Phenolic Content, Antioxidant Properties, Key Enzyme Inhibitory Potential and Photoprotective Activity of Lawsonia inermis L.

Article ID: e010621189558 Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Lawsonia inermis Linn (Lythraceae), commonly known as “Henna” is a medicinal plant, which is widely used as a folk remedy and for its cosmetic properties.

Objective: The objective of this present work was to evaluate biological activities and to quantify phenolics in extracts.

Methods: The extracts were obtained from seeds of L. inermis by increasing the polarity of the solvent. The content of total phenolics, flavonoids, flavonols and tannins was determined using colorimetric methods. Also, to evaluate the antioxidant activity, six different assays, DPPH, ABTS, superoxide radical scavenging, inhibition of β-carotene bleaching, ferric reducing antioxidant power and phenanthroline assays were used. Enzyme inhibition activity was evaluated by acetylcholinesterase, butyrylcholinesterase and tyrosinase inhibition assays. Furthermore, photoprotective activity was determined by measuring sun protection factor.

Results: The extraction efficiency of phenolics, as well as the biological activities of plant extracts, were affected by solvent polarity. The highest content of phenolics was determined in methanol extract (786.54 ± 0.00 mg GAEg-1 DW), followed by the aqueous and ethyl acetate extracts (526.48 ± 0.40 and 331.25 ± 0.00 GAEg-1 DW, respectively).The above extracts also exhibited the highest antioxidant activity, while low polar extracts were characterized with the lowest content of phenolics, as well as the lowest antioxidant capacity. The highest enzyme inhibition activities were found in ethyl acetate extract. Moreover, the methanol extract showed the best photoprotective activity with sun protection factor of 43.05 ± 0.37.

Conclusion: These findings suggest a possible use of Henna seeds as a potential source of bioactive molecules with antioxidant, enzyme inhibition and skin protection properties.

Keywords: Lawsonia inermis, antioxidant activity, cholinesterase inhibition, tyrosinase inhibition, photoprotective activity, phenolic compounds.

Graphical Abstract

[1]
Alfadda, A.A.; Sallam, R.M. Reactive oxygen species in health and disease. J. Biomed. Biotechnol., 2012, 2012, 936486.
[http://dx.doi.org/10.1155/2012/936486] [PMID: 22927725]
[2]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[3]
Halliwell, B.; Gutteridge, J.M. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J., 1984, 219(1), 1-14.
[http://dx.doi.org/10.1042/bj2190001] [PMID: 6326753]
[4]
Orhan, I.; Kartal, M.; Tosun, F.; Sener, B. Screening of various phenolic acids and flavonoid derivatives for their anticholinesterase potential. Z. Natforsch. C J. Biosci., 2007, 62(11-12), 829-832.
[http://dx.doi.org/10.1515/znc-2007-11-1210] [PMID: 18274286]
[5]
Houghton, P.J.; Howes, M.J. Natural products and derivatives affecting neurotransmission relevant to Alzheimer’s and Parkinson’s disease. Neurosignals, 2005, 14(1-2), 6-22.
[http://dx.doi.org/10.1159/000085382] [PMID: 15956811]
[6]
Hearing, V.J.; Jiménez, M. Mammalian tyrosinase- the critical regulatory control point in melanocyte pigmentation. Int. J. Biochem., 1987, 19(12), 1141-1147.
[http://dx.doi.org/10.1016/0020-711X(87)90095-4] [PMID: 3125075]
[7]
Jiménez-Cervantes, C.; Solano, F.; Kobayashi, T.; Urabe, K.; Hearing, V.J.; Lozano, J.A.; García-Borrón, J.C. A new enzymatic function in the melanogenic pathway. The 5,6-dihydroxyindole-2- carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J. Biol. Chem., 1994, 269(27), 17993-18000.
[PMID: 8027058]
[8]
Chang, C.T.; Chang, W.L.; Hsu, J.C.; Shih, Y.; Chou, S.T. Chemical composition and tyrosinase inhibitory activity of Cinnamomum cassia essential oil. Bot. Stud. (Taipei, Taiwan), 2013, 54(1), 10.
[http://dx.doi.org/10.1186/1999-3110-54-10] [PMID: 28510850]
[9]
Al-Tufail, M.; Krahn, P.; Hassan, H.; Mahier, T.; Al-Sedairy, S.T.; Haq, A. Rapid identification of phenylenediamine isomers in henna hair dye products by Gas Chromatography-Mass Spectrometry (GC-MS). Toxicol. Environ. Chem., 2010, 71, 241-246.
[http://dx.doi.org/10.1080/02772249909358795]
[10]
Chaudhary, G.; Goyal, S.; Poonia, P. Lawsonia inermis Linnaeus: A Phytopharmacological Review. Int. J. Pharm. Sci. Drug Res., 2010, 2, 91-98.
[11]
Kumar, M.; Kumar, S.; Kaur, S.J. Identification of polyphenols in leaf extracts of Lawsonia inermis L. with antioxidant, antigenotoxic and antiproliferative potential. Int. J. Green Pharm., 2014, 8, 23-36.
[http://dx.doi.org/10.4103/0973-8258.126816]
[12]
Lopes, A.; Rodrigues, M.J.; Pereira, C.; Oliveira, M.; Barreira, L.; Varela, J.; Trampetti, F.; Custodio, L. Natural products from extreme marine environments: Searching for potential industrial uses within extremophile plants. Ind. Crops Prod., 2016, 94, 299-307.
[http://dx.doi.org/10.1016/j.indcrop.2016.08.040]
[13]
Park, H.M.; Moon, E.; Kim, A.J.; Kim, M.H.; Lee, S.; Lee, J.B.; Park, Y.K.; Jung, H.S.; Kim, Y.B.; Kim, S.Y. Extract of Punica granatum inhibits skin photoaging induced by UVB irradiation. Int. J. Dermatol., 2010, 49(3), 276-282.
[http://dx.doi.org/10.1111/j.1365-4632.2009.04269.x] [PMID: 20465664]
[14]
Müller, L.; Gnoyke, S.; Popken, A.M.; Böhm, V. Antioxidant capacity and related parameters of different fruit formulations. Lebensm. Wiss. Technol., 2010, 43, 992-999.
[http://dx.doi.org/10.1016/j.lwt.2010.02.004]
[15]
Topçu, G.; Ay, M.; Bilici, A.; Sarikürkcü, C.; Öztürk, M.; Ulubelen, A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem., 2007, 103, 816-822.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.028]
[16]
Kumaran, A.; Karunakaran, R.J. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LTW-. Food Sci. Technol., 2007, 40, 344-352.
[17]
Julkunen-tiitto, R.; Wong, G.K.; Riitta, L.; Carol, E. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem., 1985, 33, 213-217.
[http://dx.doi.org/10.1021/jf00062a013]
[18]
Blois, M.S. Antioxidant determinations by the use of a stable Free Radical. Nature, 1958, 181, 1119-1200.
[http://dx.doi.org/10.1038/1811199a0]
[19]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[20]
Kunchandy, E.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm., 1990, 58, 237-240.
[http://dx.doi.org/10.1016/0378-5173(90)90201-E]
[21]
Oyaizu, M. Studies on products of browning reactions: antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr., 1986, 44, 307-315.
[http://dx.doi.org/10.5264/eiyogakuzashi.44.307]
[22]
Szydłowska-Czerniak, A.; Dianoczki, C.; Recseg, K.; Karlovits, G.; Szłyk, E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta, 2008, 76(4), 899-905.
[http://dx.doi.org/10.1016/j.talanta.2008.04.055] [PMID: 18656676]
[23]
Öztürk, M.; Duru, M.E.; Kivrak, S.; Mercan-Doğan, N.; Türkoglu, A.; Özler, M.A. In vitro antioxidant, anticholinesterase and antimicrobial activity studies on three Agaricus species with fatty acid compositions and iron contents: a comparative study on the three most edible mushrooms. Food Chem. Toxicol., 2011, 49(6), 1353-1360.
[http://dx.doi.org/10.1016/j.fct.2011.03.019] [PMID: 21419821]
[24]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7, 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[25]
Ngoc, T.M.; Lee, I.; Ha, T.; Kim, H.; Min, B.; Bae, K. Tyrosinase-inhibitory constituents from the twigs of Cinnamomum cassia. J. Nat. Prod., 2009, 72(6), 1205-1208.
[http://dx.doi.org/10.1021/np900031q] [PMID: 19555125]
[26]
Mansur, J.S.; Breder, M.N.R.; Mansur, M.C.A.; Azulay, R.D. Determinação do fator de proteção solar por espectrofotometria. An. Bras. Dermatol., 1986, 61, 121-124.
[27]
Tian, L.L.; White, P.J. Antioxidant activity of oat extract in soybean and cotton seed oils. J. Am. Oil Chem. Soc., 1994, 71, 1079-1086.
[http://dx.doi.org/10.1007/BF02675900]
[28]
Yoshikawa, Z.; Harada, E.; Miki, A.; Tsukamoto, K.; Liang, S.Q.; Yamahara, J.; Murakami, N. Antioxidant constituents from the fruit hulls of Mangosteen (Garcinia mangostana L.) Originating in Vietnam. J. Pharm. Soc. Japan, 1994, 114, 129-133.
[http://dx.doi.org/10.1248/yakushi1947.114.2_129]
[29]
Cherbi, R.; Yousfi, M.; Saidi, M.; Belguidoum, M. Total phenols, flavonoid content and antioxidant activity of seeds extracts of Lawsonia alba (henna) from Algeria. Der Pharma. Chem., 2016, 8, 216-221.
[30]
Chaibi, R.; Drine, S.; Ferchichi, A. Chemical study and biological activities of various extracts from Lawsonia inermis (Henna) seeds. Acta Med. Mediter., 2017, 33, 981-986.
[31]
Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem., 2006, 97, 654-660.
[http://dx.doi.org/10.1016/j.foodchem.2005.04.028]
[32]
Oukacha, A.; Zekhnini, A.; Bouhaimi, A.; Tahrouch, S.; Hatimi, A. Anti-inflammatory activity of methanolic extract from Pistacia atlantica desf. leaves. Pharmacogn. J., 2018, 10, 71-76.
[33]
Philip Jacob, P.; Madhumitha, G.; Mary Saral, A. Free radical scavenging and reducing power of Lawsonia inermis L. seeds. Asian Pac. J. Trop. Med., 2011, 4(6), 457-461.
[http://dx.doi.org/10.1016/S1995-7645(11)60125-9] [PMID: 21771698]
[34]
Wiem, A.; Smail, A.; Wissem, M.; Faleiro, M.; Miguel, M. Antioxidant, anti-inflammatory and anti-acetylcholinesterase activities of leaf, flower and seed aqueous extracts of Lawsonia inermis from Tunisia. Int. J. Pharm. Pharm. Sci., 2014, 6, 445-452.
[35]
Allam, H.; Benamar, H.; Ben Mansour, R.; Ksouri, R. Phenolic composition, antioxidant, and antibacterial activities of Artemisia Judaica subsp. Sahariensis. J. Herbs Spices Med. Plants, 2019, 25, 347-362.
[http://dx.doi.org/10.1080/10496475.2019.1631928]
[36]
Benamar, H.; Rarivoson, E.; Tomassini, L.; Frezza, C.; Marouf, A.; Bennaceur, M.; Nicoletti, M. Phytochemical profiles, antioxidant and anti-acetylcholinesterasic activities of the leaf extracts of Rhamnus lycioides subsp. oleoides (L.) Jahand. & Maire in different solvents. Nat. Prod. Res., 2019, 33(10), 1456-1462.
[http://dx.doi.org/10.1080/14786419.2017.1422182] [PMID: 29304683]
[37]
Craft, B.D.; Kerrihard, A.L.; Amarowicz, R.; Pegg, R.B. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf., 2012, 11, 148-173.
[http://dx.doi.org/10.1111/j.1541-4337.2011.00173.x]
[38]
Belli, S.; Rossi, M.; Molasky, N.; Middleton, L.; Caldwell, C.; Bartow-McKenney, C.; Duong, M.; Chiu, J.; Gibbs, E.; Caldwell, A.; Gahn, C.; Caruso, F. Effective and novel application of hydrodynamic voltammetry to the study of superoxide radical scavenging by natural phenolic antioxidants. Antioxidants, 2019, 8(1), 14.
[http://dx.doi.org/10.3390/antiox8010014] [PMID: 30621138]
[39]
Sunil, C.; Kumar, V.; Van Staden, J. In vitro alpha-glucosidase inhibitory, total phenolic composition, antiradical and antioxidant potential of Heteromorpha arborescens (Spreng) Cham. & Schltdl. leaf and bark extracts. S. Afr. J. Bot., 2019, 124, 380-386.
[http://dx.doi.org/10.1016/j.sajb.2019.05.017]
[40]
Braca, A.; Sinisgalli, C.; De Leo, M.; Muscatello, B.; Cioni, P.L.; Milella, L.; Ostuni, A.; Giani, S.; Sanogo, R. Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds. Molecules, 2018, 23(12), 3104.
[http://dx.doi.org/10.3390/molecules23123104] [PMID: 30486448]
[41]
Amrani, A.; Mecheri, A.; Bensouici, C. Evaluation of antidiabetic, dermatoprotective, neuroprotective and antioxidant activities of Chrysanthemum fontanesii flowers and leaves extracts. Biocatal. Agric. Biotechnol., 2019, 20, 101209.
[http://dx.doi.org/10.1016/j.bcab.2019.101209]
[42]
Eldeen, I.M.S.; Elgorashi, E.E.; van Staden, J. Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. J. Ethnopharmacol., 2005, 102(3), 457-464.
[http://dx.doi.org/10.1016/j.jep.2005.08.049] [PMID: 16233965]
[43]
Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci., 2009, 10(6), 2440-2475.
[http://dx.doi.org/10.3390/ijms10062440] [PMID: 19582213]
[44]
Kubo, I.; Nitoda, T.; Nihei, K. Effects of quercetin on mushroom tyrosinase and B16-F10 melanoma cells. Molecules, 2007, 12(5), 1045-1056.
[http://dx.doi.org/10.3390/12051045] [PMID: 17873839]
[45]
Salimi, M.; Sarkhail, P.; Baeeri, M. Determination of anti-melanogenic activity of Phlomis kurdica in human melanoma SKMEL-3 cells. Iran J. Pharm. Sci., 2016, 12, 1-10.
[46]
Deuschle, V.C.K.N.; Deuschle, R.A.N.; Bortoluzzi, M.R.; Athayde, M.L. Physical chemistry evaluation of stability, spreadability, in vitro antioxidant, and photo-protective capacities of topical formulations containing Calendula officinalis L. leaf extract. Braz. J. Pharm. Sci., 2015, 51, 63-75.
[http://dx.doi.org/10.1590/S1984-82502015000100007]
[47]
Schalka, S.; dos Reis, V.M.S. Fator de proteção solar: significado e controvérsia. An. Bras. Dermatol., 2011, 86, 507-515.
[http://dx.doi.org/10.1590/S0365-05962011000300013] [PMID: 21738968]
[48]
Ebrahimzadeh, M.A.; Enayatifard, R.; Khalili, M.; Ghaffarloo, M.; Saeedi, M.; Yazdani Charati, J. Correlation between sun protection factor and antioxidant activity, phenol and flavonoid contents of some medicinal plants. Iran. J. Pharm. Res., 2014, 13(3), 1041-1047.
[PMID: 25276206]