Methylation Profile of miR-9-1 and miR-9-1/-9-3 as Potential Biomarkers of Diabetic Retinopathy

Article ID: e123120189795 Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aims: Analysis of the relationship between the methylation profile of miR-9-1 or miRs -9-1 / -9-3 and diabetic retinopathy.

Background: Diabetic Retinopathy (DR) is a frequent complication of Diabetes mellitus and it has a decisive impact on the quality of life, as it is one of the biggest causes of blindness in the adult population. Levels of microRNA-9 have been shown to be related to diabetes but little is known about its involvement with DR in humans.

Objective: To analyze the relationship between the methylation profile of miR-9-1 or miRs -9-1/-9-3 and DR.

Methods: 103 patients diagnosed with diabetes for 5 to 10 years were analyzed. The data were categorized according to clinical, biochemical, lifestyle and anthropometric parameters. DNA extracted from leukocyte samples was used to determine the methylation profile of miRs-9-1 and -9-3 using a specific methylation PCR assay.

Results: miR-9-1 methylation was related to diabetic retinopathy, indicating that methylation of this miR increases the chances of presenting retinopathy up to 5 times. In our analyses, diabetics with lower levels of creatinine and CRP showed significant reductions (99% and 97%) in presenting DR. Methylation of both miRs-9-1 and 9-3 methylated increases the chances of presenting DR by 8 times; in addition, a sedentary lifestyle can increase the risk for the same complication by up to 6 times.

Conclusion: Our results suggest that both methylation of miR-9-1 and e miRs-9-1 / 9-3 favors DR in patients with diabetes in a period of 5 to 10 years of diagnosis.

Keywords: Diabetes, diabetic retinopathy, microRNAs, methylation, diabetes time, sedentary lifestyle.

[1]
Wong TY, Cheung CM, Larsen M, Sharma S, Simó R. Diabetic retinopathy. Nat Rev Dis Primers 2016; 2: 16012.
[http://dx.doi.org/10.1038/nrdp.2016.12] [PMID: 27159554]
[2]
Liu Y, Li J, Ma J, Tong N. The threshold of the severity of diabetic retinopathy below which intensive glycemic control is beneficial in diabetic patients: Estimation using data from large randomized clinical trials. J Diabetes Res 2020; 2020
[http://dx.doi.org/10.1155/2020/8765139] [PMID: 32016124]
[3]
Liu L, Quang ND, Banu R, et al. Hypertension, blood pressure control and diabetic retinopathy in a large population-based study. PLoS One 2020; 15(3): e0229665.
[http://dx.doi.org/10.1371/journal.pone.0229665] [PMID: 32134944]
[4]
Ben ÂJ, Souza CF, Locatelli F, et al. Health-related quality of life associated with diabetic retinopathy in patients at a public primary care service in southern Brazil. Arch Endocrinol Metab 2021; 64(5): 575-83.
[5]
Bhatia P, Raina S, Chugh J, Sharma S. miRNAs: early prognostic biomarkers for Type 2 diabetes mellitus? Biomark Med 2015; 9: 1025-40.
[6]
Jenkins AJ, Joglekar MV, Hardikar AA, Keech AC, O’Neal DN, Januszewski AS. Biomarkers in Diabetic Retinopathy. Rev Diabet Stud 2015; 12(1-2): 159-95.
[http://dx.doi.org/10.1900/RDS.2015.12.159] [PMID: 26676667]
[7]
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5(7): 522-31.
[http://dx.doi.org/10.1038/nrg1379] [PMID: 15211354]
[8]
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15(8): 509-24.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[9]
Yue D, Liu H, Huang Y. Survey of computational algorithms for microRNA target prediction. Curr Genomics 2009; 10(7): 478-92.
[http://dx.doi.org/10.2174/138920209789208219] [PMID: 20436875]
[10]
Morales S, Monzo M, Navarro A. Epigenetic regulation mechanisms of microRNA expression. Biomol Concepts 2017; 8(5-6): 203-12.
[http://dx.doi.org/10.1515/bmc-2017-0024] [PMID: 29161231]
[11]
Wang L, Li H. MiR-770-5p facilitates podocyte apoptosis and inflammation in diabetic nephropathy by targeting TIMP3. Biosci Rep 2020; 40(4): 30.
[http://dx.doi.org/10.1042/BSR20193653] [PMID: 32309847]
[12]
Vasu S, Kumano K, Darden CM, Rahman I, Lawrence MC, Naziruddin B. MicroRNA signatures as future biomarkers for diagnosis of diabetes states. Cells 2019; 8(12): 1533.
[http://dx.doi.org/10.3390/cells8121533] [PMID: 31795194]
[13]
Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig 2018; 9(6): 1239-54.
[http://dx.doi.org/10.1111/jdi.12833] [PMID: 29533535]
[14]
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic actions of microRNAs in diabetic wound healing Cells 2020; 9(10): E2228.
[http://dx.doi.org/10.3390/cells9102228]
[15]
Martinez B, Peplow PV. MicroRNAs as biomarkers of diabetic retinopathy and disease progression. Neural Regen Res 2019; 14(11): 1858-69.
[http://dx.doi.org/10.4103/1673-5374.259602] [PMID: 31290435]
[16]
Joglekar MV, Joglekar VM, Hardikar AA. Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 2009; 9(2): 109-13.
[http://dx.doi.org/10.1016/j.gep.2008.10.001] [PMID: 18977315]
[17]
Plaisance V, Abderrahmani A, Perret-Menoud V, Jacquemin P, Lemaigre F, Regazzi R. MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells. J Biol Chem 2006; 281(37): 26932-42.
[http://dx.doi.org/10.1074/jbc.M601225200] [PMID: 16831872]
[18]
Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic β-islets. FEBS J 2011; 278(7): 1167-74.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08042.x] [PMID: 21288303]
[19]
Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48(1): 61-9.
[http://dx.doi.org/10.1007/s00592-010-0226-0] [PMID: 20857148]
[20]
Al-Muhtaresh HA, Al-Kafaji G. Evaluation of two-diabetes related micrornas suitability as earlier blood biomarkers for detecting prediabetes and type 2 diabetes mellitus. J Clin Med 2018; 7(2): 12.
[http://dx.doi.org/10.3390/jcm7020012] [PMID: 29373500]
[21]
Jiménez-Lucena R, Rangel-Zúñiga OA, Alcalá-Díaz JF, et al. Circulating miRNAs as predictive biomarkers of type 2 diabetes mellitus development in coronary heart disease patients from the cordioprev study. Mol Ther Nucleic Acids 2018; 12: 146-57.
[http://dx.doi.org/10.1016/j.omtn.2018.05.002] [PMID: 30195754]
[22]
Motawae TM, Ismail MF, Shabayek MI, Seleem MM. MicroRNAs 9 and 370 association with biochemical markers in T2D and CAD complication of T2D. PLoS One 2015; 10(5): e0126957.
[http://dx.doi.org/10.1371/journal.pone.0126957] [PMID: 25978320]
[23]
Xiao Y, Guo S, Zhang Y, et al. Diabetic nephropathy: serum miR-9 confers a poor prognosis in and is associated with level changes of vascular endothelial growth factor and pigment epithelium-derived factor. Biotechnol Lett 2017; 39(10): 1583-90.
[http://dx.doi.org/10.1007/s10529-017-2390-6] [PMID: 28667418]
[24]
Micro LIUWL. RNA-9 inhibits retinal neovascularization in rats with diabetic retinopathy by targeting vascular endothelial growth factor A. J Cell Biochem 2018.
[http://dx.doi.org/10.1002/jcb.28081]
[25]
Wirostko B, Wong TY, Simó R. Vascular endothelial growth factor and diabetic complications. Prog Retin Eye Res 2008; 27(6): 608-21.
[http://dx.doi.org/10.1016/j.preteyeres.2008.09.002] [PMID: 18929676]
[26]
Wang LQ, Kwong YL, Kho CS, et al. Epigenetic inactivation of miR-9 family microRNAs in chronic lymphocytic leukemia-implications on constitutive activation of NFκB pathway. Mol Cancer 2013; 12: 173-81.
[http://dx.doi.org/10.1186/1476-4598-12-173] [PMID: 24373626]
[27]
Tsai KW, Liao YL, Wu CW, et al. Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics 2011; 6(10): 1189-97.
[http://dx.doi.org/10.4161/epi.6.10.16535] [PMID: 21931274]
[28]
Dos Santos Nunes MK, Silva AS, Wanderley de Queiroga Evangelista I, et al. Analysis of the DNA methylation profiles of miR-9-3, miR-34a, and miR-137 promoters in patients with diabetic retinopathy and nephropathy. J Diabetes Complications 2018; 32(6): 593-601.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.03.013] [PMID: 29674133]
[29]
Rosendorff C, Lackland DT, Allison M, et al. American heart association, american college of cardiology, and american society of hypertension. J Am Coll Cardiol 2015; 65(18): 1998-2038.
[http://dx.doi.org/10.1016/j.jacc.2015.02.038] [PMID: 25840655]
[30]
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18(6): 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[31]
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979; 95(2): 351-8.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[32]
Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss Technol 1995; 28: 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[34]
Brazilian Diabetes Society. guidelines of the brazilian diabetes society. Clannad 2020.
[35]
Brazilian Archives of Cardiology - 2019. Arq Bras Cardiol 2019; 113(4): 787-891.
[PMID: 31691761]
[36]
Brazilian Society of Nephrology e-book Biomarkers in Nephrology 2011. https://arquivos.sbn.org.br/pdf/biomarcadores.pdf.Accessed on 05/04/2020
[37]
Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune Neto A, et al. Update of the brazilian dyslipidemia and atherosclerosis prevention directive- 2017. Arq Bras Cardiol 2017; 109(2)(Suppl. 1): 1-76.
[38]
Antunes MV, Lazzaretti C, Gamaro GD, Linden R. Estudo pré-analítico e de validação para determinação de malondialdeído em plasma humano por cromatografia líquida de alta eficiência, após derivatização com 2,4-dinitrofenilhidrazina. Rev Bras Cien Farm 2008; 44: 279-87.
[http://dx.doi.org/10.1590/S1516-93322008000200013]
[39]
Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O, Ledue TB, Craig WY. Reference distributions for the positive acute phase serum proteins, alpha1-acid glycoprotein (orosomucoid), alpha1-antitrypsin, and haptoglobin: a practical, simple, and clinically relevant approach in a large cohort. J Clin Lab Anal 2000; 14(6): 284-92.
[http://dx.doi.org/10.1002/1098-2825(20001212)14:6<284:AID-JCLA7>3.0.CO;2-U] [PMID: 11138611]
[40]
World health organization. obesity: Preventing and managing the global epidemic report on a who consultation (who technical report series 894) 2000.
[41]
ABESO. Brazilian Association for the Study of Obesity and Metabolic Syndrome.Brazilian obesity guidelines (ABESO). (3ed. ),Itapevi, SP: AC Farmacêutica 2009.
[42]
Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16(3): 1215.
[http://dx.doi.org/10.1093/nar/16.3.1215] [PMID: 3344216]
[43]
Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93(18): 9821-6.
[http://dx.doi.org/10.1073/pnas.93.18.9821] [PMID: 8790415]
[44]
Costa LA, da Silva ICB, Mariz BALA, da Silva MB, Freitas-Ribeiro GM, de Oliveira NFP. Influence of smoking on methylation and hydroxymethylation levels in global DNA and specific sites of KRT14, KRT19, MIR-9-3 and MIR-137 genes of oral mucosa. Arch Oral Biol 2016; 72: 56-65.
[http://dx.doi.org/10.1016/j.archoralbio.2016.08.013] [PMID: 27543926]
[45]
Silva MBD, Melo ARDS, Costa LA, Barroso H, Oliveira NFP. Global and gene-specific DNA methylation and hydroxymethylation in human skin exposed and not exposed to sun radiation. An Bras Dermatol 2017; 92(6): 793-800.
[http://dx.doi.org/10.1590/abd1806-4841.20175875] [PMID: 29364434]
[46]
Song J, Chen S, Liu X, Duan H, Kong J, Li Z. Relationship between C-reactive protein level and diabetic retinopathy: A systematic review and meta-analysis. PLoS One 2015; 10(12): e0144406.
[http://dx.doi.org/10.1371/journal.pone.0144406] [PMID: 26636823]
[47]
Pan HZ, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol 2008; 92(4): 548-51.
[http://dx.doi.org/10.1136/bjo.2007.130542] [PMID: 18369071]
[48]
Chatziralli IP, Theodossiadis G, Dimitriadis P, et al. The effect of vitamin e on oxidative stress indicated by serum malondialdehyde in insulin-dependent Type 2 diabetes mellitus patients with retinopathy. Open Ophthalmol J 2017; 11: 51-8.
[http://dx.doi.org/10.2174/1874364101711010051] [PMID: 28567166]
[49]
He F, Xia X, Wu XF, Yu XQ, Huang FX. Diabetic retinopathy in predicting diabetic nephropathy in patients with type 2 diabetes and renal disease: a meta-analysis. Diabetologia 2013; 56(3): 457-66.
[http://dx.doi.org/10.1007/s00125-012-2796-6] [PMID: 23232641]
[50]
Zhang Q, Wang LQ, Wong KY, Li ZY, Chim CS. Infrequent DNA methylation of miR-9-1 and miR-9-3 in multiple myeloma. J Clin Pathol 2015; 68(7): 557-61.
[http://dx.doi.org/10.1136/jclinpath-2014-202817] [PMID: 25855800]
[51]
Momi N, Kaur S, Rachagani S, Ganti AK, Batra SK. Smoking and microRNA dysregulation: a cancerous combination. Trends Mol Med 2014; 20(1): 36-47.
[http://dx.doi.org/10.1016/j.molmed.2013.10.005] [PMID: 24238736]
[52]
Minor J, Wang X, Zhang F, et al. Methylation of microRNA-9 is a specific and sensitive biomarker for oral and oropharyngeal squamous cell carcinomas. Oral Oncol 2012; 48(1): 73-8.
[http://dx.doi.org/10.1016/j.oraloncology.2011.11.006] [PMID: 22133638]
[53]
Muraoka T, Soh J, Toyooka S, et al. Impact of aberrant methylation of microRNA-9 family members on non-small cell lung cancers. Mol Clin Oncol 2013; 1(1): 185-9.
[http://dx.doi.org/10.3892/mco.2012.18] [PMID: 24649145]
[54]
Fiaschetti G, Abela L, Nonoguchi N, et al. Epigenetic silencing of miRNA-9 is associated with HES1 oncogenic activity and poor prognosis of medulloblastoma. Br J Cancer 2014; 110(3): 636-47.
[http://dx.doi.org/10.1038/bjc.2013.764] [PMID: 24346283]
[55]
Coêlho MC, Queiroz IC, Viana Filho JMC, Aquino SG, Persuhn DC, Oliveira NFP. miR-9-1 gene methylation and DNMT3B (rs2424913) polymorphism may contribute to periodontitis. J Appl Oral Sci 2020; 28: e20190583.
[http://dx.doi.org/10.1590/1678-7757-2019-0583] [PMID: 32267380]
[56]
Bansal A, Pinney SE. DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes 2017; 18(3): 167-77.
[http://dx.doi.org/10.1111/pedi.12521] [PMID: 28401680]