.1109/42.996338] [PMID: 11989844]
[51]
Ahmed MN, Yamany SM, Farag AA, Moriarty T. Bias field estimation and adaptive segmentation of MRI data using a modified fuzzy C-means algorithm. ProceedingsIEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat No PR00149). In: IEEE; 1999; pp. 1: 250-5.
[52]
Szilagyi L, Benyo Z, Szilágyi SM, Adam HS. MR brain image segmentation using an enhanced fuzzy c-means algorithm. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat No 03CH37439). In: IEEE; 2003; pp. 1: 724-6.
[http://dx.doi.org/10.1109/IEMBS.2003.1279866]
[53]
Zhang DQ, Chen SC. A novel kernelized fuzzy C-means algorithm with application in medical image segmentation. Artif Intell Med 2004; 32(1): 37-50.
[http://dx.doi.org/10.1016/j.artmed.2004.01.012] [PMID: 15350623]
[54]
Pham DL. Fuzzy clustering with spatial constraints. International Conference on Image Processing. Vol. 2: II-I.
[55]
Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods 2000.
[http://dx.doi.org/10.1017/CBO9780511801389]
[56]
Schölkopf B, Smola A, Müller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 1998; 10(5): 1299-319.
[http://dx.doi.org/10.1162/089976698300017467]
[57]
Roth V, Steinhage V. Nonlinear discriminant analysis using kernel functions. Adv Neural Inform Process Systems 2000; 2000: 568-74.
[58]
Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 2001; 12(2): 181-201.
[http://dx.doi.org/10.1109/72.914517] [PMID: 18244377]
[59]
Pal NR, Pal K, Keller JM, Bezdek JC. A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 2005; 13(4): 517-30.
[http://dx.doi.org/10.1109/TFUZZ.2004.840099]
[60]
Krishnapuram R, Keller JM. A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1993; 1(2): 98-110.
[http://dx.doi.org/10.1109/91.227387]
[61]
Pal NR, Pal K, Bezdek JC. A mixed c-means clustering model. Proceedings of 6th international fuzzy systems conference. In: IEEE. 1997; 1: pp. 11-21.
[http://dx.doi.org/10.1109/FUZZY.1997.616338]
[62]
Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ. Fuzzy c-means clustering with spatial information for image segmentation. Comput Medical Imaging Graph 2006; 30(1): 9-15.
[63]
Sreerangappa M, Suresh M, Jayadevappa D. Segmentation of brain tumor and performance evaluation using spatial FCM and level set evolution. Open Biomed Eng J 2019; 13(1): 134-41.
[http://dx.doi.org/10.2174/1874120701913010134]
[64]
Cai W, Chen S, Zhang D. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit 2007; 40(3): 825-38.
[http://dx.doi.org/10.1016/j.patcog.2006.07.011]
[65]
Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern B Cybern 2004; 34(4): 1907-16.
[http://dx.doi.org/10.1109/TSMCB.2004.831165] [PMID: 15462455]
[66]
Hu YM, Yu MQ, Du J. An improved image segmentation approach using FGFCM with an edges-based neighbor selection strategy and PSO. 2017 36th Chinese Control Conference (CCC). In: IEEE. 2017; pp. 10951-5.
[http://dx.doi.org/10.23919/ChiCC.2017.8029104]
[67]
Vasuda P, Satheesh S. Improved fuzzy C-means algorithm for MR brain image segmentation. Int J Comput Sci Eng 1713; 2(5): 2010.
[68]
Selvathi D, Anitha J. Effective fuzzy clustering algorithm for abnormal MR brain image segmentation. 2009 IEEE International Advance Computing Conference. In: IEEE; 2009; pp. 609-14.
[69]
Yin M, Guo J, Chen Y, Mu Y. Application of Improved FCM Algorithm in Brain Image Segmentation. International Conference in Communications, Signal Processing, and Systems. 28-36.
[70]
Krinidis S, Chatzis V. A robust fuzzy local information C-Means clustering algorithm. IEEE Trans Image Process 2010; 19(5): 1328-37.
[http://dx.doi.org/10.1109/TIP.2010.2040763] [PMID: 20089475]
[71]
Hu C, Liu X, Liang X, Hui H, Yang X, Tian J. Brain vascular image segmentation based on fuzzy local information C-means clustering. Proceedings Volume 10068, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV; 100680Q (2017).
[72]
Mekhmoukh A, Mokrani K. MR brain image segmentation using an improved kernel fuzzy local information c-means based wavelet, particle swarm optimization (PSO) initialization and outlier rejection with level set methods. Int Arab J Inf Technol 2018; 15(4): 683-92.
[73]
Kannan SR, Ramathilagam S, Devi R, Sathya A. Robust kernel FCM in segmentation of breast medical images. Expert Syst Appl 2011; 38(4): 4382-9.
[http://dx.doi.org/10.1016/j.eswa.2010.09.107]
[74]
Li BN, Chui CK, Chang S, Ong SH. Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 2011; 41(1): 1-10.
[http://dx.doi.org/10.1016/j.compbiomed.2010.10.007] [PMID: 21074756]
[75]
Li BN, Chui CK, Ong SH, Chang S. Integrating FCM and level sets for liver tumor segmentation. 13th International Conference on Biomedical Engineering. 202-5. IFMBE Proceedings, vol. 23. Springer, Berlin, Heidelberg.
[http://dx.doi.org/10.1007/978-3-540-92841-6_49]
[76]
Suri JS, Liu K, Singh S, Laxminarayan SN, Zeng X, Reden L. Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans Inf Technol Biomed 2002; 6(1): 8-28.
[http://dx.doi.org/10.1109/4233.992158] [PMID: 11936600]
[77]
Ho S, Bullitt E, Gerig G. Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. Object recognition supported by user interaction for service robots 2002; 1: 532-5.
[78]
Aljahdali S, Zanaty EA. Automatic fuzzy algorithms for reliable image segmentation. Int J Comput Appl 2012; 19(3): 166-75.
[79]
El-Melegy M, Zanaty EA, Abd-Elhafiez WM, Farag A. On cluster validity indexes in fuzzy and hard clustering algorithms for image segmentation. 2007 IEEE International Conference on Image Processing. In: IEEE. 2007; 16.
[http://dx.doi.org/10.1109/ICIP.2007.4379507]
[80]
Li Y, Gao Z, Liu X. An automatic fuzzy clustering segmentation algorithm with aid of set partitioning. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). In: IEEE. 2017; pp. 647-52.
[http://dx.doi.org/10.1109/INDIN.2017.8104848]
[81]
Izakian H, Abraham A. Fuzzy C-means and fuzzy swarm for fuzzy clustering problem. Expert Syst Appl 2011; 38(3): 1835-8.
[http://dx.doi.org/10.1016/j.eswa.2010.07.112]
[82]
Alam S, Dobbie G, Koh YS, Riddle P, Rehman SU. Research on particle swarm optimization based clustering: a systematic review of literature and techniques. Swarm Evol Comput 2014; 17: 1-3.
[http://dx.doi.org/10.1016/j.swevo.2014.02.001]
[83]
Zhang Y, Xiong X, Zhang Q. An improved self-adaptive PSO algorithm with detection function for multimodal function optimization problems. Math Problems Eng 2013; 2013: Article ID 716952.
[http://dx.doi.org/10.1155/2013/716952]
[84]
Pang W, Wang KP, Zhou CG, Dong LJ. Fuzzy discrete particle swarm optimization for solving traveling salesman problem. The Fourth International Conference onComputer and Information Technology CIT'04. In: IEEE; 2004; pp. 796-800.
[85]
Niu Q, Huang X. An improved fuzzy C-means clustering algorithm based on PSO. JSW 2011; 6(5): 873-9.
[http://dx.doi.org/10.4304/jsw.6.5.873-879]
[86]
Silva Filho TM, Pimentel BA, Souza RM, Oliveira AL. Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization. Expert Syst Appl 2015; 42(17-18): 6315-28.
[http://dx.doi.org/10.1016/j.eswa.2015.04.032]
[87]
Zhang J, Ma Z. Hybrid fuzzy clustering method based on FCM and enhanced logarithmical PSO (ELPSO). Comput Intell Neurosci 2020; 2020: 1386839.
[88]
Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Swarm Intell 2007; 1(1): 33-57.
[http://dx.doi.org/10.1007/s11721-007-0002-0]