Recent Advances of Biomass Derived Electrode Materials for Capacitive Deionization

Page: [2 - 17] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Capacitive deionization (CDI), as a novel, energy-efficient, and environment-friendly desalination technology, has received substantial attention in the scientific community during the last five decades, while the electrode materials, acting as the ion storage media, play a vital role during its desalination process. Meanwhile, developing electrode materials from biomass has been proven to be a feasible strategy due to their abundance in nature, unique microstructure, as well as feasibility for further modifications. In this review, various bio-mass-based electrode materials and their unique advantages as CDI electrodes are systematically presented.

Keywords: Capacitive deionization, electrosorption, desalination, bio-mass derived carbon, electrode material, activated carbon, water purification.

Graphical Abstract

[1]
Kim, S.J.; Ko, S.H.; Kang, K.H.; Han, J. Direct seawater desalination by ion concentration polarization. Nat. Nanotechnol., 2010, 5(4), 297-301.
[http://dx.doi.org/10.1038/nnano.2010.34] [PMID: 20305644]
[2]
Elimelech, M.; Phillip, W.A. The future of seawater desalination: energy, technology, and the environment. Science, 2011, 333(6043), 712-717.
[http://dx.doi.org/10.1126/science.1200488] [PMID: 21817042]
[3]
Humplik, T.; Lee, J.; O’Hern, S.C.; Fellman, B.A.; Baig, M.A.; Hassan, S.F.; Atieh, M.A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E.N. Nanostructured materials for water desalination. Nanotechnology, 2011, 22(29)292001
[http://dx.doi.org/10.1088/0957-4484/22/29/292001] [PMID: 21680966]
[4]
Anderson, M.A.; Cudero, A.L.; Palma, J. Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta, 2010, 55(12), 3845-3856.
[http://dx.doi.org/10.1016/j.electacta.2010.02.012]
[5]
Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci., 2012, 396, 1-21.
[http://dx.doi.org/10.1016/j.memsci.2011.12.023]
[6]
Pasta, M.; Wessells, C.D.; Cui, Y.; La Mantia, F. A desalination battery. Nano Lett., 2012, 12(2), 839-843.
[http://dx.doi.org/10.1021/nl203889e] [PMID: 22268456]
[7]
Mehanna, M.; Saito, T.; Yan, J.; Hickner, M.; Cao, X.; Huang, X.; Logan, B.E. Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy Environ. Sci., 2010, 3(8), 1114-1120.
[http://dx.doi.org/10.1039/c002307h]
[8]
Johnson, A.; Newman, J. Desalting by means of porous carbon electrodes. J. Electrochem. Soc., 1971, 118(3), 510-517.
[http://dx.doi.org/10.1149/1.2408094]
[9]
Murphy, G.; Caudle, D. Mathematical theory of electrochemical demineralization in flowing systems. Electrochim. Acta, 1967, 12(12), 1655-1664.
[http://dx.doi.org/10.1016/0013-4686(67)80079-3]
[10]
Farmer, J.; Fix, D.; Mack, G.; Pekala, R.; Poco, J. Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J. Appl. Electrochem., 1996, 26(10), 1007-1018.
[http://dx.doi.org/10.1007/BF00242195]
[11]
Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. J. Electrochem. Soc., 1996, 143(1), 159-169.
[http://dx.doi.org/10.1149/1.1836402]
[12]
Zhang, J.; Fang, J.; Han, J.; Yan, T.; Shi, L.; Zhang, D.N.P. S co-doped hollow carbon polyhedra derived from MOF-based core–shell nanocomposites for capacitive deionization. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(31), 15245-15252.
[http://dx.doi.org/10.1039/C8TA04813D]
[13]
Han, J.; Yan, T.; Shen, J.; Shi, L.; Zhang, J.; Zhang, D. Capacitive deionization of saline water by using MoS2-graphene hybrid electrodes with high volumetric adsorption capacity. Environ. Sci. Technol., 2019, 53(21), 12668-12676.
[http://dx.doi.org/10.1021/acs.est.9b04274] [PMID: 31532191]
[14]
Khan, Z.U.; Yan, T.; Han, J.; Shi, L.; Zhang, D. Capacitive deionization of saline water using graphene nanosphere decorated N-doped layered mesoporous carbon frameworks. Environ. Sci. Nano, 2019, 6(11), 3442-3453.
[http://dx.doi.org/10.1039/C9EN00773C]
[15]
Wang, H.; Yan, T.; Shen, J.; Zhang, J.; Shi, L.; Zhang, D. Efficient removal of metal ions by capacitive deionization with straw waste derived graphitic porous carbon nanosheets. Environ. Sci. Nano, 2020, 7(1), 317-326.
[http://dx.doi.org/10.1039/C9EN01233H]
[16]
Zhang, J.; Yan, T.; Fang, J.; Shen, J.; Shi, L.; Zhang, D. Enhanced capacitive deionization of saline water using N-doped rod-like porous carbon derived from dual-ligand metal–organic frameworks. Environ. Sci. Nano, 2020, 7, 926-937.
[http://dx.doi.org/10.1039/C9EN01216H]
[17]
Chen, F.; Huang, Y.; Guo, L.; Sun, L.; Wang, Y.; Yang, H.Y. Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci., 2017, 10(10), 2081-2089.
[http://dx.doi.org/10.1039/C7EE00855D]
[18]
Zhao, W.; Ding, M.; Guo, L.; Yang, H.Y. Dual-ion electrochemical deionization system with binder free aerogel electrodes. Small, 2019, 15(9)e1805505
[http://dx.doi.org/10.1002/smll.201805505] [PMID: 30714314]
[19]
Dong, Q.; Wang, G.; Qian, B.; Hu, C.; Wang, Y.; Qiu, J. Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization. Electrochim. Acta, 2014, 137, 388-394.
[http://dx.doi.org/10.1016/j.electacta.2014.06.067]
[20]
Wang, S.; Wang, G.; Wu, T.; Zhang, Y.; Zhan, F.; Wang, Y.; Wang, J.; Fu, Y.; Qiu, J. BCN nanosheets templated by g-C3N4 for high performance capacitive deionization. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(30), 14644-14650.
[http://dx.doi.org/10.1039/C8TA04058C]
[21]
Tang, W.; Liang, J.; He, D.; Gong, J.; Tang, L.; Liu, Z.; Wang, D.; Zeng, G. Various cell architectures of capacitive deionization: Recent advances and future trends. Water Res., 2019, 150, 225-251.
[http://dx.doi.org/10.1016/j.watres.2018.11.064] [PMID: 30528919]
[22]
Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci., 2013, 58(8), 1388-1442.
[http://dx.doi.org/10.1016/j.pmatsci.2013.03.005]
[23]
Liu, Y.; Nie, C.; Liu, X.; Xu, X.; Sun, Z.; Pan, L. Review on carbon-based composite materials for capacitive deionization. RSC Advances, 2015, 5, 15205-15225.
[http://dx.doi.org/10.1039/C4RA14447C]
[24]
Jande, Y.A.C.; Kim, W.S. Desalination using capacitive deionization at constant current. Desalination, 2013, 329, 29-34.
[http://dx.doi.org/10.1016/j.desal.2013.08.023]
[25]
Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T.D. Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems. Electrochim. Acta, 2019, 299, 727-735.
[http://dx.doi.org/10.1016/j.electacta.2019.01.058]
[26]
Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T.D. Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Res., 2018, 128, 314-330.
[http://dx.doi.org/10.1016/j.watres.2017.10.024] [PMID: 29107916]
[27]
Hawks, S.A.; Ramachandran, A.; Porada, S.; Campbell, P.G.; Suss, M.E.; Biesheuvel, P.M.; Santiago, J.G.; Stadermann, M. Performance metrics for the objective assessment of capacitive deionization systems. Water Res., 2019, 152, 126-137.
[http://dx.doi.org/10.1016/j.watres.2018.10.074] [PMID: 30665159]
[28]
Jande, Y.A.C.; Kim, W.S. Predicting the lowest effluent concentration in capacitive deionization. Separ. Purif. Tech., 2013, 115, 224-230.
[http://dx.doi.org/10.1016/j.seppur.2013.05.022]
[29]
Srimuk, P.; Kaasik, F.; Krüner, B.; Tolosa, A.; Fleischmann, S.; Jäckel, N.; Tekeli, M.C.; Aslan, M.; Suss, M.E.; Presser, V. MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(47), 18265-18271.
[http://dx.doi.org/10.1039/C6TA07833H]
[30]
Lee, J.; Srimuk, P.; Zwingelstein, R.; Zornitta, R.L.; Choi, J.; Kim, C.; Presser, V. Sodium ion removal by hydrated vanadyl phosphate for electrochemical water desalination. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(8), 4175-4184.
[http://dx.doi.org/10.1039/C8TA10087J]
[31]
Kim, C.; Srimuk, P.; Lee, J.; Presser, V. Enhanced desalination via cell voltage extension of membrane capacitive deionization using an aqueous/organic bi-electrolyte. Desalination, 2018, 443, 56-61.
[http://dx.doi.org/10.1016/j.desal.2018.05.016]
[32]
Srimuk, P.; Wang, L.; Budak, Ö.; Presser, V. High-performance ion removal via zinc–air desalination. Electrochem. Commun., 2020, 115106713
[http://dx.doi.org/10.1016/j.elecom.2020.106713]
[33]
Minhas, M.B.; Jande, Y.A.C.; Kim, W-S. Hybrid reverse osmosis-capacitive deionization versus two-stage reverse osmosis: a comparative analysis. Chem. Eng. Technol., 2014, 37(7), 1137-1145.
[http://dx.doi.org/10.1002/ceat.201300681]
[34]
Suss, M.E.; Baumann, T.F.; Bourcier, W.L.; Spadaccini, C.M.; Rose, K.A.; Santiago, J.G.; Stadermann, M. Capacitive desalination with flow-through electrodes. Energy Environ. Sci., 2012, 5(11), 9511-9519.
[http://dx.doi.org/10.1039/c2ee21498a]
[35]
Liu, Y.; Gao, X.; Wang, K.; Dou, X.; Zhu, H.; Yuan, X.; Pan, L. Rocking-chair capacitive deionization with flow-through electrodes. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8, 8476-8484.
[http://dx.doi.org/10.1039/C9TA14112J]
[36]
Liu, Y.; Zhang, Y.; Zhang, Y.; Zhang, Q.; Gao, X.; Dou, X.; Zhu, H.; Yuan, X.; Pan, L. MoC nanoparticle-embedded carbon nanofiber aerogels as flow-through electrodes for highly efficient pseudocapacitive deionization. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(3), 1443-1450.
[http://dx.doi.org/10.1039/C9TA11537D]
[37]
Gao, X.; Omosebi, A.; Landon, J.; Liu, K. Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ. Sci., 2015, 8(3), 897-909.
[http://dx.doi.org/10.1039/C4EE03172E]
[38]
Gao, X.; Omosebi, A.; Landon, J.; Liu, K. Enhanced salt removal in an inverted capacitive deionization cell using amine modified microporous carbon cathodes. Environ. Sci. Technol., 2015, 49(18), 10920-10926.
[http://dx.doi.org/10.1021/acs.est.5b02320] [PMID: 26302134]
[39]
Chang, J.; Duan, F.; Cao, H.; Tang, K.; Su, C.; Li, Y. Superiority of a novel flow-electrode capacitive deionization (FCDI) based on a battery material at high applied voltage. Desalination, 2019, 468114080
[http://dx.doi.org/10.1016/j.desal.2019.114080]
[40]
Chang, J.; Duan, F.; Su, C.; Li, Y.; Cao, H. Removal of chloride ions using a bismuth electrode in capacitive deionization (CDI). Environ. Sci-. Water Res., 2020, 6(2), 373-382.
[41]
Jeon, S.; Park, H.; Yeo, J.g.; Yang, S.; Cho, C.H.; Han, M.H.; Kim, D.K. Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy Environ. Sci., 2013, 6(5), 1471-1475.
[http://dx.doi.org/10.1039/c3ee24443a]
[42]
Yang, S.; Choi, J.; Yeo, J.G.; Jeon, S.I.; Park, H.R.; Kim, D.K. Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration. Environ. Sci. Technol., 2016, 50(11), 5892-5899.
[http://dx.doi.org/10.1021/acs.est.5b04640] [PMID: 27162028]
[43]
Liang, P.; Sun, X.; Bian, Y.; Zhang, H.; Yang, X.; Jiang, Y.; Liu, P.; Huang, X. Optimized desalination performance of high voltage flow-electrode capacitive deionization by adding carbon black in flow-electrode. Desalination, 2017, 420, 63-69.
[http://dx.doi.org/10.1016/j.desal.2017.05.023]
[44]
Yang, F.; Ma, J.; Zhang, X.; Huang, X.; Liang, P. Decreased charge transport distance by titanium mesh-membrane assembly for flow-electrode capacitive deionization with high desalination performance. Water Res., 2019, 164114904
[http://dx.doi.org/10.1016/j.watres.2019.114904] [PMID: 31382149]
[45]
Zhou, F.; Gao, T.; Luo, M.; Li, H. Heterostructured graphene@Na4Ti9O20 nanotubes for asymmetrical capacitive deionization with ultrahigh desalination capacity. Chem. Eng. J., 2018, 343, 8-15.
[http://dx.doi.org/10.1016/j.cej.2018.02.124]
[46]
Yue, Z.; Gao, T.; Li, H. Robust synthesis of carbon@ Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance. Desalination, 2019, 449, 69-77.
[http://dx.doi.org/10.1016/j.desal.2018.10.018]
[47]
Liu, Y.; Wang, S.; Wang, Z.; Yao, Q.; Fang, S.; Zhou, X.; Yuan, X.; Xie, J. The in situ synthesis of silver nanoclusters inside a bacterial cellulose hydrogel for antibacterial applications. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4846-4850.
[http://dx.doi.org/10.1039/D0TB00073F] [PMID: 32186318]
[48]
Younes, H.; Ravaux, F.; El Hadri, N.; Zou, L. Nanostructuring of pseudocapacitive MnFe2O4/Porous rGO electrodes in capacitive deionization. Electrochim. Acta, 2019, 306, 1-8.
[http://dx.doi.org/10.1016/j.electacta.2019.03.097]
[49]
Wang, K.; Liu, Y.; Ding, Z.; Li, Y.; Lu, T.; Pan, L.K. Metal-organic-frameworks-derived NaTi2(PO4)3/carbon composites for efficient hybrid capacitive deionization. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(19), 12126-12133.
[http://dx.doi.org/10.1039/C9TA01106D]
[50]
Yue, Z.; Ma, Y.; Zhang, J.; Li, H. Pseudo-capacitive behavior induced dual-ion hybrid deionization system based on Ag@rGO‖Na1.1V3O7.9@rGO. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(28), 16892-16901.
[http://dx.doi.org/10.1039/C9TA03570B]
[51]
Chen, F.; Leong, Z.Y.; Yang, H.Y. An aqueous rechargeable chloride ion battery. Energy Storage Mater., 2017, 7, 189-194.
[http://dx.doi.org/10.1016/j.ensm.2017.02.001]
[52]
Lee, J.; Kim, S.; Yoon, J. Rocking chair desalination battery based on Prussian blue electrodes. ACS Omega, 2017, 2(4), 1653-1659.
[http://dx.doi.org/10.1021/acsomega.6b00526] [PMID: 31457530]
[53]
Lee, J.; Jo, K.; Lee, J.; Hong, S.P.; Kim, S.; Yoon, J. Rocking-chair capacitive deionization for continuous brackish water desalination. ACS Sustain. Chem.& Eng., 2018, 6(8), 10815-10822.
[http://dx.doi.org/10.1021/acssuschemeng.8b02123]
[54]
Liu, Y.; Gao, X.; Wang, Z.; Wang, K.; Dou, X.; Zhu, H.; Yuan, X.; Pan, L. Controlled synthesis of bismuth oxychloride-carbon nanofiber hybrid materials as highly efficient electrodes for rocking-chair capacitive deionization. Chem. Eng. J., 2021, 403126326
[http://dx.doi.org/10.1016/j.cej.2020.126326]
[55]
Yasin, A.S.; Mohamed, I.M.A.; Mousa, H.M.; Park, C.H.; Kim, C.S. Facile synthesis of TiO2/ZrO2 nanofibers/nitrogen co-doped activated carbon to enhance the desalination and bacterial inactivation via capacitive deionization. Sci. Rep., 2018, 8(1), 541.
[http://dx.doi.org/10.1038/s41598-017-19027-w] [PMID: 29323229]
[56]
Wang, Y.; El-Deen, A.G.; Li, P.; Oh, B.H.L.; Guo, Z.; Khin, M.M.; Vikhe, Y.S.; Wang, J.; Hu, R.G.; Boom, R.M.; Kline, K.A.; Becker, D.L.; Duan, H.; Chan-Park, M.B. High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating. ACS Nano, 2015, 9(10), 10142-10157.
[http://dx.doi.org/10.1021/acsnano.5b03763] [PMID: 26389519]
[57]
Wang, J.; Wang, G.; Wu, T.; Wang, D.; Yuan, Y.; Wang, J.; Liu, T.; Wang, L.; Qiu, J. Quaternary ammonium compound functionalized activated carbon electrode for capacitive deionization disinfection. ACS Sustain. Chem.& Eng., 2018, 6, 17204-17210.
[http://dx.doi.org/10.1021/acssuschemeng.8b04573]
[58]
Ge, Z.; Chen, X.; Huang, X.; Ren, Z.J. Capacitive deionization for nutrient recovery from wastewater with disinfection capability. Environ. Sci-. Water Res., 2018, 4(1), 33-39.
[59]
Xing, W.; Liang, J.; Tang, W.; He, D.; Yan, M.; Wang, X.; Luo, Y.; Tang, N.; Huang, M. Versatile applications of capacitive deionization (CDI)-based technologies. Desalination, 2020, 482114390
[http://dx.doi.org/10.1016/j.desal.2020.114390]
[60]
Huang, Z-H.; Yang, Z.; Kang, F.; Inagaki, M. Carbon electrodes for capacitive deionization. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(2), 470-496.
[http://dx.doi.org/10.1039/C6TA06733F]
[61]
Huang, H.; Yan, M.; Yang, C.; He, H.; Jiang, Q.; Yang, L.; Lu, Z.; Sun, Z.; Xu, X.; Bando, Y.; Yamauchi, Y. Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction. Adv. Mater., 2019, 31(48)e1903415
[http://dx.doi.org/10.1002/adma.201903415] [PMID: 31496036]
[62]
Wang, Z.; Xu, X.; Kim, J.; Malgras, V.; Mo, R.; Li, C.; Lin, Y.; Tan, H.; Tang, J.; Pan, L.K.; Bando, Y.; Yang, T.; Yamauchi, Y. Nanoarchitectured metal–organic framework/polypyrrole hybrids for brackish water desalination using capacitive deionization. Mater. Horiz., 2019, 6(7), 1433-1437.
[http://dx.doi.org/10.1039/C9MH00306A]
[63]
Xu, X.; Allah, A.E.; Wang, C.; Tan, H.; Farghali, A.A.; Khedr, M.H.; Malgras, V.; Yang, T.; Yamauchi, Y. Capacitive deionization using nitrogen-doped mesostructured carbons for highly efficient brackish water desalination. Chem. Eng. J., 2019, 362, 887-896.
[http://dx.doi.org/10.1016/j.cej.2019.01.098]
[64]
Xu, X.; Tan, H.; Wang, Z.; Wang, C.; Pan, L.K.; Kaneti, Y.V.; Yang, T.; Yamauchi, Y. Extraordinary capacitive deionization performance of highly-ordered mesoporous carbon nano-polyhedra for brackish water desalination. Environ. Sci. Nano, 2019, 6(3), 981-989.
[http://dx.doi.org/10.1039/C9EN00017H]
[65]
Xu, X.; Tang, J.; Kaneti, Y.V.; Tan, H.; Chen, T.; Pan, L.; Yang, T.; Bando, Y.; Yamauchi, Y. Unprecedented capacitive deionization performance of interconnected iron–nitrogen-doped carbon tubes in oxygenated saline water. Mater. Horiz., 2020, 7, 1404-1412.
[http://dx.doi.org/10.1039/C9MH01829H]
[66]
Xu, X.; Yang, T.; Zhang, Q.; Xia, W.; Ding, Z.; Eid, K.; Abdullah, A.M.; Hossain, M.S.A.; Zhang, S.; Tang, J. Ultrahigh capacitive deionization performance by 3D interconnected MOF-derived nitrogen-doped carbon tubes. Chem. Eng. J., 2020, 390124493
[http://dx.doi.org/10.1016/j.cej.2020.124493]
[67]
Sufiani, O.; Tanaka, H.; Teshima, K.; Machunda, R.L.; Jande, Y.A.C. Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization. Separ. Purif. Tech., 2020, 247116998
[http://dx.doi.org/10.1016/j.seppur.2020.116998]
[68]
Sufiani, O.; Elisadiki, J.; Machunda, R.L.; Jande, Y.A.C. Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. J. Electroanal. Chem. , 2019, 848113328
[http://dx.doi.org/10.1016/j.jelechem.2019.113328]
[69]
Xu, P.; Drewes, J.E.; Heil, D.; Wang, G. Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res., 2008, 42(10-11), 2605-2617.
[http://dx.doi.org/10.1016/j.watres.2008.01.011] [PMID: 18258278]
[70]
Villar, I.; Roldan, S.; Ruiz, V.; Granda, M.; Blanco, C.; Menendez, R.; Santamaría, R. Capacitive deionization of NaCl solutions with modified activated carbon electrodes. Energy Fuels, 2010, 24(6), 3329-3333.
[http://dx.doi.org/10.1021/ef901453q]
[71]
Choi, J.H. Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process. Separ. Purif. Tech., 2010, 70(3), 362-366.
[http://dx.doi.org/10.1016/j.seppur.2009.10.023]
[72]
Porada, S.; Bryjak, M.; Van Der Wal, A.; Biesheuvel, P. Effect of electrode thickness variation on operation of capacitive deionization. Electrochim. Acta, 2012, 75, 148-156.
[http://dx.doi.org/10.1016/j.electacta.2012.04.083]
[73]
Oda, H.; Nakagawa, Y. Removal of ionic substances from dilute solution using activated carbon electrodes. Carbon, 2003, 41(5), 1037-1047.
[http://dx.doi.org/10.1016/S0008-6223(03)00013-7]
[74]
Chen, Z.; Song, C.; Sun, X.; Guo, H.; Zhu, G. Kinetic and isotherm studies on the electrosorption of NaCl from aqueous solutions by activated carbon electrodes. Desalination, 2011, 267(2-3), 239-243.
[http://dx.doi.org/10.1016/j.desal.2010.09.033]
[75]
Avraham, E.; Noked, M.; Bouhadana, Y.; Soffer, A.; Aurbach, D. Limitations of charge efficiency in capacitive deionization processes III: The behavior of surface oxidized activated carbon electrodes. Electrochim. Acta, 2010, 56(1), 441-447.
[http://dx.doi.org/10.1016/j.electacta.2010.08.056]
[76]
Oh, H.; Lee, J.; Ahn, H.; Jeong, Y.; Kim, Y.; Chi, C. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution. Thin Solid Films, 2006, 515(1), 220-225.
[http://dx.doi.org/10.1016/j.tsf.2005.12.146]
[77]
Huang, Z.H.; Wang, M.; Wang, L.; Kang, F. Relation between the charge efficiency of activated carbon fiber and its desalination performance. Langmuir, 2012, 28(11), 5079-5084.
[http://dx.doi.org/10.1021/la204690s] [PMID: 22372914]
[78]
Wang, M.; Huang, Z.; Wang, L.; Wang, M.; Kang, F.; Hou, H. Electrospun ultrafine carbon fiber webs for electrochemical capacitive desalination. New J. Chem., 2010, 34(9), 1843-1845.
[http://dx.doi.org/10.1039/c0nj00407c]
[79]
Wang, G.; Pan, C.; Wang, L.; Dong, Q.; Yu, C.; Zhao, Z.; Qiu, J. Activated carbon nanofiber webs made by electrospinning for capacitive deionization. Electrochim. Acta, 2012, 69, 65-70.
[http://dx.doi.org/10.1016/j.electacta.2012.02.066]
[80]
Nie, C.Y.; Pan, L.K.; Li, H.B.; Chen, T.Q.; Lu, T.; Sun, Z. Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization. J. Electroanal. Chem. (Lausanne Switz.), 2012, 666, 85-88.
[http://dx.doi.org/10.1016/j.jelechem.2011.12.006]
[81]
Wang, S.; Wang, D.; Ji, L.; Gong, Q.; Zhu, Y.; Liang, J. Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes. Separ. Purif. Tech., 2007, 58(1), 12-16.
[http://dx.doi.org/10.1016/j.seppur.2007.07.005]
[82]
Wang, L.; Wang, M.; Huang, Z.H.; Cui, T.; Gui, X.; Kang, F.; Wang, K.; Wu, D. Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes. J. Mater. Chem., 2011, 21(45), 18295-18299.
[http://dx.doi.org/10.1039/c1jm13105b]
[83]
Wang, X.; Lee, J.S.; Tsouris, C.; DePaoli, D.W.; Dai, S. Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions. J. Mater. Chem., 2010, 20(22), 4602-4608.
[http://dx.doi.org/10.1039/b925957k]
[84]
Zou, L.; Li, L.; Song, H.; Morris, G. Using mesoporous carbon electrodes for brackish water desalination. Water Res., 2008, 42(8-9), 2340-2348.
[http://dx.doi.org/10.1016/j.watres.2007.12.022] [PMID: 18222527]
[85]
Mayes, R.T.; Tsouris, C., Jr J. O. K.; Mahurin, S. M.; DePaoli, D. W.; Dai, S. Hierarchical ordered mesoporous carbon from phloroglucinol-glyoxal and its application in capacitive deionization of brackish water. J. Mater. Chem., 2010, 20(39), 8674-8678.
[http://dx.doi.org/10.1039/c0jm01911a]
[86]
Huang, C.C.; He, J.C. Electrosorptive removal of copper ions from wastewater by using ordered mesoporous carbon electrodes. Chem. Eng. J., 2013, 221, 469-475.
[http://dx.doi.org/10.1016/j.cej.2013.02.028]
[87]
El-Deen, A.G.; Barakat, N.A.; Khalil, K.A.; Kim, H.Y. Hollow carbon nanofibers as an effective electrode for brackish water desalination using the capacitive deionization process. New J. Chem., 2014, 38(1), 198-205.
[http://dx.doi.org/10.1039/C3NJ00576C]
[88]
Li, H.B.; Lu, T.; Pan, L.K.; Zhang, Y.P.; Sun, Z. Electrosorption behavior of graphene in NaCl solutions. J. Mater. Chem., 2009, 19(37), 6773-6779.
[http://dx.doi.org/10.1039/b907703k]
[89]
Li, H.; Zou, L.; Pan, L.; Sun, Z. Novel graphene-like electrodes for capacitive deionization. Environ. Sci. Technol., 2010, 44(22), 8692-8697.
[http://dx.doi.org/10.1021/es101888j] [PMID: 20964326]
[90]
Jia, B.P.; Zou, L. Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionisation. Carbon, 2012, 50(6), 2315-2321.
[http://dx.doi.org/10.1016/j.carbon.2012.01.051]
[91]
Cai, W.; Xiong, Z.; Hussain, T.; Yang, J.; Wang, Y.; Liu, J. Porous MnOx covered electrospun carbon nanofiber for capacitive deionization. J. Electrochem. Soc., 2016, 163(13), A2515-A2523.
[http://dx.doi.org/10.1149/2.0141613jes]
[92]
Cai, W.S.; Yan, J.B.; Hussin, T.; Liu, J.Y. Nafion-AC-based asymmetric capacitive deionization. Electrochim. Acta, 2017, 225, 407-415.
[http://dx.doi.org/10.1016/j.electacta.2016.12.069]
[93]
Han, B.; Cheng, G.; Wang, Y.; Wang, X. Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization. Chem. Eng. J., 2019, 360, 364-384.
[http://dx.doi.org/10.1016/j.cej.2018.11.236]
[94]
Gao, T.; Zhou, F.; Ma, W.; Li, H. Metal-organic-framework derived carbon polyhedron and carbon nanotube hybrids as electrode for electrochemical supercapacitor and capacitive deionization. Electrochim. Acta, 2018, 263, 85-93.
[http://dx.doi.org/10.1016/j.electacta.2018.01.044]
[95]
Gao, T.; Li, H.; Zhou, F.; Gao, M.; Liang, S.; Luo, M. Mesoporous carbon derived from ZIF-8 for high efficient electrosorption. Desalination, 2019, 451, 133-138.
[http://dx.doi.org/10.1016/j.desal.2017.06.021]
[96]
Liu, Y.; Xu, X.; Wang, M.; Lu, T.; Sun, Z.; Pan, L. Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization. Chem. Commun. (Camb.), 2015, 51(60), 12020-12023.
[http://dx.doi.org/10.1039/C5CC03999A] [PMID: 26121467]
[97]
Wang, H.; Mi, X.; Li, Y.; Zhan, S. 3D GrapheneáBased Macrostructures for Water Treatment. Adv. Mater., 2019, 32(3)1806843
[PMID: 31074916]
[98]
Yang, Z.Y.; Jin, L.J.; Lu, G.Q.; Xiao, Q.Q.; Zhang, Y.X.; Jing, L.; Zhang, X.X.; Yan, Y.M.; Sun, K.N. Spongeátemplated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv. Funct. Mater., 2014, 24(25), 3917-3925.
[http://dx.doi.org/10.1002/adfm.201470163]
[99]
Yin, H.; Zhao, S.; Wan, J.; Tang, H.; Chang, L.; He, L.; Zhao, H.; Gao, Y.; Tang, Z. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater., 2013, 25(43), 6270-6276.
[http://dx.doi.org/10.1002/adma.201302223] [PMID: 23963808]
[100]
Enock, T.K.; King’ondu, C.K.; Pogrebnoi, A.; Jande, Y.A.C. Status of Biomass Derived Carbon Materials for Supercapacitor Application. Int. J. Electrochem., 2017, 20176453420
[http://dx.doi.org/10.1155/2017/6453420]
[101]
Porada, S.; Schipper, F.; Aslan, M.; Antonietti, M.; Presser, V.; Fellinger, T.P. Capacitive Deionization using Biomass-based Microporous Salt-Templated Heteroatom-Doped Carbons. ChemSusChem, 2015, 8(11), 1867-1874.
[http://dx.doi.org/10.1002/cssc.201500166] [PMID: 25970654]
[102]
Elisadiki, J.; Kibona, T.E.; Machunda, R.L.; Saleem, M.W.; Kim, W-S.; Jande, Y.A.C. Biomass-based carbon electrode materials for capacitive deionization: a review. Biomass Conversion and Biorefinery, 2019.
[http://dx.doi.org/10.1007/s13399-019-00463-9]
[103]
Das, O.; Sarmah, A.K.; Bhattacharyya, D. A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites. Waste Manag., 2015, 38, 132-140.
[http://dx.doi.org/10.1016/j.wasman.2015.01.015] [PMID: 25677179]
[104]
Seo, J.; Park, H.; Shin, K.; Baeck, S.H.; Rhym, Y.; Shim, S.E. Lignin-derived macroporous carbon foams prepared by using poly (methyl methacrylate) particles as the template. Carbon, 2014, 76, 357-367.
[http://dx.doi.org/10.1016/j.carbon.2014.04.087]
[105]
Ahirrao, D.J.; Tambat, S.; Pandit, A.; Jha, N. Sweetá Limeá Peelsá Derived Activatedá Carboná Based Electrode for Highly Efficient Supercapacitor and Flowá Through Water Desalination. ChemistrySelect, 2019, 4(9), 2610-2625.
[http://dx.doi.org/10.1002/slct.201803417]
[106]
Elisadiki, J.; Jande, Y.A.C.; Machunda, R.L.; Kibona, T.E. Porous carbon derived from Artocarpus heterophyllus peels for capacitive deionization electrodes. Carbon, 2019, 147, 582-593.
[http://dx.doi.org/10.1016/j.carbon.2019.03.036]
[107]
Elisadiki, J.; Jande, Y.A.C.; Kibona, T.E.; Machunda, R.L. Highly porous biomass-based capacitive deionization electrodes for water defluoridation. Ionics, 2020, 26(5), 2477-2492.
[http://dx.doi.org/10.1007/s11581-019-03372-z]
[108]
Lado, J.J.; Zornitta, R.L.; Vázquez Rodríguez, I.s.; Malverdi Barcelos, K.; Ruotolo, L.A. Sugarcane Biowaste-Derived Biochars as Capacitive Deionization Electrodes for Brackish Water Desalination and Water-Softening Applications. ACS Sustain. Chem.& Eng., 2019, 7(23), 18992-19004.
[http://dx.doi.org/10.1021/acssuschemeng.9b04504]
[109]
Liu, Y.; Pan, L.; Xu, X.; Lu, T.; Sun, Z.; Chua, D.H.C. Carbon nanorods derived from natural based nanocrystalline cellulose for highly efficient capacitive deionization. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(48), 20966-20972.
[http://dx.doi.org/10.1039/C4TA04578E]
[110]
Liu, Y.; Lu, T.; Sun, Z.; Pan, L. Ultra-thin carbon nanofiber networks derived from bacterial-cellulose for capacitive deionization. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 8693-8700.
[http://dx.doi.org/10.1039/C5TA00435G]
[111]
Dutta, S.; Huang, S-Y.; Chen, C.; Chen, J.E.; Alothman, Z.A.; Yamauchi, Y.; Hou, C-H.; Wu, K.C-W. Cellulose framework directed construction of hierarchically porous carbons offering high-performance capacitive deionization of brackish water. ACS Sustain. Chem.& Eng., 2016, 4(4), 1885-1893.
[http://dx.doi.org/10.1021/acssuschemeng.5b01587]
[112]
Sriramulu, D.; Vafakhah, S.; Yang, H.Y. Activated Luffa derived biowaste carbon for enhanced desalination performance in brackish water. RSC Advances, 2019, 9(26), 14884-14892.
[http://dx.doi.org/10.1039/C9RA01872G]
[113]
Wu, T.; Wang, G.; Dong, Q.; Zhan, F.; Zhang, X.; Li, S.; Qiao, H.; Qiu, J. Starch derived porous carbon nanosheets for high-performance photovoltaic capacitive deionization. Environ. Sci. Technol., 2017, 51(16), 9244-9251.
[http://dx.doi.org/10.1021/acs.est.7b01629] [PMID: 28700208]
[114]
Xie, Z.; Shang, X.; Yan, J.; Hussain, T.; Nie, P.; Liu, J. Biomass-derived porous carbon anode for high-performance capacitive deionization. Electrochim. Acta, 2018, 290, 666-675.
[http://dx.doi.org/10.1016/j.electacta.2018.09.104]
[115]
Govindan, B.; Alhseinat, E.; Darawsheh, I.F.; Ismail, I.; Polychronopoulou, K.; Abi Jaoude, M.; Arangadi, A.F.; Banat, F. Activated Carbon Derived from Phoenix dactylifera (Palm Tree) and Decorated with MnO2 Nanoparticles for Enhanced Hybrid Capacitive Deionization Electrodes. ChemistrySelect, 2020, 5(11), 3248-3256.
[http://dx.doi.org/10.1002/slct.201901358]
[116]
Porada, S.; Shrivastava, A.; Bukowska, P.; Biesheuvel, P.; Smith, K.C. Nickel hexacyanoferrate electrodes for continuous cation intercalation desalination of brackish water. Electrochim. Acta, 2017, 255, 369-378.
[http://dx.doi.org/10.1016/j.electacta.2017.09.137]
[117]
Kim, T.; Gorski, C.A.; Logan, B.E. Low energy desalination using battery electrode deionization. Environ. Sci. Technol. Lett., 2017, 4(10), 444-449.
[http://dx.doi.org/10.1021/acs.estlett.7b00392]
[118]
Smith, K.C.; Dmello, R. Na-Ion desalination (NID) enabled by Na-blocking membranes and symmetric Na-intercalation: porous-electrode modeling. J. Electrochem. Soc., 2016, 163(3), A530-A539.
[http://dx.doi.org/10.1149/2.0761603jes]
[119]
Alfredy, T.; Jande, Y.A.C.; Pogrebnaya, T. Removal of lead ions from water by capacitive deionization electrode materials derived from chicken feathers. J. Water Reuse Desalin., 2019, 9(3), 282-291.
[http://dx.doi.org/10.2166/wrd.2019.074]
[120]
Liu, M.; Xu, M.; Xue, Y.; Ni, W.; Huo, S.; Wu, L.; Yang, Z.; Yan, Y-M. Efficient capacitive deionization using natural basswood-derived, freestanding, hierarchically porous carbon electrodes. ACS Appl. Mater. Interfaces, 2018, 10(37), 31260-31270.
[http://dx.doi.org/10.1021/acsami.8b08232] [PMID: 30141323]
[121]
Sun, N.; Li, Z.; Zhang, X.; Qin, W.; Zhao, C.; Zhang, H.; Ng, D.H.; Kang, S.; Zhao, H.; Wang, G. Hierarchical porous carbon materials derived from kelp for superior capacitive applications. ACS Sustain. Chem.& Eng., 2019, 7(9), 8735-8743.
[http://dx.doi.org/10.1021/acssuschemeng.9b00635]
[122]
Zhang, R.; Gu, X.; Liu, Y.; Hua, D.; Shao, M.; Gu, Z.; Wu, J.; Zheng, B.; Zhang, W.; Li, S. Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization. Appl. Surf. Sci., 2020, 512145740
[http://dx.doi.org/10.1016/j.apsusc.2020.145740]
[123]
Zhao, C.; Liu, G.; Sun, N.; Zhang, X.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Biomass-derived N-doped porous carbon as electrode materials for Zn-air battery powered capacitive deionization. Chem. Eng. J., 2018, 334, 1270-1280.
[http://dx.doi.org/10.1016/j.cej.2017.11.069]
[124]
Liu, Q.; Li, X.; Wu, Y.; Qing, M.; Tan, G.; Xiao, D. Pine pollen derived porous carbon with efficient capacitive deionization performance. Electrochim. Acta, 2019, 298, 360-371.
[http://dx.doi.org/10.1016/j.electacta.2018.12.072]
[125]
Zhao, C.; Zhang, S.; Sun, N.; Zhou, H.; Wang, G.; Zhang, Y.; Zhang, H.; Zhao, H. Converting eggplant biomass into multifunctional porous carbon electrodes for self-powered capacitive deionization. Environ. Sci-. Water Res., 2019, 5(6), 1054-1063.
[126]
Qian, M.; Xuan, X.Y.; Pan, L.K.; Gong, S.Q. Porous carbon electrodes from activated wasted coffee grounds for capacitive deionization. Ionics, 2019, 25(7), 3443-3452.
[http://dx.doi.org/10.1007/s11581-019-02887-9]
[127]
Rangaraj, V.M.; Edathil, A.A.; Kannangara, Y.Y.; Song, J-K.; Haija, M.A.; Banat, F. Tamarind shell derived N-doped carbon for capacitive deionization (CDI) studies. J. Electroanal. Chem. (Lausanne Switz.), 2019, 848113307
[http://dx.doi.org/10.1016/j.jelechem.2019.113307]
[128]
Rezma, S.; Assaker, I.B.; Chtourou, R.; Hafiane, A.; Deleuze, H. Microporous activated carbon electrode derived from date stone without use of binder for capacitive deionization application. Mater. Res. Bull., 2019, 111, 222-229.
[http://dx.doi.org/10.1016/j.materresbull.2018.11.030]
[129]
Hai, A.; Bharath, G.; Babu, K.R.; Taher, H.; Naushad, M.; Banat, F. Date seeds biomass-derived activated carbon for efficient removal of NaCl from saline solution. Process Saf. Environ. Prot., 2019, 129, 103-111.
[http://dx.doi.org/10.1016/j.psep.2019.06.024]
[130]
Zhang, X.; Wang, B.; Yu, J.; Wu, X.; Zang, Y.; Gao, H.; Su, P.; Hao, S. Three-dimensional honeycomb-like porous carbon derived from corncob for the removal of heavy metals from water by capacitive deionization. RSC Advances, 2018, 8(3), 1159-1167.
[http://dx.doi.org/10.1039/C7RA10689K]
[131]
Bharath, G.; Rambabu, K.; Banat, F.; Hai, A.; Arangadi, A.F.; Ponpandian, N. Enhanced electrochemical performances of peanut shell derived activated carbon and its Fe3O4 nanocomposites for capacitive deionization of Cr(VI) ions. Sci. Total Environ., 2019, 691, 713-726.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.069] [PMID: 31325869]
[132]
Quan, G.; Chu, L.; Han, X.; Ding, C.; Chen, T.; Yan, J. Facile synthesis of novel hierarchically porous carbon derived from nature biomass for enhanced removal of NaCl. Water Sci. Technol., 2016, 74(8), 1821-1831.
[http://dx.doi.org/10.2166/wst.2016.372] [PMID: 27789883]
[133]
Pugazhenthiran, N.; Sen Gupta, S.; Prabhath, A.; Manikandan, M.; Swathy, J.R.; Raman, V.K.; Pradeep, T. Cellulose derived graphenic fibers for capacitive desalination of brackish water. ACS Appl. Mater. Interfaces, 2015, 7(36), 20156-20163.
[http://dx.doi.org/10.1021/acsami.5b05510] [PMID: 26305260]
[134]
Zhang, L.; Liu, Y.; Lu, T.; Pan, L. Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization. J. Electroanal. Chem. , 2017, 804, 179-184.
[http://dx.doi.org/10.1016/j.jelechem.2017.09.062]
[135]
Li, G-X.; Hou, P-X.; Zhao, S-Y.; Liu, C.; Cheng, H-M. A flexible cotton-derived carbon sponge for high-performance capacitive deionization. Carbon, 2016, 101, 1-8.
[http://dx.doi.org/10.1016/j.carbon.2015.12.095]
[136]
Li, Y.; Liu, Y.; Wang, M.; Xu, X.; Lu, T.; Sun, C.Q.; Pan, L. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon, 2018, 130, 377-383.
[http://dx.doi.org/10.1016/j.carbon.2018.01.035]
[137]
Feng, C.; Chen, Y-A.; Yu, C-P.; Hou, C-H. Highly porous activated carbon with multi-channeled structure derived from loofa sponge as a capacitive electrode material for the deionization of brackish water. Chemosphere, 2018, 208, 285-293.
[http://dx.doi.org/10.1016/j.chemosphere.2018.05.174] [PMID: 29883863]
[138]
Kim, J.; Yi, Y.; Peck, D-H.; Yoon, S-H.; Jung, D-H.; Park, H.S. Controlling hierarchical porous structures of rice-husk-derived carbons for improved capacitive deionization performance. Environ. Sci. Nano, 2019, 6(3), 916-924.
[http://dx.doi.org/10.1039/C8EN01181H]
[139]
Cuong, D.; Wu, P.; Liu, N.; Hou, C. Hierarchical porous carbon derived from activated biochar as an eco-friendly electrode for the electrosorption of inorganic ions. Separ. Purif. Tech., 2020, 242116813
[140]
Liu, Y.; Xu, X.; Wang, M.; Lu, T.; Sun, Z.; Pan, L. Nitrogen-doped carbon nanorods with excellent capacitive deionization ability. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3(33), 17304-17311.
[http://dx.doi.org/10.1039/C5TA03663A]