Current Nanotoxicity and Prevention (Discontinued)

Author(s): Saket Asati, Adarsh Sahu and Ashish Jain*

DOI: 10.2174/2665980801999201230095324

Nanotoxicity: The Dark Side of Nanoformulations

Page: [6 - 25] Pages: 20

  • * (Excluding Mailing and Handling)

Abstract

Nanotoxicity has become the topic of great concern in nanoscience and nanotechnology because of the increasing toxic effects of nanomaterials on living organisms. The toxic patterns of chemotherapeutic drugs, nanomedicines, and nanocarrier are closely associated. Long term exposure of nanocarrier composed of several bioactive (protein and peptide drugs) and chemotherapeutic drugs (anticancerous agents) leads to toxicity, selective induction of cytotoxicity in normal cells and organ. Important factors that contribute directly and significantly to the toxicity of nanoparticles (NPs) constitute particle size, shape and surface area. Apart from size and shape, the structure of the NPs also contributes to nanotoxicity. The review focuses on the basic perceptions and mechanisms of nanomaterial-based drug delivery and nanotoxicity is introduced along with a detailed classification of drug delivery approaches i.e., carbon nanotubes, Quantum dots, fullerenes and NPs and nanotoxicity models, supported by the most contemporary investigation studies with distinctive emphasis on the communicate between nanotoxicity and nanomedicines research, which is emphasized in order to discover future prospects for developing progressive therapeutic methods. In this framework, the present silhouette focused on assembling and present recent advances, outcomes, and interlinks between nanomaterial-based drug delivery and nanotoxicity disciplines in order to provide inclusive supervision for future nanotechnology-based medicinal research. Reactive oxygen stress with subsequent DNA damage is the major reason for nanotoxicity which can be overcome using green nanoscience uses of antioxidants and surface modification. The silhouette is established with future forecasts on the use of nanocarrier for manipulating the behavior of living organisms.

Keywords: Nanotoxicity, nanomedicines, cancer, drug delivery, therapeutic tool, biomarkers.

Graphical Abstract

[1]
Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol 2007; 2(1): 16.
[http://dx.doi.org/10.1186/1745-6673-2-16] [PMID: 18053152]
[2]
Vashist SK, Venkatesh AG, Mitsakakis K, et al. Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. Bionanoscience 2012; 2(3): 115-26.
[http://dx.doi.org/10.1007/s12668-012-0047-4]
[3]
Barry RC, Lin Y, Wang J, Liu G, Timchalk CA. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. J Expo Sci Environ Epidemiol 2009; 19(1): 1-18.
[http://dx.doi.org/10.1038/jes.2008.71] [PMID: 19018275]
[4]
Park KH, Im SH, Park OO. The size control of silver nanocrystals with different polyols and its application to low-reflection coating materials. Nanotechnology 2011; 22(4)045602
[http://dx.doi.org/10.1088/0957-4484/22/4/045602] [PMID: 21157012]
[5]
Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 2013; 10(3): 831-47.
[http://dx.doi.org/10.1021/mp3005885] [PMID: 23360440]
[6]
Wong DT. Salivary diagnostics powered by nanotechnologies, proteomics and genomics. J Am Dent Assoc 2006; 137(3): 313-21.
[http://dx.doi.org/10.14219/jada.archive.2006.0180] [PMID: 16570464]
[7]
Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009; 17(8): 2950-62.
[http://dx.doi.org/10.1016/j.bmc.2009.02.043] [PMID: 19299149]
[8]
Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2012; 2(1): 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[9]
Gao Y, Chen Y, Ji X, et al. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 2011; 5(12): 9788-98.
[http://dx.doi.org/10.1021/nn2033105] [PMID: 22070571]
[10]
Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer research 2009; 0008-5472.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2496]
[11]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2012; 64: 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[12]
Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA. Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 1995; 674(1): 171-4.
[http://dx.doi.org/10.1016/0006-8993(95)00023-J] [PMID: 7773690]
[13]
Zensi A, Begley D, Pontikis C, et al. Albumin nanoparticles targeted with Apo E enter the CNS by transcytosis and are delivered to neurones. J Control Release 2009; 137(1): 78-86.
[http://dx.doi.org/10.1016/j.jconrel.2009.03.002] [PMID: 19285109]
[14]
Lockman PR, Koziara JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 2004; 12(9-10): 635-41.
[http://dx.doi.org/10.1080/10611860400015936] [PMID: 15621689]
[15]
Fadeel B, Garcia-Bennett AE. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev 2010; 62(3): 362-74.
[http://dx.doi.org/10.1016/j.addr.2009.11.008] [PMID: 19900497]
[16]
Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[17]
Farré M, Sanchís J, Barceló D. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Analyt Chem 2011; 30(3): 517-27.
[http://dx.doi.org/10.1016/j.trac.2010.11.014]
[18]
Crane M, Handy RD, Garrod J, Owen R. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 2008; 17(5): 421-37.
[http://dx.doi.org/10.1007/s10646-008-0215-z] [PMID: 18438709]
[19]
Petosa AR, Jaisi DP, Quevedo IR, Elimelech M, Tufenkji N. Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 2010; 44(17): 6532-49.
[http://dx.doi.org/10.1021/es100598h] [PMID: 20687602]
[20]
Methner M, Hodson L, Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials--part A. J Occup Environ Hyg 2010; 7(3): 127-32.
[http://dx.doi.org/10.1080/15459620903476355] [PMID: 20017054]
[21]
Sanvicens N, Marco MP. Multifunctional nanoparticles--properties and prospects for their use in human medicine. Trends Biotechnol 2008; 26(8): 425-33.
[http://dx.doi.org/10.1016/j.tibtech.2008.04.005] [PMID: 18514941]
[22]
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622-7.
[http://dx.doi.org/10.1126/science.1114397] [PMID: 16456071]
[23]
Lankveld DP, Oomen AG, Krystek P, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010; 31(32): 8350-61.
[http://dx.doi.org/10.1016/j.biomaterials.2010.07.045] [PMID: 20684985]
[24]
Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004; 77(1): 117-25.
[http://dx.doi.org/10.1093/toxsci/kfg228] [PMID: 14514968]
[25]
De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 2008; 29(12): 1912-9.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[26]
Khanna P, Ong C, Bay BH, Baeg GH. Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials (Basel) 2015; 5(3): 1163-80.
[http://dx.doi.org/10.3390/nano5031163] [PMID: 28347058]
[27]
De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine 2008; 3(2): 133-49.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[28]
Asati S, Pandey V, Soni V. RGD Peptide as a Targeting Moiety for Theranostic Purpose: An Update Study. Int J Pept Res Ther 2018; 1-17.
[29]
Kim SC, Kim DW, Shim YH, et al. in vivo evaluation of polymeric micellar paclitaxel formulation, toxicity and efficacy. Journal of controlled release,2001, 72, 191-202Dubey A; Goswami M.’ Yadav K,’ Chaudhary D Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line. PLoS One 2015; 10(5)e0127493
[PMID: 26011447]
[30]
Huang H, Zhou M, Ruan L, et al. AMPK mediates the neurotoxicity of iron oxide nanoparticles retained in mitochondria or lysosomes. Metallomics 2019; 11(7): 1200-6.
[http://dx.doi.org/10.1039/C9MT00103D] [PMID: 31241124]
[31]
Yin JJ, Zhao B, Xia Q. Electron spin resonance spectroscopy for studying the generation and scavenging of reactive oxygen species by nanomaterials.Nanopharmaceuticals: the potential application of nanomaterials. Singapore: World Scientific Publishing Company 2012; pp. 375-400.
[http://dx.doi.org/10.1142/9789814368674_0014]
[32]
Li Y, Pei Y, Zhang X, et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation, and biodistribution in rats. Journal of controlled release 2001; 71: 203-11.
[33]
Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM. Nanoemulsion, formation, structure and physical properties. J Phys Condens Matter 2006; 2: 56-60.
[34]
Zhang JQ, Zhang ZR, Yang H, Tan QY, Qin SR, Qiu XL. Lyophilized paclitaxel magnetoliposomes as a potential drug delivery system for breast carcinoma via parenteral administration: in vitro and in vivo studies. Pharm Res 2005; 22(4): 573-83.
[http://dx.doi.org/10.1007/s11095-005-2496-8] [PMID: 15846465]
[35]
Jeong B, Bae YH, Kim SW. In situ gelation of PEG-PLGA-PEG triblock copolymer aqueous solutions and degradation thereof. J Biomed Mater Res 2000; 50(2): 171-7.
[http://dx.doi.org/10.1002/(SICI)1097-4636(200005)50:2<171::AID-JBM11>3.0.CO;2-F] [PMID: 10679681]
[36]
Yadav S, Sahu P, Chaurasia A. Role of Cyamopsistetragonoloba against Cisplatin induced Genotoxicity: Analysis of Micronucleus and Chromosome Aberrations in vivo. International journal of biological innovation 2013; 2: 184-93.
[37]
Sahu P, Kashaw SK, Jain S, Sau S, Iyer AK. Assessment of penetration potential of pH responsive double walled biodegradable nanogels coated with eucalyptus oil for the controlled delivery of 5-fluorouracil: in vitro and ex vivo studies. J Control Release 2017; 253: 122-36.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.023] [PMID: 28322977]
[38]
Lacoeuille F, Hindre F, Moal F, et al. in vivo evaluation of lipid nanocapsules as a promising colloidal carrier for paclitaxel. Int J Pharm 2007; 344(1-2): 143-9.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.014] [PMID: 17646066]
[39]
Burger KN, Staffhorst RW, de Vijlder HC, et al. Nanocapsules: lipid-coated aggregates of cisplatin with high cytotoxicity. Nat Med 2002; 8(1): 81-4.
[http://dx.doi.org/10.1038/nm0102-81] [PMID: 11786911]
[40]
Liu X, Sun J, Chen X, et al. Pharmacokinetics, tissue distribution and anti-tumour efficacy of paclitaxel delivered by polyvinylpyrrolidone solid dispersion. J Pharm Pharmacol 2012; 64(6): 775-82.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01471.x] [PMID: 22571255]
[41]
Bailon P, Berthold W. Polyethylene glycol-conjugated pharmaceutical proteins. Pharm Sci Technol Today 1998; 1: 352-6.
[http://dx.doi.org/10.1016/S1461-5347(98)00086-8]
[42]
Baviskar DT, Chaudhari RD, Kale MT, Jain DK. Recent advances in tumor targeted drug delivery system: an overview. J Biomed Pharm Sci 2011; 1: 32-42.
[43]
Yoshizawa Y, Kono Y, Ogawara K, Kimura T, Higaki K. PEG liposomalization of paclitaxel improved its in vivo disposition and anti-tumor efficacy. Int J Pharm 2011; 412(1-2): 132-41.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.008] [PMID: 21507344]
[44]
Jain RK. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release 2001; 74(1-3): 7-25.
[http://dx.doi.org/10.1016/S0168-3659(01)00306-6] [PMID: 11489479]
[45]
Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release 2004; 96(2): 273-83.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.003] [PMID: 15081218]
[46]
Sahu P, Bhatt A, Chaurasia A, Gajbhiye V. Enhanced hepatoprotective activity of piperine loaded chitosan microspheres. Int J Drug Dev Res 2012; 4: 259-62.
[47]
Chaurasia A, Sahu P, Gajbhiye V. Improved anticancerous activity of Indian aloe loaded chitosan microspheres. Int J Pharm Arch 2013; 3: 71-6.
[48]
Jain A, Agarwal A, Majumder S, et al. Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 2010; 148(3): 359-67.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.003] [PMID: 20854859]
[49]
Kohli E, Han HY, Zeman AD, Vinogradov SV. Formulations of biodegradable Nanogel carriers with 5′-triphosphates of nucleoside analogs that display a reduced cytotoxicity and enhanced drug activity. J Control Release 2007; 121(1-2): 19-27.
[http://dx.doi.org/10.1016/j.jconrel.2007.04.007] [PMID: 17509713]
[50]
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000; 21(23): 2475-90.
[http://dx.doi.org/10.1016/S0142-9612(00)00115-0] [PMID: 11055295]
[51]
Bombardelli E, Spelta M. Phospholipid–polyphenol complexes, a new concept in skin care ingredients. Cosmet Toilet 1991; 106: 69-76.
[52]
Auger N, Thillet J, Wanherdrick K, et al. Genetic alterations associated with acquired temozolomide resistance in SNB-19, a human glioma cell line. Mol Cancer Ther 2006; 5(9): 2182-92.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0428] [PMID: 16985051]
[53]
Kim S, Park KM, Ko JY, et al. Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety. Colloids Surf B Biointerfaces 2008; 63(1): 55-63.
[http://dx.doi.org/10.1016/j.colsurfb.2007.11.009] [PMID: 18164602]
[54]
Missirlis D, Kawamura R, Tirelli N, Hubbell JA. Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. Eur J Pharm Sci 2006; 29(2): 120-9.
[http://dx.doi.org/10.1016/j.ejps.2006.06.003] [PMID: 16904301]
[55]
Naik S, Patel D, Chuttani K, Mishra AK, Misra A. in vitro mechanistic study of cell death and in vivo performance evaluation of RGD grafted PEGylated docetaxel liposomes in breast cancer. Nanomedicine (Lond) 2012; 8(6): 951-62.
[http://dx.doi.org/10.1016/j.nano.2011.11.008] [PMID: 22115600]
[56]
Kievit FM, Wang FY, Fang C, et al. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro. J Control Release 2011; 152(1): 76-83.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.024] [PMID: 21277920]
[57]
Hogg N. Red meat and colon cancer: heme proteins and nitrite in the gut. A commentary on “diet-induced endogenous formation of nitroso compounds in the GI tract”. Free Radic Biol Med 2007; 43(7): 1037-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2007.07.006] [PMID: 17761299]
[58]
Li N, Wang J, Yang X, Li L. Novel nanogels as drug delivery systems for poorly soluble anticancer drugs. Colloids Surf B Biointerfaces 2011; 83(2): 237-44.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.027] [PMID: 21159495]
[59]
Kabanov AV, Vinogradov SV. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew Chem Int Ed Engl 2009; 48(30): 5418-29.
[http://dx.doi.org/10.1002/anie.200900441] [PMID: 19562807]
[60]
Hasegawa U, Sawada S, Shimizu T, et al. Raspberry-like assembly of cross-linked nanogels for protein delivery. J Control Release 2009; 140(3): 312-7.
[http://dx.doi.org/10.1016/j.jconrel.2009.06.025] [PMID: 19573568]
[61]
Lee Y, Park SY, Kim C, Park TG. Thermally triggered intracellular explosion of volume transition nanogels for necrotic cell death. J Control Release 2009; 135(1): 89-95.
[http://dx.doi.org/10.1016/j.jconrel.2008.12.008] [PMID: 19154762]
[62]
Kim JH, Bae SM, Na MH, et al. Facilitated intracellular delivery of peptide-guided nanoparticles in tumor tissues. J Control Release 2012; 157(3): 493-9.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.070] [PMID: 21945679]
[63]
Sahu P, Kashaw SK, Kushwah V, Sau S, Jain S, Iyer AK. pH responsive biodegradable nanogels for sustained release of bleomycin. Bioorg Med Chem 2017; 25(17): 4595-613.
[http://dx.doi.org/10.1016/j.bmc.2017.06.038] [PMID: 28734664]
[64]
Lo JT, Chen BH, Lee TM, Han J, Li JL. Self-emulsifying O/W formulations of paclitaxel prepared from mixed nonionic surfactants. J Pharm Sci 2010; 99(5): 2320-32.
[http://dx.doi.org/10.1002/jps.21993] [PMID: 19894274]
[65]
Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci 2007; 32: 762-98.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.05.017]
[66]
Bouissou C, Rouse JJ, Price R, van der Walle CF. The influence of surfactant on PLGA microsphere glass transition and water sorption: remodeling the surface morphology to attenuate the burst release. Pharm Res 2006; 23(6): 1295-305.
[http://dx.doi.org/10.1007/s11095-006-0180-2] [PMID: 16715359]
[67]
Yang YY, Chung TS, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 2001; 22(3): 231-41.
[http://dx.doi.org/10.1016/S0142-9612(00)00178-2] [PMID: 11197498]
[68]
Xu Y-Y, Yang J, Shen T, et al. Intravenous administration of multi-walled carbon nanotubes affects the formation of atherosclerosis in Sprague-Dawley rats. J Occup Health 2012; 54(5): 361-9.
[http://dx.doi.org/10.1539/joh.12-0019-OA] [PMID: 22972483]
[69]
Jain A, Gulbake A, Shilpi S, Hurkat P, Jain SK. Peptide and Protein Delivery Using New Drug Delivery Systems. Critical Reviews™ in Therapeutic Drug Carrier Systems 2013; 30(4): 329.
[70]
Baan R, Straif K, Grosse Y, et al. WHO International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of alcoholic beverages. Lancet Oncol 2007; 8(4): 292-3.
[http://dx.doi.org/10.1016/S1470-2045(07)70099-2] [PMID: 17431955]
[71]
Bae KH, Mok H, Park TG. Synthesis, characterization, and intracellular delivery of reducible heparin nanogels for apoptotic cell death. Biomaterials 2008; 29(23): 3376-83.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.035] [PMID: 18474396]
[72]
Kan P, Chen ZB, Lee CJ, Chu IM. Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system. J Control Release 1999; 58(3): 271-8.
[http://dx.doi.org/10.1016/S0168-3659(98)00164-3] [PMID: 10099152]
[73]
Chang RS, Kim J, Lee HY, et al. Reduced dose-limiting toxicity of intraperitoneal mitoxantrone chemotherapy using cardiolipin-based anionic liposomes. Nanomedicine (Lond) 2010; 6(6): 769-76.
[http://dx.doi.org/10.1016/j.nano.2010.05.003] [PMID: 20570638]
[74]
Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives. J Control Release 2008; 125(3): 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[75]
Hureaux J, Lagarce F, Gagnadoux F, et al. Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm Res 2010; 27(3): 421-30.
[http://dx.doi.org/10.1007/s11095-009-0024-y] [PMID: 20054705]
[76]
Bhaskaran S, Lakshmi PK. Comparative evaluation of niosome formulations prepared by different techniques. Acta Pharmaceutica Sciencia 2009; 51: 27-32.
[77]
Bazile DV, Ropert C, Huve P, et al. Body distribution of fully biodegradable [14C]-poly(lactic acid) nanoparticles coated with albumin after parenteral administration to rats. Biomaterials 1992; 13(15): 1093-102.
[http://dx.doi.org/10.1016/0142-9612(92)90142-B] [PMID: 1493193]
[78]
Allen TM. Liposomes. Opportunities in drug delivery. Drugs 1997; 54(Suppl. 4): 8-14.
[http://dx.doi.org/10.2165/00003495-199700544-00004] [PMID: 9361956]
[79]
Yanasarn N, Sloat BR, Cui Z. Nanoparticles engineered from lecithin-in-water emulsions as a potential delivery system for docetaxel. Int J Pharm 2009; 379(1): 174-80.
[http://dx.doi.org/10.1016/j.ijpharm.2009.06.004] [PMID: 19524029]
[80]
Houchin ML, Topp EM. Physical properties of PLGA films during polymer degradation. J Appl Polym Sci 2009; 114: 2848-54.
[http://dx.doi.org/10.1002/app.30813]
[81]
Jaiswal MK, Banerjee R, Pradhan P, Bahadur D. Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Colloids Surf B Biointerfaces 2010; 81(1): 185-94.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.009] [PMID: 20702074]
[82]
Mohamed F, van der Walle CF. Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci 2008; 97(1): 71-87.
[http://dx.doi.org/10.1002/jps.21082] [PMID: 17722085]
[83]
Ali I. Rahis-ud-din, Saleem, K.; Aboul-Enein, H.Y.; Rather, M.A. Social Aspects of Cancer Genesis. Cancer Ther 2011; 8: 6-14.
[84]
Zweers ML, Engbers GH, Grijpma DW, Feijen J. in vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide). J Control Release 2004; 100(3): 347-56.
[http://dx.doi.org/10.1016/j.jconrel.2004.09.008] [PMID: 15567501]
[85]
Yassin AEB, Anwer MK, Mowafy HA, El-Bagory IM, Bayomi MA, Alsarra IA. Optimization of 5-flurouracil solid-lipid nanoparticles: a preliminary study to treat colon cancer. Int J Med Sci 2010; 7(6): 398-408.
[http://dx.doi.org/10.7150/ijms.7.398] [PMID: 21103076]
[86]
Lee SW, Yun MH, Jeong SW, et al. Development of docetaxel-loaded intravenous formulation, Nanoxel-PM™ using polymer-based delivery system. J Control Release 2011; 155(2): 262-71.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.012] [PMID: 21704664]
[87]
Das D, Sahu P, Kashaw V, Kashaw SK. Formulation and Assessment of in vivo Anti-Inflammatory Potential of Omega-3-Fatty Acid Loaded Self Emulsifying Nanoemulsion. Curr Nanomed 2017; 7: 47-58.
[http://dx.doi.org/10.2174/2468187306666160926125452]
[88]
Sahu P, Kashaw SK, Sau S, Iyer AK. Stumuli-Responsive Bio-Hybrid Nanogels: an Emerging Platform in Medicinal Arena. Global J Nanomed 2017; 1: 1-3.
[89]
Xu Z, Chen L, Gu W, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 2009; 30(2): 226-32.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.014] [PMID: 18851881]
[90]
Das D, Sahu P, Mishra VK, Kashaw SK. Nanoemulsion-the Emerging Contrivance in the Field of Nanotechnology. Nanosci Nanotechnol Asia 2017; 2: 1-22.
[91]
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007; 2(4): MR17-71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[92]
Finkel T. Signal transduction by reactive oxygen species. J Cell Biol 2011; 194(1): 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[93]
Xia T, Kovochich M, Liong M, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008; 2(10): 2121-34.
[http://dx.doi.org/10.1021/nn800511k] [PMID: 19206459]
[94]
Yin JJ. ’; Zhao, B.; Xia, Q. Electron spin resonance spectroscopy for studying the generation and scavenging of reactive oxygen species by nanomaterials.Nanopharmaceuticals: the potential application of nanomaterials. Singapore: World Scientific Publishing Company 2012; pp. 375-400.
[http://dx.doi.org/10.1142/9789814368674_0014]
[95]
Park EJ, Bae E, Yi J, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol 2010; 30(2): 162-8.
[http://dx.doi.org/10.1016/j.etap.2010.05.004] [PMID: 21787647]
[96]
Turabekova M, Rasulev B, Theodore M, Jackman J, Leszczynska D, Leszczynski J. Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C60 fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale 2014; 6(7): 3488-95.
[http://dx.doi.org/10.1039/C3NR05772K] [PMID: 24548972]
[97]
Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2010; 2(5): 544-68.
[http://dx.doi.org/10.1002/wnan.103] [PMID: 20681021]
[98]
Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 2009; 6(1): 17.
[http://dx.doi.org/10.1186/1743-8977-6-17] [PMID: 19545397]
[99]
Wolfram J, Zhu M, Yang Y, et al. Safety of Nanoparticles in Medicine. Curr Drug Targets 2015; 16(14): 1671-81.
[http://dx.doi.org/10.2174/1389450115666140804124808] [PMID: 26601723]
[100]
Shubayev VI, Pisanic TR II, Jin S. Magnetic nanoparticles for theragnostics. Adv Drug Deliv Rev 2009; 61(6): 467-77.
[http://dx.doi.org/10.1016/j.addr.2009.03.007] [PMID: 19389434]
[101]
Gwinn MR, Vallyathan V. Nanoparticles: health effects--pros and cons. Environ Health Perspect 2006; 114(12): 1818-25.
[http://dx.doi.org/10.1289/ehp.8871] [PMID: 17185269]
[102]
Moldoveanu B, Otmishi P, Jani P, et al. Inflammatory mechanisms in the lung. J Inflamm Res 2009; 2: 1-11.
[PMID: 22096348]
[103]
Suriyaprabha R, Ashita R, Fulekar MH. Nano toxicity: due to drug delivery and environmental exposure. Arch Nano Op Acc J 2008; 1(1)
[104]
Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 2007; 150(5): 552-8.
[http://dx.doi.org/10.1038/sj.bjp.0707130] [PMID: 17245366]
[105]
Radomski A, Jurasz P, Alonso-Escolano D, et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol 2005; 146(6): 882-93.
[http://dx.doi.org/10.1038/sj.bjp.0706386] [PMID: 16158070]
[106]
Younes NR, Amara S, Mrad I, et al. Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res Int 2015; 22(11): 8728-37.
[http://dx.doi.org/10.1007/s11356-014-4002-5] [PMID: 25572266]
[107]
Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora SJ. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain. Drug Chem Toxicol 2014; 37(3): 336-47.
[http://dx.doi.org/10.3109/01480545.2013.866134] [PMID: 24344737]
[108]
Li T, Shi T, Li X, Zeng S, Yin L, Pu Y. Effects of Nano-MnO2 on dopaminergic neurons and the spatial learning capability of rats. Int J Environ Res Public Health 2014; 11(8): 7918-30.
[http://dx.doi.org/10.3390/ijerph110807918] [PMID: 25101772]
[109]
Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 2009; 4(10): 634-41.
[http://dx.doi.org/10.1038/nnano.2009.242] [PMID: 19809453]
[110]
Park J, Lim DH, Lim HJ, et al. Size dependent macrophage responses and toxicological effects of Ag nanoparticles. Chem Commun (Camb) 2011; 47(15): 4382-4.
[http://dx.doi.org/10.1039/c1cc10357a] [PMID: 21390403]
[111]
Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM. Research strategies for safety evaluation of nanomaterials. Part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 2006; 90(2): 296-303.
[http://dx.doi.org/10.1093/toxsci/kfj099] [PMID: 16407094]
[112]
Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2007; 1: 42-51.
[http://dx.doi.org/10.1080/17435390701314902]
[113]
Rahi A, Sattarahmady N, Heli H. Toxicity of Nanomaterials-Physicochemical Effects. Austin Journal of Nanomedicine & Nanotechnology 2014; 2(6): 1034-.
[114]
Oberdörster G, Maynard A, Donaldson K, et al. ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2005; 2: 8-43.
[http://dx.doi.org/10.1186/1743-8977-2-8] [PMID: 16209704]
[115]
Shin SW, Song IH, Um SH. Role of Physicochemical Properties in Nanoparticle Toxicity. Nanomaterials (Basel) 2015; 5(3): 1351-65.
[http://dx.doi.org/10.3390/nano5031351] [PMID: 28347068]
[116]
Lin W, Huang YW, Zhou XD, Ma Y. in vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 2006; 217(3): 252-9.
[http://dx.doi.org/10.1016/j.taap.2006.10.004] [PMID: 17112558]
[117]
Monteiller C, Tran L, MacNee W, et al. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 2007; 64(9): 609-15.
[http://dx.doi.org/10.1136/oem.2005.024802] [PMID: 17409182]
[118]
Rabolli V, Thomassen LC, Uwambayinema F, Martens JA, Lison D. The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation. Toxicol Lett 2011; 206(2): 197-203.
[http://dx.doi.org/10.1016/j.toxlet.2011.07.013] [PMID: 21803137]
[119]
Warheit DB, Reed KL, Sayes CM. A role for nanoparticle surface reactivity in facilitating pulmonary toxicity and development of a base set of hazard assays as a component of nanoparticle risk management. Inhal Toxicol 2009; 21(Suppl. 1): 61-7.
[http://dx.doi.org/10.1080/08958370902942640] [PMID: 19558235]
[120]
Hoshino A, Fujioka K, Oku T, Suga M, Sasaki YF, Ohta T, et al. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett 2004; 4: 2163-9.
[http://dx.doi.org/10.1021/nl048715d]
[121]
Albanese A, Tang PS, Chan WC. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012; 14: 1-16.
[http://dx.doi.org/10.1146/annurev-bioeng-071811-150124] [PMID: 22524388]
[122]
Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small 2010; 6(1): 12-21.
[http://dx.doi.org/10.1002/smll.200901158] [PMID: 19844908]
[123]
Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annu Rev Med 2012; 63: 185-98.
[http://dx.doi.org/10.1146/annurev-med-040210-162544] [PMID: 21888516]
[124]
Liu Y, Li W, Lao F, et al. Intracellular dynamics of cationic and anionic polystyrene nanoparticles without direct interaction with mitotic spindle and chromosomes. Biomaterials 2011; 32(32): 8291-303.
[http://dx.doi.org/10.1016/j.biomaterials.2011.07.037] [PMID: 21810539]
[125]
Bhattacharjee S, de Haan LH, Evers NM, et al. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part Fibre Toxicol 2010; 7: 25.
[http://dx.doi.org/10.1186/1743-8977-7-25] [PMID: 20831820]
[126]
Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004; 15(4): 897-900.
[http://dx.doi.org/10.1021/bc049951i] [PMID: 15264879]
[127]
Schaeublin NM, Braydich-Stolle LK, Schrand AM, et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 2011; 3(2): 410-20.
[http://dx.doi.org/10.1039/c0nr00478b] [PMID: 21229159]
[128]
Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006; 6(4): 662-8.
[http://dx.doi.org/10.1021/nl052396o] [PMID: 16608261]
[129]
Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 2006; 103(13): 4930-4.
[http://dx.doi.org/10.1073/pnas.0600997103] [PMID: 16549762]
[130]
Ferrari M. Nanogeometry: beyond drug delivery. Nat Nanotechnol 2008; 3(3): 131-2.
[http://dx.doi.org/10.1038/nnano.2008.46] [PMID: 18654480]
[131]
Brunner TJ, Wick P, Manser P, et al. in vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 2006; 40(14): 4374-81.
[http://dx.doi.org/10.1021/es052069i] [PMID: 16903273]
[132]
Braakhuis HM, Oomen AG, Cassee FR. Grouping nanomaterials to predict their potential to induce pulmonary inflammation. Toxicol Appl Pharmacol 2016; 299(299): 3-7.
[http://dx.doi.org/10.1016/j.taap.2015.11.009] [PMID: 26603513]
[133]
Sly PD, Schüepp K. Nanoparticles and children’s lungs: is there a need for caution? Paediatr Respir Rev 2012; 13(2): 71-2.
[PMID: 22475250]
[134]
Dunford R, Salinaro A, Cai L, et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 1997; 418(1-2): 87-90.
[http://dx.doi.org/10.1016/S0014-5793(97)01356-2] [PMID: 9414101]
[135]
Hougaard KS, Campagnolo L, Chavatte-Palmer P, et al. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol 2015; 56: 118-40.
[http://dx.doi.org/10.1016/j.reprotox.2015.05.015] [PMID: 26050605]
[136]
Smulders S, Larue C, Sarret G, Castillo-Michel H, Vanoirbeek J, Hoet PH. Lung distribution, quantification, co-localization and speciation of silver nanoparticles after lung exposure in mice. Toxicol Lett 2015; 238(1): 1-6.
[http://dx.doi.org/10.1016/j.toxlet.2015.07.001] [PMID: 26162856]
[137]
Tinkle SS, Antonini JM, Rich BA, et al. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 2003; 111(9): 1202-8.
[http://dx.doi.org/10.1289/ehp.5999] [PMID: 12842774]
[138]
Bai Y, Zhang Y, Zhang J, et al. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 2010; 5(9): 683-9.
[http://dx.doi.org/10.1038/nnano.2010.153] [PMID: 20693989]
[139]
Jain P, Rahi P, Pandey V, Asati S, Soni V. Nanostructure lipid carriers: A modish contrivance to overcome the ultraviolet effects. Egypt. J Basic Appl Sci 2017; 4: 89-100.
[140]
Buerki-Thurnherr T, von Mandach U, Wick P. Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Med Wkly 2012; 142w13559
[http://dx.doi.org/10.4414/smw.2012.13559] [PMID: 22481566]
[141]
Dilworth MR, Sibley CP. Review: Transport across the placenta of mice and women. Placenta 2013; 34(Suppl.): S34-9.
[http://dx.doi.org/10.1016/j.placenta.2012.10.011] [PMID: 23153501]
[142]
Campagnolo L, Massimiani M, Palmieri G, et al. Biodistribution and toxicity of pegylated single wall carbon nanotubes in pregnant mice. Part Fibre Toxicol 2013; 10: 21.
[http://dx.doi.org/10.1186/1743-8977-10-21] [PMID: 23742083]
[143]
Ema M, Hougaard KS, Kishimoto A, Honda K. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 2016; 10(4): 391-412.
[http://dx.doi.org/10.3109/17435390.2015.1073811] [PMID: 26375634]
[144]
Wang H, Meng XH, Ning H, et al. Age- and gender-dependent impairments of neurobehaviors in mice whose mothers were exposed to lipopolysaccharide during pregnancy. Toxicol Lett 2010; 192(2): 245-51.
[http://dx.doi.org/10.1016/j.toxlet.2009.10.030] [PMID: 19896524]
[145]
Wells PG, Bhuller Y, Chen CS, et al. Molecular and biochemical mechanisms in teratogenesis involving reactive oxygen species. Toxicol Appl Pharmacol 2005; 207(2)(Suppl.): 354-66.
[http://dx.doi.org/10.1016/j.taap.2005.01.061] [PMID: 16081118]
[146]
Huang X, Zhang F, Sun X, et al. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials 2014; 35(2): 856-65.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.027] [PMID: 24344357]
[147]
Balansky R, Longobardi M, Ganchev G, et al. Transplacental clastogenic and epigenetic effects of gold nanoparticles in mice. Mutat Res 2013; 751-752: 42-8.
[http://dx.doi.org/10.1016/j.mrfmmm.2013.08.006] [PMID: 24004569]
[148]
Jackson P, Halappanavar S, Hougaard KS, et al. Maternal inhalation of surface-coated nanosized titanium dioxide (UV-Titan) in C57BL/6 mice: effects in prenatally exposed offspring on hepatic DNA damage and gene expression. Nanotoxicology 2013; 7(1): 85-96.
[http://dx.doi.org/10.3109/17435390.2011.633715] [PMID: 22117692]
[149]
Jackson P, Hougaard KS, Boisen AMZ, et al. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: effects on liver DNA strand breaks in dams and offspring. Nanotoxicology 2012; 6(5): 486-500.
[http://dx.doi.org/10.3109/17435390.2011.587902] [PMID: 21649560]
[150]
Benjamin EJ, Blaha MJ, Chiuve SE, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 2017; 135(10): e146-603.
[http://dx.doi.org/10.1161/CIR.0000000000000485] [PMID: 28122885]
[151]
Minarchick VC, Stapleton PA, Porter DW, et al. Pulmonary cerium dioxide nanoparticle exposure differentially impairs coronary and mesenteric arteriolar reactivity. Cardiovasc Toxicol 2013; 13(4): 323-37.
[http://dx.doi.org/10.1007/s12012-013-9213-3] [PMID: 23645470]
[152]
Zhu M-T, Wang B, Wang Y, et al. Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicol Lett 2011; 203(2): 162-71.
[http://dx.doi.org/10.1016/j.toxlet.2011.03.021] [PMID: 21439359]
[153]
Meir KS, Leitersdorf E. Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 2004; 24(6): 1006-14.
[http://dx.doi.org/10.1161/01.ATV.0000128849.12617.f4] [PMID: 15087308]
[154]
Plump AS, Smith JD, Hayek T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 1992; 71(2): 343-53.
[http://dx.doi.org/10.1016/0092-8674(92)90362-G] [PMID: 1423598]
[155]
Kang GS, Gillespie PA, Gunnison A, Moreira AL, Tchou-Wong K-M, Chen L-C. Long-term inhalation exposure to nickel nanoparticles exacerbated atherosclerosis in a susceptible mouse model. Environ Health Perspect 2011; 119(2): 176-81.
[http://dx.doi.org/10.1289/ehp.1002508] [PMID: 20864429]
[156]
Li Z, Hulderman T, Salmen R, et al. Cardiovascular effects of pulmonary exposure to single-wall carbon nanotubes. Environ Health Perspect 2007; 115(3): 377-82.
[http://dx.doi.org/10.1289/ehp.9688] [PMID: 17431486]
[157]
Dvir T, Bauer M, Schroeder A, et al. Nanoparticles targeting the infarcted heart. Nano Lett 2011; 11(10): 4411-4.
[http://dx.doi.org/10.1021/nl2025882] [PMID: 21899318]
[158]
Peters D, Kastantin M, Kotamraju VR, et al. Targeting atherosclerosis by using modular, multifunctional micelles. Proc Natl Acad Sci USA 2009.
[http://dx.doi.org/10.1073/pnas.0903369106]
[159]
Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006; 3(11)e442
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[160]
Jin C, Shelburne CP, Li G, et al. Particulate allergens potentiate allergic asthma in mice through sustained IgE-mediated mast cell activation. J Clin Invest 2011; 121(3): 941-55.
[http://dx.doi.org/10.1172/JCI43584] [PMID: 21285515]
[161]
Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 2004; 112(8): 879-82.
[http://dx.doi.org/10.1289/ehp.6851] [PMID: 15175176]
[162]
Khatri M, Bello D, Pal AK, et al. Evaluation of cytotoxic, genotoxic and inflammatory responses of nanoparticles from photocopiers in three human cell lines. Part Fibre Toxicol 2013; 10: 42.
[http://dx.doi.org/10.1186/1743-8977-10-42] [PMID: 23968360]
[163]
Inoue K, Koike E, Takano H, Yanagisawa R, Ichinose T, Yoshikawa T. Effects of diesel exhaust particles on antigen-presenting cells and antigen-specific Th immunity in mice. Exp Biol Med (Maywood) 2009; 234(2): 200-9. a
[http://dx.doi.org/10.3181/0809-RM-285] [PMID: 19064938]
[164]
Inoue K, Takano H, Yanagisawa R, Koike E, Shimada A. Size effects of latex nanomaterials on lung inflammation in mice. Toxicol Appl Pharmacol 2009; 234(1): 68-76. b
[http://dx.doi.org/10.1016/j.taap.2008.09.012] [PMID: 18938192]
[165]
de Haar C, Hassing I, Bol M, Bleumink R, Pieters R. Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin Exp Allergy 2006; 36(11): 1469-79.
[http://dx.doi.org/10.1111/j.1365-2222.2006.02586.x] [PMID: 17083358]
[166]
Inoue K, Yanagisawa R, Koike E, Nishikawa M, Takano H. Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: Possible role of oxidative stress. Free Radic Biol Med 2010; 48(7): 924-34.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.013] [PMID: 20093178]
[167]
Inoue K, Takano H, Yanagisawa R, et al. Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect 2006; 114(9): 1325-30.
[http://dx.doi.org/10.1289/ehp.8903] [PMID: 16966083]
[168]
Inoue K, Takano H, Yanagisawa R, et al. Effects of inhaled nanoparticles on acute lung injury induced by lipopolysaccharide in mice. Toxicology 2007; 238(2-3): 99-110.
[http://dx.doi.org/10.1016/j.tox.2007.05.022] [PMID: 17614186]
[169]
Inoue K, Takano H, Koike E, et al. Effects of pulmonary exposure to carbon nanotubes on lung and systemic inflammation with coagulatory disturbance induced by lipopolysaccharide in mice. Exp Biol Med (Maywood) 2008; 233(12): 1583-90.
[http://dx.doi.org/10.3181/0805-RM-179] [PMID: 18849540]
[170]
Yanagisawa R, Takano H, Inoue K, et al. Enhancement of acute lung injury related to bacterial endotoxin by components of diesel exhaust particles. Thorax 2003; 58(7): 605-12.
[http://dx.doi.org/10.1136/thorax.58.7.605] [PMID: 12832678]
[171]
Hussain S, Vanoirbeek JA, Luyts K, et al. Lung exposure to nanoparticles modulates an asthmatic response in a mouse model. Eur Respir J 2011; 37(2): 299-309.
[http://dx.doi.org/10.1183/09031936.00168509] [PMID: 20530043]
[172]
Hollinger FB, Liang TJ. Hepatitis B virus.Fields Virology. 4th ed. Philadelphia, PA, USA: Lippincott Williams & Wilkins 2001; pp. 2971-3036.
[173]
Ahmad J, Ahamed M, Akhtar MJ, et al. Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol 2012; 259(2): 160-8.
[http://dx.doi.org/10.1016/j.taap.2011.12.020] [PMID: 22245848]
[174]
Chen Q, Xue Y, Sun J. Kupffer cell-mediated hepatic injury induced by silica nanoparticles in vitro and in vivo. Int J Nanomedicine 2013; 8: 1129-40.
[PMID: 23515466]
[175]
Bartneck M, Ritz T, Keul HA, et al. Peptide-functionalized gold nanorods increase liver injury in hepatitis. ACS Nano 2012; 6(10): 8767-77.
[http://dx.doi.org/10.1021/nn302502u] [PMID: 22994679]
[176]
Hwang JH, Kim SJ, Kim YH, et al. Susceptibility to gold nanoparticle-induced hepatotoxicity is enhanced in a mouse model of nonalcoholic steatohepatitis. Toxicology 2012; 294(1): 27-35.
[http://dx.doi.org/10.1016/j.tox.2012.01.013] [PMID: 22330258]
[177]
Neupane B, Jerrett M, Burnett RT, Marrie T, Arain A, Loeb M. Long-term exposure to ambient air pollution and risk of hospitalization with community-acquired pneumonia in older adults. Am J Respir Crit Care Med 2010; 181(1): 47-53.
[http://dx.doi.org/10.1164/rccm.200901-0160OC] [PMID: 19797763]
[178]
Chen Z, Meng H, Xing G, et al. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol 2008; 42(23): 8985-92.
[http://dx.doi.org/10.1021/es800975u] [PMID: 19192829]
[179]
Garcia-Bennett AE, Kozhevnikova M, König N, et al. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells. Stem Cells Transl Med 2013; 2(11): 906-15.
[http://dx.doi.org/10.5966/sctm.2013-0072] [PMID: 24089415]
[180]
Polshettiwar V, Basset JM, Astruc D. Nanoscience makes catalysis greener. ChemSusChem 2012; 5(1): 6-8.
[http://dx.doi.org/10.1002/cssc.201100850] [PMID: 22250133]
[181]
Hutchison JE. Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2008; 2(3): 395-402.
[http://dx.doi.org/10.1021/nn800131j] [PMID: 19206562]
[182]
Anastas PT, Warner JC. Green chemistry: theory and practice. Oxford England, New York: Oxford University Press 1998.
[183]
Eckelman MJ, Zimmerman JB, Anastas PT. Towards green nano—E-factor analysis of several nanomaterials syntheses. J Ind Ecol 2008; 12: 316-28.
[184]
Bazaka K, Jacob MV, Ostrikov KK. Sustainable life cycles of natural-precursor-derived nanocarbons. Chem Rev 2016; 116: 163.
[PMID: 26717047]
[185]
Weare W, Scott MR, Warner MG, Hutchison JE. Improved Synthesis of Small (dCORE1.5 nm) phosphine-stabilized gold nanoparticles. J Am Chem Soc 2000; 1(22): 12890-1.
[186]
Zhao X, Cui H, Chen W, et al. Morphology, structure and function characterization of PEI modified magnetic nanoparticles gene delivery system. PLoS One 2014; 9(6)e98919
[http://dx.doi.org/10.1371/journal.pone.0098919] [PMID: 24911360]
[187]
Kim JH, Nam DH, Park CB. Nanobiocatalytic assemblies for artificial photosynthesis. Curr Opin Biotechnol 2014; 28: 1-9.
[http://dx.doi.org/10.1016/j.copbio.2013.10.008] [PMID: 24832068]
[188]
Viswanath B, Kim S. Influence of Nanotoxicity on Human Health and Environment: The Alternative Strategies. Rev Environ Contam Toxicol 2017; 242: 61-104.
[http://dx.doi.org/10.1007/398_2016_12] [PMID: 27718008]
[189]
Camargo PHC, Satyanarayana KG, Wypych F. Nanocomposites: synthesis, structure,mproperties and new application opportunities. Mater Res 2009; 12: 1-39.
[http://dx.doi.org/10.1590/S1516-14392009000100002]
[190]
Niki E. Action of ascorbic acid as a scavenger of active and stable oxygen radicals. Am J Clin Nutr 1991; 54(6)(Suppl.): 1119S-24S.
[http://dx.doi.org/10.1093/ajcn/54.6.1119s] [PMID: 1962557]
[191]
Guo D, Zhu L, Huang Z, et al. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials 2013; 34(32): 7884-94.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.015] [PMID: 23876760]
[192]
Ahamed M, Akhtar MJ, Siddiqui MA, et al. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology 2011; 283(2-3): 101-8.
[http://dx.doi.org/10.1016/j.tox.2011.02.010] [PMID: 21382431]
[193]
Stevanović M, Bračko I, Milenković M, et al. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomater 2014; 10(1): 151-62.
[http://dx.doi.org/10.1016/j.actbio.2013.08.030] [PMID: 23988864]
[194]
Worthington KL, Adamcakova-Dodd A, Wongrakpanich A, et al. Chitosan coating of copper nanoparticles reduces in vitro toxicity and increases inflammation in the lung. Nanotechnology 2013; 24(39)395101
[http://dx.doi.org/10.1088/0957-4484/24/39/395101] [PMID: 24008224]
[195]
Shukla S, Jadaun A, Arora V, Sinha RK, Biyani N, Jain VK. In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles. Toxicol Rep 2014; 2: 27-39.
[http://dx.doi.org/10.1016/j.toxrep.2014.11.002] [PMID: 28962334]