Application of Monte Carlo Algorithms to Cardiac Imaging Reconstruction

Page: [1960 - 1972] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Monte Carlo algorithms have a growing impact on nuclear medicine reconstruction processes. One of the main limitations of myocardial perfusion imaging (MPI) is the effective mitigation of the scattering component, which is particularly challenging in Single Photon Emission Computed Tomography (SPECT). In SPECT, no timing information can be retrieved to locate the primary source photons. Monte Carlo methods allow an event-by-event simulation of the scattering kinematics, which can be incorporated into a model of the imaging system response. This approach was adopted in the late Nineties by several authors, and recently took advantage of the increased computational power made available by high-performance CPUs and GPUs. These recent developments enable a fast image reconstruction with improved image quality, compared to deterministic approaches. Deterministic approaches are based on energy-windowing of the detector response, and on the cumulative estimate and subtraction of the scattering component. In this paper, we review the main strategies and algorithms to correct the scattering effect in SPECT and focus on Monte Carlo developments, which nowadays allow the threedimensional reconstruction of SPECT cardiac images in a few seconds.

Keywords: Monte carlo algorithms, SPECT, MPI, cardiac imaging reconstruction, scattering correction.

[1]
U. D. of Health and H. Services. Summary Health Statistics Tables for US Adults: National Health Interview Survey. 2018.
[2]
Kim H, Furenlid LR, Crawford MJ, et al. SemiSPECT: a small-animal single-photon emission computed tomography (SPECT) imager based on eight cadmium zinc telluride (CZT) detector arrays. Med Phys 2006; 33(2): 465-74.
[http://dx.doi.org/10.1118/1.2164070] [PMID: 16532954]
[3]
Metropolis N, Ulam S. The Monte Carlo method. J Am Stat Assoc 1949; 44(247): 335-41.
[http://dx.doi.org/10.1080/01621459.1949.10483310] [PMID: 18139350]
[4]
J. B. (Ed). Mcnp-a general monte carlo n-particle transport code, version 4c. 2000.
[5]
Agostinelli S, Allison J, Amako K. Geant4 a simulation toolkit. Nucl Instrum Methods Phys Res A 2003; 506(3): 250-303.
[http://dx.doi.org/10.1016/S0168-9002(03)01368-8]
[6]
Battistoni G, Cerutti F, Fassò A, et al. The fluka code: Description and benchmarking. 2007; 896: 31-49.
[7]
Sato T, Niita K, Matsuda N, et al. Particle and heavy ion transport code system, phits, version 2.52. J Nucl Sci Technol 2013; 50(9): 913-23.
[http://dx.doi.org/10.1080/00223131.2013.814553]
[8]
Bielajew A, Rogers D. Presta: The parameter reduced electron-step transport algorithm for electron monte carlo transport. Nuclear Inst Methods Phys Res 1986; 18(1-6)
[9]
Matsunari I, Böning G, Ziegler SI, et al. Attenuation-corrected 99mTc-tetrofosmin single-photon emission computed tomography in the detection of viable myocardium: comparison with positron emission tomography using 18F-fluorodeoxyglucose. J Am Coll Cardiol 1998; 32(4): 927-35.
[http://dx.doi.org/10.1016/S0735-1097(98)00340-4] [PMID: 9768713]
[10]
Toyama T, Hoshizaki H, Seki R, et al. Evaluation of salvaged myocardium after acute myocardial infarction using single photon emission computed tomography after 201Tl-glucose-insulin infusion. Circ J 2004; 68(4): 348-54.
[http://dx.doi.org/10.1253/circj.68.348] [PMID: 15056833]
[11]
Lee BI, Markand ON, Wellman HN, et al. HIPDM single photon emission computed tomography brain imaging in partial onset secondarily generalized tonic-clonic seizures. Epilepsia 1987; 28(3): 305-11.
[http://dx.doi.org/10.1111/j.1528-1157.1987.tb04223.x] [PMID: 3495430]
[12]
McDaniel KD, Wagner MT, Greenspan BS. The role of brain single photon emission computed tomography in the diagnosis of primary progressive aphasia. Arch Neurol 1991; 48(12): 1257-60.
[http://dx.doi.org/10.1001/archneur.1991.00530240061021] [PMID: 1845029]
[13]
Jong HD. Accelerated Monte Carlo simulation for scatter correction in SPECT 2001. Eur J Nucl Med Mol Imaging 2004; 31(8): 1173-81.
[14]
Ramachandran GN, Lakshminarayanan AV. Three-Dimensional Reconstruction from Radiographs and Electron Micrographs. Proc Natl Acad Sci USA 68(9): 2236-40.
[15]
Frey EC, Tsui BM. A Practical Method for Incorporating Scatter in a Projector-Backprojector for Accurate Scatter Compensation in SPECT. IEEE Trans Nucl Sci 1993; 40(4): 1107-16.
[http://dx.doi.org/10.1109/23.256720]
[16]
Jaszczak RJ, Floyd CE, Coleman RE, Carolina N. Scatter Compensation Techniques for SPECT. IEEE Trans Nuc 1985; 32(1): 786-93.
[http://dx.doi.org/10.1109/TNS.1985.4336941]
[17]
Jaszczak RJ, Greer KL, Floyd CE Jr, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984; 25(8): 893-900.
[PMID: 6611390]
[18]
King MA, Hademenos GJ, Glick SJ. A dual-photopeak window method for scatter correction. J Nucl Med 1992; 33(4): 605-12.
[PMID: 1552349]
[19]
Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med 1984; 25(4): 490-4.
[PMID: 6400024]
[20]
Floyd CE, Jaszczak RJ, Greer KL, Coleman RE. Deconvolution of Compton Scatter in SPECT. J Nucl Med 1985; 26(4): 403-8.
[21]
King SJGMA, Coleman M, Penney BC. Active quantitation in SPECT: A study of prereconstruction Metz filtering and use of the scatter degradation factor. Med Phys 1991; 18(2): 184-9.
[22]
King MA, Penney BC, Glick SJ. An image-dependent Metz filter for nuclear medicine images. J Nucl Med 1988; 29(12): 1980-9.
[PMID: 3264021]
[23]
Frey EC, Tsui BM. New method for modeling the spatially-variant, object-dependent scatter response function in SPECT IEEE Nuclear Science Symposium & Medical Imaging Conference. 2: 1082-6.
[http://dx.doi.org/10.1109/NSSMIC.1996.591559]
[24]
Beekman FJ, Eijkman EG, Slijpen ET, Viergever MA, Borm GF. Object Shape Dependent PSF Model for SPECT Imaging. IEEE Trans Nucl Sci 1993; 40(1): 31-9.
[http://dx.doi.org/10.1109/23.199484]
[25]
Beekman FJ, Kamphuis C, Viergever MA. Improved SPECT quantitation using fully three-dimensional iterative spatially variant scatter response compensation. IEEE Trans Med Imaging 1996; 15(4): 491-9.
[http://dx.doi.org/10.1109/42.511752] [PMID: 18215930]
[26]
Floyd CE Jr, Jaszczak RJ, Greer KL, Coleman RE. Inverse Monte Carlo as a unified reconstruction algorithm for ECT. J Nucl Med 1986; 27(10): 1577-85.
[PMID: 3489822]
[27]
Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982; 1(2): 113-22.
[http://dx.doi.org/10.1109/TMI.1982.4307558] [PMID: 18238264]
[28]
Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 1984; 8(2): 306-16.
[PMID: 6608535]
[29]
Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data Via the EM Algorithm. 1977; Vol. 39.
[30]
Floyd CE, Jaszczak RJ. Coleman, and R. Edward. “Maximum Likelihood Reconstruction for SPECT with Monte Carlo Modeling. Asymptotic Behavior 1987; 34(1): 285-7.
[31]
Beck JW, Jaszczak RJ, Edward Coleman R, Frank Starmer C, Nolte LW. Analysis of spect including scatter and attenuation using sophisticated monte carlo modeling methods. IEEE Trans Nucl Sci 1982; 29(1): 506-11.
[http://dx.doi.org/10.1109/TNS.1982.4335896]
[32]
De Jong HW, Slijpen ET, Beekman FJ. Acceleration of Monte Carlo SPECT simulation using convolution-based forced detection. IEEE Transactions on Nuclear Science 2001; 48(1): 58-64.
[http://dx.doi.org/10.1109/23.910833]
[33]
Beekman FJ, de Jong HW, van Geloven S. Efficient fully 3-D iterative SPECT reconstruction with Monte Carlo-based scatter compensation. IEEE Trans Med Imaging 2002; 21(8): 867-77.
[http://dx.doi.org/10.1109/TMI.2002.803130] [PMID: 12472260]
[34]
Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994; 13(4): 601-9.
[http://dx.doi.org/10.1109/42.363108] [PMID: 18218538]
[35]
Kamphuis C, Beekman FJ, Viergever MA. Evaluation of OS-EM vs. ML-EM for 1D, 2D and fully 3D SPECT reconstruction. IEEE Transactions on Nuclear Science 1996; 43(3): 2018-24.
[http://dx.doi.org/10.1109/23.507262]
[36]
De Wit TC, Xiao J, Beekman FJ. Monte carlobased statistical SPECT reconstruction: Influence of number of photon tracks. IEEE Transactions on Nuclear Science 2005; 52(5): 1365-9.
[37]
Xiao J, de Wit TC, Staelens SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 99mTc cardiac perfusion SPECT. J Nucl Med 2006; 47(10): 1662-9.
[PMID: 17015903]
[38]
Xiao J, de Wit TC, Zbijewski W, Staelens SG, Beekman FJ. Evaluation of 3D Monte Carlo-based scatter correction for 201Tl cardiac perfusion SPECT. J Nucl Med 2007; 48(4): 637-44.
[http://dx.doi.org/10.2967/jnumed.106.037259] [PMID: 17401103]
[39]
Sohlberg A, Watabe H, Iida H. Acceleration of Monte Carlo-based scatter compensation for cardiac SPECT. Phys Med Biol 2008; 53(14): N277-85.
[http://dx.doi.org/10.1088/0031-9155/53/14/N02] [PMID: 18574315]
[40]
Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998; 43(4): 857-73.
[http://dx.doi.org/10.1088/0031-9155/43/4/014] [PMID: 9572510]
[41]
Kangasmaa TS, Kuikka JT, Vanninen EJ, Mussalo HM, Laitinen TP, Sohlberg AO. Half-time myocardial perfusion SPECT imaging with attenuation and Monte Carlo-based scatter correction. Nucl Med Commun 2011; 32(11): 1040-5.
[http://dx.doi.org/10.1097/MNM.0b013e328349c765] [PMID: 21956490]
[42]
Gustafsson J, Brolin G, Ljungberg M. Monte Carlo-based SPECT reconstruction within the SIMIND framework. Phys Med Biol 2018; 63(24): 245012.
[http://dx.doi.org/10.1088/1361-6560/aaf0f1] [PMID: 30523946]
[43]
Bexelius T, Sohlberg A. Implementation of GPU accelerated SPECT reconstruction with Monte Carlo-based scatter correction. Ann Nucl Med 2018; 32(5): 337-47.
[http://dx.doi.org/10.1007/s12149-018-1252-1] [PMID: 29564718]