Evaluation of 99mTechnetium-Vancomycin Imaging Potential in Experimental Rat Model for the Diagnosis of Infective Endocarditis

Page: [781 - 789] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Infective endocarditis (IE) is an infection of the heart’s endocardial surface. In recent years, nuclear imaging methods have gained importance in the diagnosis of IE. The present study aims to investigate the imaging potential of 99mTc-labeled vancomycin (99mTc-Vancomycin) as a new agent that would enable the diagnosis of IE in its early stages when it is difficult to diagnose or has small vegetation in the experimental rat model.

Methods:99mTc-Vancomycin scintigraphy was evaluated for its accumulation in IE with Staphylococcus aureus performed in an experimental rat model. Serial planar scintigraphic and biodistribution analysis of infected vegetations are compared to rats with sterile vegetations. The heart was identified as an infected organ, the liver was identified as a non-infected organ and the heart/liver uptake ratio (T / NT ratio) was compared between infective endocarditis and sterile endocarditis groups.

Results: Planar scintigrams (in vivo measurements) showed more uptake in the heart of rats in the infective endocarditis group compared to the uptake in the heart of rats in the sterile endocarditis group, but this difference was not statistically significant (p>0.05). From the ex vivo measurements, the 99mTc-Vancomycin heart uptake increased significantly (p = 0.016), liver uptake was significantly decreased (p = 0.045) and the T/NT ratio was significantly higher (p = 0.014) in the infective endocarditis group compared to the sterile endocarditis group.

Conclusion: In this experimental study, 99mTc-Vancomycin scintigraphy ensured the detection of ex vivo infected tissue in a rat model of IE. In addition, the absence of significant 99mTc-Vancomycin uptake in the sterile endocarditis group indicates that this agent targeted the infected tissue instead of the sterile inflammatory tissue. Finally, this agent should also be evaluated with animal- specific imaging devices.

Keywords: Infective endocarditis, technetium-99m, vancomycin, T/Nt ratio, scintigraphy, imaging.

Graphical Abstract

[1]
Simsek-Yavuz S. Infective Endocarditis: An Update. Klimik Journal 2015; 28(2): 46-67.
[http://dx.doi.org/10.5152/kd.2015.11]
[2]
Federspiel JJ, Stearns SC, Peppercorn AF, Chu VH, Fowler VGJ Jr. Increasing US rates of endocarditis with Staphylococcus aureus: 1999-2008. Arch Intern Med 2012; 172(4): 363-5.
[http://dx.doi.org/10.1001/archinternmed.2011.1027] [PMID: 22371926]
[3]
Habib G, Lancellotti P, Antunes MJ, et al. ESC Scientific Document Group. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 2015; 36(44): 3075-128.
[http://dx.doi.org/10.1093/eurheartj/ehv319] [PMID: 26320109]
[4]
Lambrecht FY. Evaluation of (m)Tc-labeled antibiotics for infection detection. Ann Nucl Med 2011; 25(1): 1-6. .
[http://dx.doi.org/10.1007/s12149-010-0417-3] [PMID: 20927661]
[5]
EL-Ghany EA, EL-Kolaly MT, Amine AM, EL-Sayed AS, Abdel-Gelil F. Synthesis of 99mTc-pefloxacin: A new targeting agent for infectious foci. J Radioanal Nucl Chem 2005; 266: 131-9.
[http://dx.doi.org/10.1007/s10967-005-0881-8]
[6]
Lupetti A, Nibbering PH, Welling MM, Pauwels EKJ. Radiopharmaceuticals: new antimicrobial agents. Trends Biotechnol 2003; 21(2): 70-3.
[http://dx.doi.org/10.1016/S0167-7799(02)00032-X] [PMID: 12573855]
[7]
Lupetti A, Welling MM, Pauwels EKJ, Nibbering PH. Radiolabelled antimicrobial peptides for infection detection. Lancet Infect Dis 2003; 3(4): 223-9.
[http://dx.doi.org/10.1016/S1473-3099(03)00579-6] [PMID: 12679265]
[8]
Sarda L, Saleh-Mghir A, Peker C, Meulemans A, Crémieux A-C, Le Guludec D. Evaluation of (99m)Tc-ciprofloxacin scintigraphy in a rabbit model of Staphylococcus aureus prosthetic joint infection. J Nucl Med 2002; 43(2): 239-45.
[PMID: 11850491]
[9]
Motaleb MA. Preparation of 99mTc-cefoperazone complex, a novel agent for detecting sites of infection. J Radioanal Nucl Chem 2007; 272: 167-71.
[http://dx.doi.org/10.1007/s10967-006-6754-y]
[10]
EL-Ghany EA, Amine AM, EL-Sayed AS, EL-Kolaly MT, Abdel-Gelil F. Radiochemical and biological characteristics of 99mTc-piroxicam for scintigraphy of inflammatory lesions. J Radioanal Nucl Chem 2005; 266: 125-30.
[http://dx.doi.org/10.1007/s10967-005-0880-9]
[11]
Asikoglu M, Yurt F, Unak P. Labeling of ornidazole with iodine-131. J Radioanal Nucl Chem 1998; 237: 143-5.
[http://dx.doi.org/10.1007/BF02386678]
[12]
Asikoglu M, Yurt F, Cagliyan O, Unak P, Ozkilic H. Detecting inflammation with 131I-labeled ornidazole. Appl Radiat Isot 2000; 53(3): 411-3.
[http://dx.doi.org/10.1016/S0969-8043(99)00150-5] [PMID: 10972145]
[13]
Yurt Lambrecht F, Yilmaz O, Unak P, et al. Imaging of bacterial infection with 99mTc-labeled HBD-1. J Radioanal Nucl Chem 2008; 277: 555.
[http://dx.doi.org/10.1007/s10967-007-7135-x]
[14]
Yurt Lambrecht F, Yilmaz O, Unak P, Seyitoglu B, Durkan K, Baskan H. Evaluation of 99mTc-Cefuroxime axetil for imaging of inflammation. J Radioanal Nucl Chem 2008; 277: 491-4.
[http://dx.doi.org/10.1007/s10967-007-7111-5]
[15]
Yurt Lambrecht F, Yilmaz O, Durkan K, Unak P, Bayrak E. Preparation and biodistribution of [131I]linezolid in animal model infection and inflammation. J Radioanal Nucl Chem 2009; 281: 415-9.
[http://dx.doi.org/10.1007/s10967-009-0006-x]
[16]
Lambrecht F, Yilmaz O, Bayrak E, Kocagozoglu G, Durkan K. Could be radiolabeled flavonoid used to evaluate infection. J Radioanal Nucl Chem 2010; 283: 503-6.
[http://dx.doi.org/10.1007/s10967-009-0353-7]
[17]
Inceboz T, Lambrecht FY, Yilmaz O, et al. Technetium-99m labeled Mebendazole and biodistribution in experimentally Trichinella spiralis-infected rats. Med Chem Res 2012; 21: 804-9.
[http://dx.doi.org/10.1007/s00044-011-9590-8]
[18]
Inceboz T, Yurt Lambrecht F, Surucu E, et al. Preparation of (131)I-Pyrimethamine and evaluation for scintigraphy of experimentally Toxoplasma gondii-infected rats. J Drug Target 2013; 21(2): 175-9.
[http://dx.doi.org/10.3109/1061186X.2012.736999] [PMID: 23113799]
[19]
Inceboz T, Lambrecht FY, Eren MŞ, et al. Evaluation of (131)I-pentamidine for scintigraphy of experimentally Leishmania tropica-infected hamsters. J Drug Target 2014; 22(5): 416-20.
[http://dx.doi.org/10.3109/1061186X.2013.878943] [PMID: 24405123]
[20]
Tunçel A, Ocakoglu K, Colak SG, Yilmaz O, Öztürk I, Yurt F. Evaluation of infection imaging potential of 131I-labeled imidazolium salt. J Radioanal Nucl Chem 2018; 315: 487-92.
[http://dx.doi.org/10.1007/s10967-017-5691-2]
[21]
Yurt F, Ersöz OA, Harputlu E, Ocakoglu K. Preparation and evaluation of effect on Escherichia coli and Staphylococcus aureus of radiolabeled ampicillin-loaded graphene oxide nanoflakes. Chem Biol Drug Des 2018; 91(6): 1094-100.
[http://dx.doi.org/10.1111/cbdd.13171] [PMID: 29363273]
[22]
Fogarasi M, Pullman J, Winnard P Jr, Hnatowich DJ, Rusckowski M. Pretargeting of bacterial endocarditis in rats with streptavidin and 111In-labeled biotin. J Nucl Med 1999; 40(3): 484-90.
[PMID: 10086715]
[23]
Roohi S, Mushtaq A, Malik SA. Synthesis and biodistribution of 99mTc-Vancomycin in a model of bacterial infection. Radiochim Acta 2005; 93: 415-8.
[http://dx.doi.org/10.1524/ract.2005.93.7.415]
[24]
Walsh C. Molecular mechanisms that confer antibacterial drug resistance. Nature 2000; 406(6797): 775-81.
[http://dx.doi.org/10.1038/35021219] [PMID: 10963607]
[25]
Williams DH, Maguire AJ, Tsuzuki W, Westwell MS. An analysis of the origins of a cooperative binding energy of dimerization. Science 1998; 280(5364): 711-4.
[http://dx.doi.org/10.1126/science.280.5364.711] [PMID: 9563941]
[26]
Rao JH, Lahiri J, Weis RM, Whitesides GM. J. Biomimetic Approaches for Biomaterials Development. Am Chem Soc 2000; 122: 2698-710.
[http://dx.doi.org/10.1021/ja992648l]
[27]
Xing B, Yu CW, Chow KH, Ho PL, Fu D, Xu B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: a potential candidate for biomaterials. J Am Chem Soc 2002; 124(50): 14846-7.
[http://dx.doi.org/10.1021/ja028539f] [PMID: 12475316]
[28]
Ren C, Wang H, Zhang X, Ding D, Wang L, Yang Z. Interfacial self-assembly leads to formation of fluorescent nanoparticles for simultaneous bacterial detection and inhibition. Chem Commun (Camb) 2014; 50(26): 3473-5.
[http://dx.doi.org/10.1039/C3CC48807A] [PMID: 24553626]
[29]
Vito A, Alarabi H, Czorny S, et al. A 99mTc-labelled tetrazine for bioorthogonal chemistry synthesis and biodistribution studies with small molecule transcyclooctene derivatives. PLoS One 2016; 11(12)
[http://dx.doi.org/10.1371/journal.pone.0167425] [PMID: 27936007]
[30]
van Oosten M, Schäfer T, Gazendam JA, et al. Real-time in vivo imaging of invasive- and biomaterial-associated bacterial infections using fluorescently labelled vancomycin. Nat Commun 2013; 4: 2584.
[http://dx.doi.org/10.1038/ncomms3584] [PMID: 24129412]
[31]
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Roestenberg M, van Leeuwen FWB. An update on radiotracer development for molecular imaging of bacterial infections. Clin Transl Imaging 2019; 7: 105-24.
[http://dx.doi.org/10.1007/s40336-019-00317-4]
[32]
Hady WA, Bayer AS, Xiong YQ. Experimental endocarditis model of methicillin resistant Staphylococcus aureus (MRSA) in rat. J Vis Exp 2012; (64):
[http://dx.doi.org/10.3791/3863] [PMID: 22711072]
[33]
Hanses F, Roux C, Dunman PM, Salzberger B, Lee JC. Staphylococcus aureus gene expression in a rat model of infective endocarditis. Genome Med 2014; 6(10): 93.
[http://dx.doi.org/10.1186/PREACCEPT-4819325051343079] [PMID: 25392717]
[34]
Mondragon-Lozano R, Diaz-Ruiz A, Ríos C, et al. Feasibility of in vivo quantitative magnetic resonance imaging with diffusion weighted imaging, T2-weighted relaxometry, and diffusion tensor imaging in a clinical 3 tesla magnetic resonance scanner for the acute traumatic spinal cord injury of rats: technical note. Spine 2013; 38(20): E1242-9.
[http://dx.doi.org/10.1097/BRS.0b013e31829ef69c] [PMID: 23759823]
[35]
Brouwer CP, Gemmel FF, Welling MM. Evaluation of 99mTc-UBI 29-41 scintigraphy for specific detection of experimental multidrug-resistant Staphylococcus aureus bacterial endocarditis. Q J Nucl Med Mol Imaging 2010; 54(4): 442-50.
[PMID: 20823811]
[36]
Rouzet F, Dominguez Hernandez M, Hervatin F, et al. Technetium 99m-labeled annexin V scintigraphy of platelet activation in vegetations of experimental endocarditis. Circulation 2008; 117(6): 781-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.718114] [PMID: 18227388]
[37]
Benali K, Louedec L, Azzouna RB, et al. Preclinical validation of 99mTc-annexin A5-128 in experimental autoimmune myocarditis and infective endocarditis: comparison with 99mTc-HYNIC-annexin A5. Mol Imaging 2014; 13: 1-10.
[PMID: 25431156]
[38]
Riba AL, Thakur ML, Gottschalk A, Andriole VT, Zaret BL. Imaging experimental infective endocarditis with indium-111-labeled blood cellular components. Circulation 1979; 59(2): 336-43.
[http://dx.doi.org/10.1161/01.CIR.59.2.336] [PMID: 759001]
[39]
Calais J, Edet-Sanson A, Gaucher S, Vera P, Le Cloirec J. Tc-99m-HMPAO-Labeled Leukocyte SPECT/CT in Pediatrics: Detecting Candida albicans Tricuspid Endocarditis. Nucl Med Mol Imaging 2015; 49(4): 333-4.
[http://dx.doi.org/10.1007/s13139-015-0333-5] [PMID: 26550057]
[40]
Taghizadeh Asl M, Mandegar MH, Assadi M. Technetium-99m-ubiquicidin scintigraphy in the detection of infective endocarditis. Hell J Nucl Med 2014; 17(1): 47-8.
[PMID: 24563884]