[13]
Feng, Y.; Wang, F.; Yang, Z.; Wang, J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 46, 5.
[20]
Han, S.; Wu, D.; Li, S.; Zhang, F.; Feng, X. Graphene: A two-dimensional platform for lithium storage. In: Small (Weinheim an der Bergstrasse, Germany); , 2013; p. 1.
[30]
Karbhal, I.; Devarapalli, R.R.; Debgupta, J.; Pillai, V.K.; Ajayan, P.M.; Shelke, M.V. Facile green synthesis of BCN nanosheets as high-performance electrode material for electrochemical energy storage. Chemistry, 2016, 22(21), 7134-7140.
[40]
Anastas, P.T.; Zimmerman, J.B. Peer reviewed: design through the 12 principles of green engineering; ACS Publications, 2003.
[43]
Vázquez Sánchez, A.; Ávila Zárraga, J.G. Green oxidation of organic compounds: Manganese Sulphate/Oxone®/Water. J. Mex. Chem. Soc., 2007, 51(4), 213-216.
[55]
Zhu, C. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4(4), 2429-2437.
[56]
Zhu, C.; Fang, Y.; Dong, S. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets. ACS Nano, 2010, 4(4), 2429-2437.
[63]
Priyabrata, M.A.A.; Mandal, D.; Senapati, S.; Sudhakar, R.S.; Khan, M.; Parishcha, R.; Ajaykumar, P.V.; Alam, M.; Kumar, R.; Sastry, M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. ACS, 2001, 1(10), 515-519.
[70]
Akinwande, D.; Brennan, C.J.; Bunch, J.S.; Egberts, P.; Felts, J.R.; Gao, H.; Huang, R.; Kim, J-S.; Li, T.; Li, Y.J.E.M.L. A review on mechanics and mechanical properties of 2D materials-Graphene and beyond. Ext. Mechanics Lett., 2017, 13, 42-77.
[71]
Huo, C.; Yan, Z.; Song, X.; Zeng, H.J.S.b. 2D materials via liquid exfoliation: A review on fabrication and applications. 2015, 60(23), 1994-2008.
[75]
Herrera-Pérez Gabriel, P.-Z.G.; Ysmael, V.-G.; Ana María, V.M.; Rafael, V.-B. Anodic ZnO-graphene composite materials in lithium batteries. intech, 2019.
[104]
Huang, Y.; Liu, J.; Huang, Q.; Zheng, Z.; Hiralal, P.; Zheng, F.; Ozgit, D.; Su, S.; Chen, S.; Tan, P.-H.; Zhang, S.; Zhou, H. Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. Npj Flexible Electronics, 2018, 2(1)
[114]
Lamuel David, R.B.A.G.S. MoS2/Graphene composite paper for sodium-ion battery electrodes. Am. Chem. Soc., 2013, 8(2), 1759-1770.
[123]
Endo, M.; Takeda, T.; Kim, Y.J.; Koshiba, K. High power Electric Double Layer Capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons. Carbon Science, 2001, 1(3), 117-128.
[140]
Tsuboi, Y. Enhanced photovoltaic performances of graphene/si solar cells by insertion of an MoS2 thin film. Nanosclae, 2015, 34, 14476-14482.
[153]
Wang, X.; Han, J.; Huang, D.; Wang, J.; Xie, Y.; Liu, Z.; Li, Y.; Yang, C.; Zhang, Y.; He, Z.; Bao, X.; Yang, R. Optimized molecular packing and non-radiative energy loss based on terpolymer methodology combining two asymmetric segments for high-performance polymer solar cells. ACS Appl. Mater. Interfaces, 2020.
[161]
Samuel James Rowley-Neale, G.C.S.; Craig, E.B. Mass producible 2d-mos2 impregnated screen-printed electrodes which demonstrate efficient electrocatalysis towards the oxygen reduction reaction. ACS Appl. Mater. Interfaces, 2017.
[166]
Saravanan, S.; Kato, R.; Balamurugan, M.; Kaushik, S.; Soga, T. Efficiency improvement in dye sensitized solar cells by the plasmonic effect of green synthesized silver nanoparticles. J. Sci. Adv. Materials Dev., 2017, 2(4), 418-424.