Emerging Molecular Strategies for Improving Rice Drought Tolerance

Page: [16 - 25] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Rice occupies a pre-eminent position as a food crop in the world. Its production, however, entails up to 3000 liters of water per kilogram of grain produced. Such high demand makes rice prone to drought easily. Sustainable rice cultivation with limited water resources requires the deployment of a suitable strategy for better water use efficiency and improved drought tolerance. Several drought-related genes have been evaluated in rice for their mode of action in conferring drought tolerance. Manipulation of components of abscisic acid signal transduction, stomatal density, deposition of cuticular wax, and protein modification pathways are emerging as priority targets. Gene reprogramming by microRNAs is also being explored to achieve drought tolerance. Genetically dissected Quantitative Trait Loci (QTLs) and their constituent genes are being deployed to develop drought-tolerant rice varieties. Progressive research and challenges include a better understanding of crucial components of drought response and search for new targets and the deployment of improved varieties in the field.

Keywords: Drought, microRNAs, molecular breeding, rice, transgenics, water-deficit.

Graphical Abstract

[1]
Editorial. Ending drought. Nature, 2019, 573, 310.
[2]
Slette, I.J.; Post, A.K.; Awad, M.; Even, T.; Punzalan, A.; Williams, S.; Smith, M.D.; Knapp, A.K. How ecologists define drought, and why we should do better. Glob. Change Biol., 2019, 25(10), 3193-3200.
[http://dx.doi.org/10.1111/gcb.14747] [PMID: 31276260]
[3]
Mohanty, B.; Kitazumi, A.; Cheung, C.Y.M.; Lakshmanan, M.; de Los Reyes, B.G.; Jang, I-C.; Lee, D.Y. Identification of candidate network hubs involved in metabolic adjustments of rice under drought stress by integrating transcriptome data and genome-scale metabolic network. Plant Sci., 2016, 242, 224-239.
[http://dx.doi.org/10.1016/j.plantsci.2015.09.018] [PMID: 26566840]
[4]
Todaka, D.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants. Front. Plant Sci., 2015, 6, 84.
[http://dx.doi.org/10.3389/fpls.2015.00084] [PMID: 25741357]
[5]
Sharma, G.; Giri, J.; Tyagi, A.K. Sub-functionalization in rice gene families with regulatory roles in abiotic stress responses. Crit. Rev. Plant Sci., 2016, 35, 231-285.
[http://dx.doi.org/10.1080/07352689.2016.1265357]
[6]
Zhu, J.K. Abiotic stress signaling and responses in plants. Cell, 2016, 167(2), 313-324.
[http://dx.doi.org/10.1016/j.cell.2016.08.029] [PMID: 27716505]
[7]
Groen, S.C.; Ćalić, I.; Joly-Lopez, Z.; Platts, A.E.; Choi, J.Y.; Natividad, M.; Dorph, K.; Mauck, W.M., III; Bracken, B.; Cabral, C.L.U.; Kumar, A.; Torres, R.O.; Satija, R.; Vergara, G.; Henry, A.; Franks, S.J.; Purugganan, M.D. The strength and pattern of natural selection on gene expression in rice. Nature, 2020, 578(7796), 572-576.
[http://dx.doi.org/10.1038/s41586-020-1997-2] [PMID: 32051590]
[8]
Rajkumar, M.S.; Shankar, R.; Garg, R.; Jain, M. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics, 2020, 112(5), 3537-3548.
[http://dx.doi.org/10.1016/j.ygeno.2020.04.005] [PMID: 32278023]
[9]
Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The physiology of plant responses to drought. Science, 2020, 368(6488), 266-269.
[http://dx.doi.org/10.1126/science.aaz7614] [PMID: 32299946]
[10]
Dong, T.; Park, Y.; Hwang, I. Abscisic acid: biosynthesis, inactivation, homoeostasis and signalling. Essays Biochem., 2015, 58, 29-48.
[http://dx.doi.org/10.1042/bse0580029] [PMID: 26374885]
[11]
Joo, J.; Lee, Y.H.; Song, S.I. OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice. Planta, 2019, 249(5), 1521-1533.
[http://dx.doi.org/10.1007/s00425-019-03104-7] [PMID: 30712129]
[12]
Komatsu, K.; Takezawa, D.; Sakata, Y. Decoding ABA and osmostress signalling in plants from an evolutionary point of view. Plant Cell Environ., 2020, 43, 2894-2911.
[http://dx.doi.org/10.1111/pce.13869]
[13]
Mittler, R.; Blumwald, E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell, 2015, 27(1), 64-70.
[http://dx.doi.org/10.1105/tpc.114.133090] [PMID: 25604442]
[14]
Yao, L.; Cheng, X.; Gu, Z.; Huang, W.; Li, S.; Wang, L.; Wang, Y.F.; Xu, P.; Ma, H.; Ge, X. The AWPM-19 family protein OsPM1 mediates abscisic acid influx and drought response in rice. Plant Cell, 2018, 30(6), 1258-1276.
[http://dx.doi.org/10.1105/tpc.17.00770] [PMID: 29716991]
[15]
Tang, N.; Ma, S.; Zong, W.; Yang, N.; Lv, Y.; Yan, C.; Guo, Z.; Li, J.; Li, X.; Xiang, Y.; Song, H.; Xiao, J.; Li, X.; Xiong, L. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. Plant Cell, 2016, 28(9), 2161-2177.
[http://dx.doi.org/10.1105/tpc.16.00171] [PMID: 27468891]
[16]
Ma, S.; Tang, N.; Li, X.; Xie, Y.; Xiang, D.; Fu, J.; Shen, J.; Yang, J.; Tu, H.; Li, X.; Hu, H.; Xiong, L. Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice. Mol. Plant, 2019, 12(2), 263-277.
[http://dx.doi.org/10.1016/j.molp.2018.12.005] [PMID: 30578854]
[17]
Miao, C.; Xiao, L.; Hua, K.; Zou, C.; Zhao, Y.; Bressan, R.A.; Zhu, J.K. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc. Natl. Acad. Sci. USA, 2018, 115(23), 6058-6063.
[http://dx.doi.org/10.1073/pnas.1804774115] [PMID: 29784797]
[18]
Buckley, C.R.; Caine, R.S.; Gray, J.E. Pores for thought: Can genetic manipulation of stomatal density protect future rice yields? Front. Plant Sci., 2020, 10, 1783.
[http://dx.doi.org/10.3389/fpls.2019.01783] [PMID: 32117345]
[19]
Caine, R.S.; Yin, X.; Sloan, J.; Harrison, E.L.; Mohammed, U.; Fulton, T.; Biswal, A.K.; Dionora, J.; Chater, C.C.; Coe, R.A.; Bandyopadhyay, A.; Murchie, E.H.; Swarup, R.; Quick, W.P.; Gray, J.E. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol., 2019, 221(1), 371-384.
[http://dx.doi.org/10.1111/nph.15344] [PMID: 30043395]
[20]
Park, S.I.; Kim, J.J.; Shin, S.Y.; Kim, Y.S.; Yoon, H.S. ASR enhances environmental stress tolerance and improves grain yield by modulating stomatal closure in rice. Front. Plant Sci., 2020, 10, 1752.
[http://dx.doi.org/10.3389/fpls.2019.01752] [PMID: 32117337]
[21]
Zhu, X.; Xiong, L. Putative megaenzyme DWA1 plays essential roles in drought resistance by regulating stress-induced wax deposition in rice. Proc. Natl. Acad. Sci. USA, 2013, 110(44), 17790-17795.
[http://dx.doi.org/10.1073/pnas.1316412110] [PMID: 24127586]
[22]
Wang, Z.; Tian, X.; Zhao, Q.; Liu, Z.; Li, X.; Ren, Y.; Tang, J.; Fang, J.; Xu, Q.; Bu, Q. The E3 ligase DROUGHT HYPERSENSITIVE negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice. Plant Cell, 2018, 30(1), 228-244.
[http://dx.doi.org/10.1105/tpc.17.00823] [PMID: 29237723]
[23]
Du, H.; Huang, F.; Wu, N.; Li, X.; Hu, H.; Xiong, L. Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice. Mol. Plant, 2018, 11(4), 584-597.
[http://dx.doi.org/10.1016/j.molp.2018.01.004] [PMID: 29366830]
[24]
Giri, J.; Dansana, P.K.; Kothari, K.S.; Sharma, G.; Vij, S.; Tyagi, A.K. SAPs as novel regulators of abiotic stress response in plants. BioEssays, 2013, 35(7), 639-648.
[http://dx.doi.org/10.1002/bies.201200181] [PMID: 23640876]
[25]
Zhang, N.; Yin, Y.; Liu, X.; Tong, S.; Xing, J.; Zhang, Y.; Pudake, R.N.; Izquierdo, E.M.; Peng, H.; Xin, M.; Hu, Z.; Ni, Z.; Sun, Q.; Yao, Y. The E3 ligase TaSAP5 alters drought stress response by promoting the degradation of DRIP proteins. Plant Physiol., 2017, 175(4), 1878-1892.
[http://dx.doi.org/10.1104/pp.17.01319] [PMID: 29089392]
[26]
Muthuramalingam, P.; Jeyasri, R.; Selvaraj, A.; Kalaiyarasi, D.; Aruni, W.; Pandian, S.T.K.; Ramesh, M. Global transcriptome analysis of novel stress associated protein (SAP) genes expression dynamism of combined abiotic stresses in Oryza sativa (L.). J. Biomol. Struct. Dyn., 2020, 10, 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1747548] [PMID: 32212961]
[27]
Kim, J.M.; To, T.K.; Matsui, A.; Tanoi, K.; Kobayashi, N.I.; Matsuda, F.; Habu, Y.; Ogawa, D.; Sakamoto, T.; Matsunaga, S.; Bashir, K.; Rasheed, S.; Ando, M.; Takeda, H.; Kawaura, K.; Kusano, M.; Fukushima, A.; Endo, T.A.; Kuromori, T.; Ishida, J.; Morosawa, T.; Tanaka, M.; Torii, C.; Takebayashi, Y.; Sakakibara, H.; Ogihara, Y.; Saito, K.; Shinozaki, K.; Devoto, A.; Seki, M. Acetate-mediated novel survival strategy against drought in plants. Nat. Plants, 2017, 3, 17097.
[http://dx.doi.org/10.1038/nplants.2017.97] [PMID: 28650429]
[28]
Griffiths, C.A.; Sagar, R.; Geng, Y.; Primavesi, L.F.; Patel, M.K.; Passarelli, M.K.; Gilmore, I.S.; Steven, R.T.; Bunch, J.; Paul, M.J.; Davis, B.G. Chemical intervention in plant sugar signalling increases yield and resilience. Nature, 2016, 540(7634), 574-578.
[http://dx.doi.org/10.1038/nature20591] [PMID: 27974806]
[29]
Joshi, R.; Sahoo, K.K.; Singh, A.K.; Anwar, K.; Pundir, P.; Gautam, R.K.; Krishnamurthy, S.L.; Sopory, S.K.; Pareek, A.; Singla- Pareek, S.L. Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions. J. Exp. Bot., 2020, 71(2), 653-668.
[http://dx.doi.org/10.1093/jxb/erz462] [PMID: 31626290]
[30]
Kretzschmar, T.; Pelayo, M.A.F.; Trijatmiko, K.R.; Gabunada, L.F.; Alam, R.; Jimenez, R.; Mendioro, M.S.; Slamet-Loedin, I.H.; Sreenivasulu, N.; Bailey-Serres, J.; Ismail, A.M.; Mackill, D.J.; Septiningsih, E.M. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat. Plants, 2015, 1, 15124.
[http://dx.doi.org/10.1038/nplants.2015.124] [PMID: 27250677]
[31]
Per, T.S.; Khan, N.A.; Reddy, P.S.; Masood, A.; Hasanuzzaman, M.; Khan, M.I.R.; Anjum, N.A. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem., 2017, 115, 126-140.
[http://dx.doi.org/10.1016/j.plaphy.2017.03.018] [PMID: 28364709]
[32]
Wang, X.; Li, B.B.; Ma, T.T.; Sun, L.Y.; Tai, L.; Hu, C.H.; Liu, W.T.; Li, W.Q.; Chen, K.M. The NAD kinase OsNADK1 affects the intracellular redox balance and enhances the tolerance of rice to drought. BMC Plant Biol., 2020, 20(1), 11.
[http://dx.doi.org/10.1186/s12870-019-2234-8] [PMID: 31910821]
[33]
Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav., 2011, 6(11), 1746-1751.
[http://dx.doi.org/10.4161/psb.6.11.17801] [PMID: 22057338]
[34]
Selvaraj, M.G.; Jan, A.; Ishizaki, T.; Valencia, M.; Dedicova, B.; Maruyama, K.; Ogata, T.; Todaka, D.; Yamaguchi-Shinozaki, K.; Nakashima, K.; Ishitani, M. Expression of the CCCH-tandem zinc finger protein gene OsTZF5 under a stress-inducible promoter mitigates the effect of drought stress on rice grain yield under field conditions. Plant Biotechnol. J., 2020, 18(8), 1711-1721.
[http://dx.doi.org/10.1111/pbi.13334] [PMID: 31930666]
[35]
Selvaraj, M.G.; Ishizaki, T.; Valencia, M.; Ogawa, S.; Dedicova, B.; Ogata, T.; Yoshiwara, K.; Maruyama, K.; Kusano, M.; Saito, K.; Takahashi, F.; Shinozaki, K.; Nakashima, K.; Ishitani, M. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnol. J., 2017, 15(11), 1465-1477.
[http://dx.doi.org/10.1111/pbi.12731] [PMID: 28378532]
[36]
Mutum, R.D.; Kumar, S.; Balyan, S.; Kansal, S.; Mathur, S.; Raghuvanshi, S. Identification of novel miRNAs from drought tolerant rice variety Nagina 22. Sci. Rep., 2016, 6, 30786.
[http://dx.doi.org/10.1038/srep30786] [PMID: 27499088]
[37]
Balyan, S.C.; Mutum, R.D.; Kansal, S.; Kumar, S.; Mathur, S.; Raghuvanshi, S. Insights into the small RNA-mediated networks in response to abiotic stress in plants.Elucidation of Abiotic Stress Signaling in Plants; Springer New York: New York, NY, 2015, pp. 45-91.
[http://dx.doi.org/10.1007/978-1-4939-2540-7_3]
[38]
Xia, H.; Yu, S.; Kong, D.; Xiong, J.; Ma, X.; Chen, L.; Luo, L. Temporal responses of conserved miRNAs to drought and their associations with drought tolerance and productivity in rice. BMC Genomics, 2020, 21(1), 232.
[http://dx.doi.org/10.1186/s12864-020-6646-5] [PMID: 32171232]
[39]
Zhou, L.; Liu, Y.; Liu, Z.; Kong, D.; Duan, M.; Luo, L. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J. Exp. Bot., 2010, 61(15), 4157-4168.
[http://dx.doi.org/10.1093/jxb/erq237] [PMID: 20729483]
[40]
Mutum, R.D.; Balyan, S.C.; Kansal, S.; Agarwal, P.; Kumar, S.; Kumar, M.; Raghuvanshi, S. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J., 2013, 280(7), 1717-1730.
[http://dx.doi.org/10.1111/febs.12186] [PMID: 23399101]
[41]
Kansal, S.; Mutum, R.D.; Balyan, S.C.; Arora, M.K.; Singh, A.K.; Mathur, S.; Raghuvanshi, S. Unique miRNome during anthesis in drought-tolerant indica rice var. Nagina 22. Planta, 2015, 241(6), 1543-1559.
[http://dx.doi.org/10.1007/s00425-015-2279-3] [PMID: 25809150]
[42]
Balyan, S.; Kumar, M.; Mutum, R.D.; Raghuvanshi, U.; Agarwal, P.; Mathur, S.; Raghuvanshi, S. Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Sci. Rep., 2017, 7(1), 15446.
[http://dx.doi.org/10.1038/s41598-017-15450-1] [PMID: 29133823]
[43]
Cui, L-G.; Shan, J-X.; Shi, M.; Gao, J-P.; Lin, H-X. The miR156-SPL9-DFR pathway coordinates the relationship between development and abiotic stress tolerance in plants. Plant J., 2014, 80(6), 1108-1117.
[http://dx.doi.org/10.1111/tpj.12712] [PMID: 25345491]
[44]
Zhang, J.; Zhang, H.; Srivastava, A.K.; Pan, Y.; Bai, J.; Fang, J.; Shi, H.; Zhu, J.K. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol., 2018, 176(3), 2082-2094.
[http://dx.doi.org/10.1104/pp.17.01432] [PMID: 29367235]
[45]
Fang, Y.; Xie, K.; Xiong, L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J. Exp. Bot., 2014, 65(8), 2119-2135.
[http://dx.doi.org/10.1093/jxb/eru072] [PMID: 24604734]
[46]
Jiang, D.; Zhou, L.; Chen, W.; Ye, N.; Xia, J.; Zhuang, C. Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways. Rice (N. Y.), 2019, 12(1), 76.
[http://dx.doi.org/10.1186/s12284-019-0334-6] [PMID: 31637532]
[47]
Xia, K.; Wang, R.; Ou, X.; Fang, Z.; Tian, C.; Duan, J.; Wang, Y.; Zhang, M. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One, 2012, 7(1), e30039.
[http://dx.doi.org/10.1371/journal.pone.0030039] [PMID: 22253868]
[48]
Lu, Y.; Feng, Z.; Liu, X.; Bian, L.; Xie, H.; Zhang, C.; Mysore, K.S.; Liang, J. MiR393 and miR390 synergistically regulate lateral root growth in rice under different conditions. BMC Plant Biol., 2018, 18(1), 261.
[http://dx.doi.org/10.1186/s12870-018-1488-x] [PMID: 30373525]
[49]
Balyan, S.; Joseph, S.V.; Jain, R.; Mutum, R.D.; Raghuvanshi, S. Investigation into the miRNA/5′ isomiRNAs function and drought-mediated miRNA processing in rice. Funct. Integr. Genomics, 2020, 20(4), 509-522.
[http://dx.doi.org/10.1007/s10142-020-00731-2] [PMID: 31925598]
[50]
Zhang, H.; Zhang, D.; Wang, M.; Sun, J.; Qi, Y.; Li, J.; Wei, X.; Han, L.; Qiu, Z.; Tang, S.; Li, Z. A core collection and mini core collection of Oryza sativa L. in China. Theor. Appl. Genet., 2011, 122(1), 49-61.
[http://dx.doi.org/10.1007/s00122-010-1421-7] [PMID: 20717799]
[51]
Tiwari, K.K.; Singh, A.; Pattnaik, S.; Sandhu, M.; Kaur, S.; Jain, S.; Tiwari, S.; Mehrotra, S.; Anumalla, M.; Samal, R. Identification of a diverse mini-core panel of Indian rice germplasm based on genotyping using microsatellite markers. Plant Breed., 2015, 134, 164-171.
[http://dx.doi.org/10.1111/pbr.12252]
[52]
Mohapatra, T.; Robin, S.; Sarla, N.; Sheshashayee, M.; Singh, A.K.; Singh, K.; Singh, N.K.; Amitha Mithra, S.V.; Sharma, R.P. EMS induced mutants of upland rice variety Nagina22: generation and characterization. Proceedings of the Indian National Science Academy, 2014, 80, 163-172.
[http://dx.doi.org/10.16943/ptinsa/2014/v80i1/55094]
[53]
Lima, J.M.; Nath, M.; Dokku, P.; Raman, K.V.; Kulkarni, K.P.; Vishwakarma, C.; Sahoo, S.P.; Mohapatra, U.B.; Mithra, S.V.; Chinnusamy, V.; Robin, S.; Sarla, N.; Seshashayee, M.; Singh, K.; Singh, A.K.; Singh, N.K.; Sharma, R.P.; Mohapatra, T. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants, 2015, 7, plv023.
[http://dx.doi.org/10.1093/aobpla/plv023] [PMID: 25818072]
[54]
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005, 436(7052), 793-800.
[http://dx.doi.org/10.1038/nature03895] [PMID: 16100779]
[55]
Jain, M.; Moharana, K.C.; Shankar, R.; Kumari, R.; Garg, R. Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance. Plant Biotechnol. J., 2014, 12(2), 253-264.
[http://dx.doi.org/10.1111/pbi.12133] [PMID: 24460890]
[56]
Alexandrov, N.; Tai, S.; Wang, W.; Mansueto, L.; Palis, K.; Fuentes, R.R.; Ulat, V.J.; Chebotarov, D.; Zhang, G.; Li, Z.; Mauleon, R.; Hamilton, R.S.; McNally, K.L. SNP-Seek database of SNPs derived from 3000 rice genomes. Nucleic Acids Res., 2015, 43(Database issue), D1023-D1027.
[http://dx.doi.org/10.1093/nar/gku1039] [PMID: 25429973]
[57]
Singh, N.; Jayaswal, P.K.; Panda, K.; Mandal, P.; Kumar, V.; Singh, B.; Mishra, S.; Singh, Y.; Singh, R.; Rai, V.; Gupta, A.; Raj Sharma, T.; Singh, N.K. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci. Rep., 2015, 5, 11600.
[http://dx.doi.org/10.1038/srep11600] [PMID: 26111882]
[58]
McCouch, S.R.; Wright, M.H.; Tung, C.W.; Maron, L.G.; McNally, K.L.; Fitzgerald, M.; Singh, N.; DeClerck, G.; Agosto-Perez, F.; Korniliev, P.; Greenberg, A.J.; Naredo, M.E.; Mercado, S.M.; Harrington, S.E.; Shi, Y.; Branchini, D.A.; Kuser-Falcão, P.R.; Leung, H.; Ebana, K.; Yano, M.; Eizenga, G.; McClung, A.; Mezey, J. Open access resources for genome-wide association mapping in rice. Nat. Commun., 2016, 7, 10532.
[http://dx.doi.org/10.1038/ncomms10532] [PMID: 26842267]
[59]
Parida, S.K.; Mukerji, M.; Singh, A.K.; Singh, N.K.; Mohapatra, T. SNPs in stress-responsive rice genes: validation, genotyping, functional relevance and population structure. BMC Genomics, 2012, 13, 426.
[http://dx.doi.org/10.1186/1471-2164-13-426] [PMID: 22921105]
[60]
Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; Inoue, H.; Takehisa, H.; Motoyama, R.; Nagamura, Y.; Wu, J.; Matsumoto, T.; Takai, T.; Okuno, K.; Yano, M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet., 2013, 45(9), 1097-1102.
[http://dx.doi.org/10.1038/ng.2725] [PMID: 23913002]
[61]
Ning, J.; Li, X.; Hicks, L.M.; Xiong, L. A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol., 2010, 152(2), 876-890.
[http://dx.doi.org/10.1104/pp.109.149856] [PMID: 20007444]
[62]
Vikram, P; Mallikarjuna Swamy, BP; Dixit, S; Ahmed, HU qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genetics, 2011, 12, 89.
[63]
Venuprasad, R.; Bool, M.E.; Quiatchon, L.; Atlin, G.N. A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor. Appl. Genet., 2012, 124(2), 323-332.
[http://dx.doi.org/10.1007/s00122-011-1707-4] [PMID: 21938473]
[64]
Swamy, B.P.M.; Ahmed, H.U.; Henry, A.; Mauleon, R.; Dixit, S.; Vikram, P.; Tilatto, R.; Verulkar, S.B.; Perraju, P.; Mandal, N.P.; Variar, M.; Robin, S.; Chandrababu, R.; Singh, O.N.; Dwivedi, J.L.; Das, S.P.; Mishra, K.K.; Yadaw, R.B.; Aditya, T.L.; Karmakar, B.; Satoh, K.; Moumeni, A.; Kikuchi, S.; Leung, H.; Kumar, A. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS One, 2013, 8(5), e62795.
[http://dx.doi.org/10.1371/journal.pone.0062795] [PMID: 23667521]
[65]
Yu, H.; Xie, W.; Wang, J.; Xing, Y.; Xu, C.; Li, X.; Xiao, J.; Zhang, Q. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2011, 6(3), e17595.
[http://dx.doi.org/10.1371/journal.pone.0017595] [PMID: 21390234]
[66]
Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; Innan, H.; Cano, L.M.; Kamoun, S.; Terauchi, R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J., 2013, 74(1), 174-183.
[http://dx.doi.org/10.1111/tpj.12105] [PMID: 23289725]
[67]
Yadav, S.; Sandhu, N.; Singh, V.K.; Catolos, M.; Kumar, A. Genotyping-by-sequencing based QTL mapping for rice grain yield under reproductive stage drought stress tolerance. Sci. Rep., 2019, 9(1), 14326.
[http://dx.doi.org/10.1038/s41598-019-50880-z] [PMID: 31586108]
[68]
Kadam, N.N.; Struik, P.C.; Rebolledo, M.C.; Yin, X.; Jagadish, S.V.K. Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage. J. Exp. Bot., 2018, 69(16), 4017-4032.
[http://dx.doi.org/10.1093/jxb/ery186] [PMID: 29767744]
[69]
Hoang, G.T.; Van Dinh, L.; Nguyen, T.T.; Ta, N.K.; Gathignol, F.; Mai, C.D.; Jouannic, S.; Tran, K.D.; Khuat, T.H.; Do, V.N.; Lebrun, M.; Courtois, B.; Gantet, P. Genome-wide association study of a panel of Vietnamese rice landraces reveals new QTLs for tolerance to water deficit during the vegetative phase. Rice (N. Y.), 2019, 12(1), 4.
[http://dx.doi.org/10.1186/s12284-018-0258-6] [PMID: 30701393]
[70]
Xiong, H.; Yu, J.; Miao, J.; Li, J.; Zhang, H.; Wang, X.; Liu, P.; Zhao, Y.; Jiang, C.; Yin, Z.; Li, Y.; Guo, Y.; Fu, B.; Wang, W.; Li, Z.; Ali, J.; Li, Z. Natural variation in OsLG3 increases drought tolerance in rice by inducing ROS scavenging. Plant Physiol., 2018, 178(1), 451-467.
[http://dx.doi.org/10.1104/pp.17.01492] [PMID: 30068540]
[71]
Singh, R.; Singh, Y.; Xalaxo, S.; Verulkar, S.; Yadav, N.; Singh, S.; Singh, N.; Prasad, K.S.N.; Kondayya, K.; Rao, P.V.R.; Rani, M.G.; Anuradha, T.; Suraynarayana, Y.; Sharma, P.C.; Krishnamurthy, S.L.; Sharma, S.K.; Dwivedi, J.L.; Singh, A.K.; Singh, P.K.; Nilanjay, ; Singh, N.K.; Kumar, R.; Chetia, S.K.; Ahmad, T.; Rai, M.; Perraju, P.; Pande, A.; Singh, D.N.; Mandal, N.P.; Reddy, J.N.; Singh, O.N.; Katara, J.L.; Marandi, B.; Swain, P.; Sarkar, R.K.; Singh, D.P.; Mohapatra, T.; Padmawathi, G.; Ram, T.; Kathiresan, R.M.; Paramsivam, K.; Nadarajan, S.; Thirumeni, S.; Nagarajan, M.; Singh, A.K.; Vikram, P.; Kumar, A.; Septiningshih, E.; Singh, U.S.; Ismail, A.M.; Mackill, D.; Singh, N.K. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci., 2016, 242, 278-287.
[http://dx.doi.org/10.1016/j.plantsci.2015.08.008] [PMID: 26566845]
[72]
Sandhu, N.; Dixit, S.; Swamy, B.P.M.; Raman, A.; Kumar, S.; Singh, S.P.; Yadaw, R.B.; Singh, O.N.; Reddy, J.N.; Anandan, A.; Yadav, S.; Venkataeshwarllu, C.; Henry, A.; Verulkar, S.; Mandal, N.P.; Ram, T.; Badri, J.; Vikram, P.; Kumar, A. Marker assisted breeding to develop multiple stress tolerant varieties for flood and drought prone areas. Rice (N. Y.), 2019, 12(1), 8.
[http://dx.doi.org/10.1186/s12284-019-0269-y] [PMID: 30778782]
[73]
Hilker, M.; Schmülling, T. Stress priming, memory, and signalling in plants. Plant Cell Environ., 2019, 42(3), 753-761.
[http://dx.doi.org/10.1111/pce.13526] [PMID: 30779228]
[74]
Orosa-Puente, B.; Leftley, N.; von Wangenheim, D.; Banda, J.; Srivastava, A.K.; Hill, K.; Truskina, J.; Bhosale, R.; Morris, E.; Srivastava, M.; Kümpers, B.; Goh, T.; Fukaki, H.; Vermeer, J.E.M.; Vernoux, T.; Dinneny, J.R.; French, A.P.; Bishopp, A.; Sadanandom, A.; Bennett, M.J. Root branching toward water involves posttranslational modification of transcription factor ARF7. Science, 2018, 362(6421), 1407-1410.
[http://dx.doi.org/10.1126/science.aau3956] [PMID: 30573626]