Nanotoxicity has become the topic of great concern in nanoscience and nanotechnology because of the increasing toxic effects of nanomaterials on living organisms. The toxic patterns of chemotherapeutic drugs, nanomedicines, and nanocarrier are closely associated. Long term exposure of nanocarrier composed of several bioactive (protein and peptide drugs) and chemotherapeutic drugs (anticancerous agents) leads to toxicity, selective induction of cytotoxicity in normal cells and organ. Important factors that contribute directly and significantly to the toxicity of nanoparticles (NPs) constitute particle size, shape and surface area. Apart from size and shape, the structure of the NPs also contributes to nanotoxicity. The review focuses on the basic perceptions and mechanisms of nanomaterial-based drug delivery and nanotoxicity is introduced along with a detailed classification of drug delivery approaches i.e., carbon nanotubes, Quantum dots, fullerenes and NPs and nanotoxicity models, supported by the most contemporary investigation studies with distinctive emphasis on the communicate between nanotoxicity and nanomedicines research, which is emphasized in order to discover future prospects for developing progressive therapeutic methods. In this framework, the present silhouette focused on assembling and present recent advances, outcomes, and interlinks between nanomaterial-based drug delivery and nanotoxicity disciplines in order to provide inclusive supervision for future nanotechnology-based medicinal research. Reactive oxygen stress with subsequent DNA damage is the major reason for nanotoxicity which can be overcome using green nanoscience uses of antioxidants and surface modification. The silhouette is established with future forecasts on the use of nanocarrier for manipulating the behavior of living organisms.
Keywords: Nanotoxicity, nanomedicines, cancer, drug delivery, therapeutic tool, biomarkers.