Dogs as a Model for Chemotherapy of Chagas Disease and Leishmaniasis

Page: [1741 - 1756] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Dogs are natural reservoir of Chagas disease (CD) and leishmaniasis and have been used for studies of these infections as they develop different clinical forms of these diseases similar to humans.

Objective: This article describes publications on the dog model relative to CD and leishmaniasis chemotherapy.

Methods: The search of articles was based on PubMed, Scopus and MESH using the keywords: dog, Trypanosoma cruzi, treatment (T. cruzi chemotherapy analysis), Leishmania chagasi, Leishmania infantum, canine visceral leishmaniasis, treatment (Leishmania chemotherapy evaluation).

Results: Benznidazole and nifurtimox were used as a reference in the treatment of CD and in combination with other compounds. Eleven out of the fifteen studies have authors from the same team, using similar protocols and post-treatment evaluations, which assured more reproducibility and credibility. Twenty leishmaniasis studies, especially on visceral leishmaniasis, presenting at least one parasitological analysis tested in distinct monochemotherapy and polychemotherapy approaches were accessed. Data demonstrated that polychemotherapy was more effective in improving the clinical signs and parasitism control.

Conclusion: The benefits of treatment in terms of reducing or eliminating lesions and/or cardiac dysfunctions were demonstrated at acute and/or chronic phases relative to parasite load and/or the T. cruzi strain resistance to treatment. BZ presented better therapeutic results than the two EBI compounds evaluated. Although treatment of the canine visceral leishmaniasis was not able to induce complete parasite clearance, it can improve clinical recovery. Thus, the dog is a good model for CD and leishmaniasis studies of chemotherapy and may be indicated for pre-clinical trials of new treatments.

Keywords: Chagas disease, visceral leishmaniasis, cutaneous leishmaniasis, canine visceral leishmaniasis, chemotherapy, dog model.

[1]
Chagas C. Nova tripanozomiaze humana. Estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1909; 1: 159-218.
[http://dx.doi.org/10.1590/S0074-02761909000200008]
[2]
Lumb G, Shacklett RS, Dawkins WA. The cardiac conduction tissue and its blood supply in the dog. Am J Pathol 1959; 35(3): 467-87.
[PMID: 13649883]
[3]
Marsden PD, Hagstrom JW. Experimental Trypanosoma cruzi infection in beagle puppies. The effect of variations in the dose and source of infecting trypanosomes and the route of inoculation on the course of the infection. Trans R Soc Trop Med Hyg 1968; 62(6): 816-24.
[http://dx.doi.org/10.1016/0035-9203(68)90010-2] [PMID: 5729571]
[4]
Andrade ZA, Andrade SG. A patologia da doença de Chagas experimental no cão. Mem Inst Oswaldo Cruz 1980; 75(3-4): 77-95.
[http://dx.doi.org/10.1590/S0074-02761980000200008] [PMID: 6815410]
[5]
Bahia MT, Tafuri WL, Caliari MV, et al. Comparison of Trypanosoma cruzi infection in dogs inoculated with blood or metacyclic trypomastigotes of Berenice-62 and Berenice-78 strains via intraperitoneal and conjunctival routes. Rev Soc Bras Med Trop 2002; 35(4): 339-45.
[http://dx.doi.org/10.1590/S0037-86822002000400010] [PMID: 12170329]
[6]
de Lana M, Chiari E, Tafuri WL. Experimental Chagas’ disease in dogs. Mem Inst Oswaldo Cruz 1992; 87(1): 59-71.
[http://dx.doi.org/10.1590/S0074-02761992000100011] [PMID: 1308556]
[7]
de Lana M. Experimental studies of Chagas disease in animal models Telleria J and Tibayrenc M (Org) American Trypanosomiasis Chagas Disease One Hundred Years of Research 2ed Oxford: Ed ELSEVIER 2017; 299-314
[http://dx.doi.org/10.1016/B978-0-12-801029-7.00014-9]
[8]
Anselmi A, Gurdiel O, Suarez JA, Anselmi G. Disturbances in the A-V conduction system in Chagas’ myocarditis in the dog. Circ Res 1967; 20(1): 56-64.
[http://dx.doi.org/10.1161/01.RES.20.1.56] [PMID: 4959752]
[9]
Andrade ZA, Andrade SG, Sadigursky M. Damage and healing in the conducting tissue of the heart. J Pathol 1984; 143: 93-101.
[10]
de Lana M, Tafuri WL, Caliari MV, et al. Chronic fibrotic cardiac stage of experimental trypanosomiasis cruzi in dogs. Rev Soc Bras Med Trop 1988; 21: 113-21.
[11]
Caliari MV, de Lana M, Caliari ER, Tafuri WL. Cardiac plexus of dogs experimentally infected with Trypanosoma cruzi: inflammatory lesions and quantitative studies. Rev Soc Bras Med Trop 1995; 28(1): 13-7.
[http://dx.doi.org/10.1590/S0037-86821995000100003] [PMID: 7724862]
[12]
Caliari ER, Caliari MV, de Lana M, Tafuri WL. Quantitative and qualitative studies of the Auerbach and Meissner plexuses of the esophagus in dogs inoculated with Trypanosoma cruzi. Rev Soc Bras Med Trop 1996; 29(1): 17-20.
[http://dx.doi.org/10.1590/S0037-86821996000100004] [PMID: 8851210]
[13]
Nogueira-Paiva NC, Fonseca Kda S, Vieira PM, et al. Myenteric plexus is differentially affected by infection with distinct Trypanosoma cruzi strains in Beagle dogs. Mem Inst Oswaldo Cruz 2014; 109(1): 51-60.
[http://dx.doi.org/10.1590/0074-0276130216] [PMID: 24271001]
[14]
Andrade ZA, Andrade SG, Correa R, Sadigursky M, Ferrans VJ. Myocardial changes in acute Trypanosoma cruzi infection. Ultrastructural evidence of immune damage and the role of microangiopathy. Am J Pathol 1994; 144(6): 1403-11.
[PMID: 8203476]
[15]
Guedes PMM, Veloso VM, Afonso LCC, et al. Development of chronic cardiomyopathy in canine Chagas disease correlates with high IFN-gamma, TNF-α, and low IL-10 production during the acute infection phase. Vet Immunol Immunopathol 2009; 130(1-2): 43-52.
[http://dx.doi.org/10.1016/j.vetimm.2009.01.004] [PMID: 19211152]
[16]
Lana M, Vieira LM, Machado-Coelho GL, Chiari E, Veloso VM, Tafuri WL. Humoral immune response in dogs experimentally infected with Trypanosoma cruzi. Mem Inst Oswaldo Cruz 1991; 86(4): 471-3.
[http://dx.doi.org/10.1590/S0074-02761991000400019] [PMID: 1842441]
[17]
WHO. Report of the Scientific Working Group on the Development and Evaluation of Animal Models for Chagas' Disease. Geneva. 1984.
[18]
Krettli AU, Brener Z. Resistance against Trypanosoma cruzi associated to anti-living trypomastigote antibodies. J Immunol 1982; 128(5): 2009-12.
[PMID: 6801127]
[19]
Guedes PM, Veloso VM, Tafuri WL, et al. The dog as model for chemotherapy of the Chagas' disease. Acta Trop 2002; 84: 9-17.
[20]
Second Brazilian Consensus on Chagas Disease 2016. II Consenso Brasileiro em Doença de Chagas, 2015. Epidemiol Serv Saude 2016; 25: 7-86.
[21]
de Lana M, Martins-Filho OA. Revisiting the post-therapeutic cure criterion in Chagas disease: Time for new methods, more questions, doubts, and polemics or time to change old concepts? Biomed Res Int 2015; ID 652985, 1-10..
[http://dx.doi.org/10.1155/2015/652985.]
[22]
Haberkorn A, Gönnert R. Animal experimental investigation into the activity of nifurtimox against Trypanosoma cruzi. Arzneimittelforschung 1972; 22(9): 1570-82.
[PMID: 4630483]
[23]
Schenone H, Concha L, Aranda R, Rojas A, Alfaro E, Knierim F. Chemotherapeutic activity of a nitroimidazolacetamide compound in chronic chagasic infection (author’s transl). Bol Chil Parasitol 1975; 30(3-4): 91-4.
[PMID: 813747]
[24]
Andrade SG, Andrade ZA, Sadigursky M. Combined treatment with a nitrofuranic and a corticoid in experimental Chagas’ disease in the dog. Am J Trop Med Hyg 1980; 29(5): 766-73.
[http://dx.doi.org/10.4269/ajtmh.1980.29.766] [PMID: 6776831]
[25]
Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Trans R Soc Trop Med Hyg 1987; 81(5): 755-9.
[http://dx.doi.org/10.1016/0035-9203(87)90020-4] [PMID: 3130683]
[26]
Santos FM, Lima WG, Gravel AS, et al. Cardiomyopathy prognosis after benznidazole treatment in chronic canine Chagas’ disease. J Antimicrob Chemother 2012; 67(8): 1987-95.
[http://dx.doi.org/10.1093/jac/dks135] [PMID: 22570424]
[27]
Santos FM, Mazzeti AL, Caldas S, et al. Chagas cardiomyopathy: The potential effect of benznidazole treatment on diastolic dysfunction and cardiac damage in dogs chronically infected with Trypanosoma cruzi. Acta Trop 2016; 161: 44-54.
[http://dx.doi.org/10.1016/j.actatropica.2016.05.007] [PMID: 27215760]
[28]
Caldas IS, da Matta Guedes PM, dos Santos FM, et al. Myocardial scars correlate with eletrocardiographic changes in chronic Trypanosoma cruzi infection for dogs treated with Benznidazole. Trop Med Int Health 2013; 18(1): 75-84.
[http://dx.doi.org/10.1111/tmi.12002] [PMID: 23107306]
[29]
Caldas IS, Menezes APJ, Diniz LF, et al. Parasitaemia and parasitic load are limited targets of the aetiological treatment to control the progression of cardiac fibrosis and chronic cardiomyopathy in Trypanosoma cruzi-infected dogs. Acta Trop 2019; 189: 30-8.
[http://dx.doi.org/10.1016/j.actatropica.2018.09.015] [PMID: 30290285]
[30]
Daliry A, Caldas IS, de Figueiredo Diniz L, et al. Anti-adrenergic and muscarinic receptor autoantibodies in a canine model of Chagas disease and their modulation by benznidazole. Int J Cardiol 2014; 170(3): e66-7.
[http://dx.doi.org/10.1016/j.ijcard.2013.11.022] [PMID: 24268984]
[31]
Carvalho EB, Ramos IPR, Nascimento AFS, et al. Echocardiographic measurements in a preclinical model of chronic chagasic cardiomyopathy in dogs: validation and reproducibility. Front Cell Infect Microbiol 2019; 9: 332.
[http://dx.doi.org/10.3389/fcimb.2019.00332] [PMID: 31616643]
[32]
Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010; 375(9723): 1388-402.
[http://dx.doi.org/10.1016/S0140-6736(10)60061-X] [PMID: 20399979]
[33]
Cunha ELA, Torchelsen FKVDS, Cunha LM, et al. Benznidazole, itraconazole and their combination in the treatment of acute experimental chagas disease in dogs. Exp Parasitol 2019; 204, 107711.
[http://dx.doi.org/10.1016/j.exppara.2019.05.005] [PMID: 31254494]
[34]
Apt W, Arribada A, Zulantay I, Rodríguez J, Saavedra M, Muñoz A. Treatment of Chagas’ disease with itraconazole: electrocardiographic and parasitological conditions after 20 years of follow-up. J Antimicrob Chemother 2013; 68(9): 2164-9.
[http://dx.doi.org/10.1093/jac/dkt135] [PMID: 23645584]
[35]
Cunha ELA, Torchelsen FKVDS, Cunha LM, et al. Benznidazole, itraconazole and their combination in the treatment of acute experimental Chagas disease in dogs. MethodsX Exp Parasitol 2019.
[36]
Madigan R, Majoy S, Ritter K, et al. Investigation of a combination of amiodarone and itraconazole for treatment of American trypanosomiasis (Chagas disease) in dogs. J Am Vet Med Assoc 2019; 255(3): 317-29.
[http://dx.doi.org/10.2460/javma.255.3.317] [PMID: 31298647]
[37]
Guedes PM, Urbina JA, de Lana M, et al. Activity of the new triazole derivative albaconazole against Trypanosoma (Schizotrypanum) cruzi in dog hosts. Antimicrob Agents Chemother 2004; 48(11): 4286-92.
[http://dx.doi.org/10.1128/AAC.48.11.4286-4292.2004] [PMID: 15504854]
[38]
Bartrolí JE, Turmo EE, Algueró ML, et al. Garcia-Rafanell and Forn J. New azole antifungals. 3 Synthesis and antifungal activity of 2-substituted-4(3H)-quina-zolinones. J Med Chem 1998; 42: 1869-82.
[http://dx.doi.org/10.1021/jm9707277] [PMID: 9599237]
[39]
Diniz LF, Caldas IS, Guedes PMM, et al. Effects of ravuconazole treatment on parasite load and Immune Response in Dogs Experimentally Infected with Trypanosoma cruzi. Antimicrob Ag Chemother 2010, 2979-86.
[40]
Zao CL, Yang YC, Tomanek L, et al. PCR monitoring of parasitemia during drug treatment for canine Chagas disease. J Vet Diagn Invest 2019; 31(5): 742-6.
[http://dx.doi.org/10.1177/1040638719868508] [PMID: 31378166]
[41]
Sturm NR. Trypanosoma cruzi mitochondrial DNA and the parasite lifecycle.Teixeira A, et al, Eds Emerging Chagas Disease. Sharjah, UAE: Bentham eBooks 2009; 63-9..
[42]
Elias MC, Vargas NS, Zingales B, Schenkman S. Organization of satellite DNA in the genome of Trypanosoma cruzi. Mol Biochem Parasitol 2003; 129(1): 1-9.
[http://dx.doi.org/10.1016/S0166-6851(03)00054-9] [PMID: 12798501]
[43]
Soy D, Aldasoro E, Guerrero L, et al. Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob Agents Chemother 2015; 59(6): 3342-9.
[http://dx.doi.org/10.1128/AAC.05018-14] [PMID: 25824212]
[44]
Bani-Jaber A, Al-Aani L, Alkhatib H, Al-Khalidi B. Prolonged intragastric drug delivery mediated by Eudragit® E-carrageenan polyelectrolyte matrix tablets. AAPS PharmSciTech 2011; 12(1): 354-61.
[http://dx.doi.org/10.1208/s12249-011-9595-0] [PMID: 21302009]
[45]
Palena M, García M, Manzo R, Jimenez-Kairuz A. Self-organized drug-interpolyelectrolyte nanocomplexes loaded with anionic drugs. Characterization and in vitro release evaluation. J Drug Deliv Sci Technol 2015; 30: 45-53.
[http://dx.doi.org/10.1016/j.jddst.2015.09.014]
[46]
García MC, Guzman ML, Himelfarb MA, Litterio NJ, Olivera ME, Jimenez-Kairuz A. Preclinical pharmacokinetics of benznidazole-loaded interpolyelectrolyte complex-based delivery systems. Eur J Pharm Sci 2018; 122: 281-91.
[http://dx.doi.org/10.1016/j.ejps.2018.07.005] [PMID: 30018011]
[47]
Guerrero L, Pinazo MJ, Posada E, Gascón J, Ribas J, Soy D. A high-performance liquid chromatographic method for benznidazole quantitation in plasma of patients with Chagas disease. Clin Chem Lab Med 2011; 49(1): 77-82.
[http://dx.doi.org/10.1515/CCLM.2011.014] [PMID: 21083440]
[48]
Gulin JEN, Rocco DM, García-Bournissen F. Quality of reporting and adherence to ARRIVE guidelines in animal studies for chagas disease preclinical drug research: A Systematic Review. PLoS Negl Trop Dis 2015; 9(11), e0004194.
[http://dx.doi.org/10.1371/journal.pntd.0004194] [PMID: 26587586]
[49]
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8(6), e1000412.
[http://dx.doi.org/10.1371/journal.pbio.1000412] [PMID: 20613859]
[50]
Chatelain E, Konar N. Translational challenges of animal models in Chagas disease drug development: a review. Drug Des Devel Ther 2015; 9: 4807-23.
[http://dx.doi.org/10.2147/DDDT.S90208] [PMID: 26316715]
[51]
Brener Z. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 1962; 4: 389-96.Available from:. http://www.imt.usp.br/wp-content/uploads/revista/vol04/389-396.pdf
[52]
Rassi A Jr, Marin JA, Rassi A. Chronic Chagas cardiomyopathy: a review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz 2017; 112(3): 224-35.
[http://dx.doi.org/10.1590/0074-02760160334] [PMID: 28225900]
[53]
Viotti R, Vigliano C, Lococo B, et al. Long-term cardiac outcomes of treating chronic Chagas disease with benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med 2006; 144(10): 724-34.
[http://dx.doi.org/10.7326/0003-4819-144-10-200605160-00006] [PMID: 16702588]
[54]
Machado-de-Assis GF, Silva AR, Do Bem VA, et al. Posttherapeutic cure criteria in Chagas’ disease: conventional serology followed by supplementary serological, parasitological, and molecular tests. Clin Vaccine Immunol 2012; 19(8): 1283-91.
[http://dx.doi.org/10.1128/CVI.00274-12] [PMID: 22739694]
[55]
Torrico F, Gascon J, Ortiz L, et al. E1224 Study Group. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis 2018; 18(4): 419-30.
[http://dx.doi.org/10.1016/S1473-3099(17)30538-8] [PMID: 29352704]
[56]
Branquinho RT, Mosqueira VC, de Oliveira-Silva JC, Simões-Silva MR, Saúde-Guimarães DA, de Lana M. Sesquiterpene lactone in nanostructured parenteral dosage form is efficacious in experimental Chagas disease. Antimicrob Agents Chemother 2014; 58(4): 2067-75.
[http://dx.doi.org/10.1128/AAC.00617-13] [PMID: 24449777]
[57]
Branquinho RT, de Mello CGC, Oliveira MT, et al. Lychnopholide in PLA-PEG nanocapsules cures infection by drug resistant Trypanosoma cruzi strain in acute and chronic phases. Antimicrob Agents Chemother 2020.
[http://dx.doi.org/10.1128/AAC.01937-19]
[58]
Laison R, Shaw JJ. Evolution, classification and geographical distribution The leishmaniasis in biology and medicine. London: Academic Press 1987, 1-20.
[59]
Burza S, Croft SL, Boelaert M. Leishmaniasis. Lancet 2018; 392(10151): 951-70.
[http://dx.doi.org/10.1016/S0140-6736(18)31204-2] [PMID: 30126638]
[60]
Deane LM, Deane MP. Visceral leishmaniasis in Brazil: geographical distribution and trnsmission. Rev Inst Med Trop São Paulo 1962; 4: 198-212.
[PMID: 13884626]
[61]
Giunchetti RC, Silveira P, Resende LA, et al. Canine visceral leishmaniasis biomarkers and their employment in vaccines. Vet Parasitol 2019; 271: 87-97.
[http://dx.doi.org/10.1016/j.vetpar.2019.05.006] [PMID: 31303211]
[62]
Gonçalves AAM, Leite JC, Resende LA, et al. An overview of immunotherapeutic approaches against canine visceral leishmaniasis: What has been tested on dogs and a new perspective on improving treatment efficacy. Front Cell Infect Microbiol 2019; 9: 427.
[http://dx.doi.org/10.3389/fcimb.2019.00427] [PMID: 31921703]
[63]
Alves F, Bilbe G, Blesson S, et al. Recent development of visceral leishmaniasis treatments: successes, pitfalls, and perspectives. Clin Microbiol Rev 2018; 31(4): e00048-18.
[http://dx.doi.org/10.1128/CMR.00048-18] [PMID: 30158301]
[64]
Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 1998; 27(3): 603-18.
[http://dx.doi.org/10.1086/514704] [PMID: 9770163]
[65]
Lanza JS, Pomel S, Loiseau PM, Frézard F. Recent advances in amphotericin B delivery strategies for the treatment of leishmaniases. Expert Opin Drug Deliv 2019; 16(10): 1063-79.
[http://dx.doi.org/10.1080/17425247.2019.1659243] [PMID: 31433678]
[66]
Garg R, Dube A. Animal models for vaccine studies for visceral leishmaniasis. Indian J Med Res 2006; 123(3): 439-54.
[PMID: 16778322]
[67]
Kirkness EF, Bafna V, Halpern AL, et al. The dog genome: survey sequencing and comparative analysis. Science 2003; 301(5641): 1898-903.
[http://dx.doi.org/10.1126/science.1086432] [PMID: 14512627]
[68]
Starkey MP, Scase TJ, Mellersh CS, Murphy S. Dogs really are man’s best friend--canine genomics has applications in veterinary and human medicine! Brief Funct Genomics Proteomics 2005; 4(2): 112-28.
[http://dx.doi.org/10.1093/bfgp/4.2.112] [PMID: 16102268]
[69]
Giunchetti RC, Mayrink W, Genaro O, et al. Relationship between canine visceral leishmaniosis and the Leishmania (Leishmania) chagasi burden in dermal inflammatory foci. J Comp Pathol 2006; 135(2-3): 100-7.
[http://dx.doi.org/10.1016/j.jcpa.2006.06.005] [PMID: 16959259]
[70]
Reis AB, Martins-Filho OA, Teixeira-Carvalho A, et al. Parasite density and impaired biochemical/hematological status are associated with severe clinical aspects of canine visceral leishmaniasis. Res Vet Sci 2006; 81(1): 68-75.
[http://dx.doi.org/10.1016/j.rvsc.2005.09.011] [PMID: 16288789]
[71]
Giunchetti RC, Mayrink W, Carneiro CM, et al. Histopathological and immunohistochemical investigations of the hepatic compartment associated with parasitism and serum biochemical changes in canine visceral leishmaniasis. Res Vet Sci 2008; 84(2): 269-77.
[http://dx.doi.org/10.1016/j.rvsc.2007.04.020] [PMID: 17604064]
[72]
Giunchetti RC, Martins-Filho OA, Carneiro CM, et al. Histopathology, parasite density and cell phenotypes of the popliteal lymph node in canine visceral leishmaniasis. Vet Immunol Immunopathol 2008; 121(1-2): 23-33.
[http://dx.doi.org/10.1016/j.vetimm.2007.07.009] [PMID: 17723246]
[73]
Reis AB, Martins-Filho OA, Teixeira-Carvalho A, et al. Systemic and compartmentalized immune response in canine visceral leishmaniasis. Vet Immunol Immunopathol 2009; 128(1-3): 87-95.
[http://dx.doi.org/10.1016/j.vetimm.2008.10.307] [PMID: 19054576]
[74]
Trópia de Abreu R. , Carvalho Md, Carneiro CM, et al. Influence of clinical status and parasite load on erythropoiesis and leucopoiesis in dogs naturally infected with leishmania (Leishmania) chagasi. PLoS One 2011; 6(5),: e18873.
[http://dx.doi.org/10.1371/journal.pone.0018873] [PMID: 21572995]
[75]
Moreno J, Alvar J. Canine leishmaniasis: epidemiological risk and the experimental model. Trends Parasitol 2002; 18(9): 399-405.
[http://dx.doi.org/10.1016/S1471-4922(02)02347-4] [PMID: 12377257]
[76]
Travi BL, Cordeiro-da-Silva A, Dantas-Torres F, Miró G. Canine visceral leishmaniasis: Diagnosis and management of the reservoir living among us. PLoS Negl Trop Dis 2018; 12(1), e0006082.
[http://dx.doi.org/10.1371/journal.pntd.0006082] [PMID: 29324838]
[77]
Marcondes M, Day MJ. Current status and management of canine leishmaniasis in Latin America. Res Vet Sci 2019; 123: 261-72.
[http://dx.doi.org/10.1016/j.rvsc.2019.01.022] [PMID: 30708238]
[78]
Poli A, Sozzi S, Guidi G, Bandinelli P, Mancianti F. Comparison of aminosidine (paromomycin) and sodium stibogluconate for treatment of canine leishmaniasis. Vet Parasitol 1997; 71(4): 263-71.
[http://dx.doi.org/10.1016/S0304-4017(97)00014-9] [PMID: 9299695]
[79]
Bianciardi P, Fasanella A, Foglia Manzillo V, et al. The efficacy of enrofloxacin, alone or combined with metronidazole, in the therapy of canine leishmaniasis. Parasitol Res 2004; 93(6): 486-92.
[http://dx.doi.org/10.1007/s00436-004-1170-0] [PMID: 15278443]
[80]
Pennisi MG, De Majo M, Masucci M, Britti D, Vitale F, Del Maso R. Efficacy of the treatment of dogs with leishmaniosis with a combination of metronidazole and spiramycin. Vet Rec 2005; 156(11): 346-9.
[http://dx.doi.org/10.1136/vr.156.11.346] [PMID: 15789648]
[81]
Ikeda-Garcia FA, Lopes RS, Marques FJ, et al. Clinical and parasitological evaluation of dogs naturally infected by Leishmania (Leishmania) chagasi submitted to treatment with meglumine antimoniate. Vet Parasitol 2007; 143(3-4): 254-9.
[http://dx.doi.org/10.1016/j.vetpar.2006.08.019] [PMID: 16996214]
[82]
Pennisi MG, Lo Giudice S, Masucci M, De Majo M, Reale S, Vitale F. Clinical efficacy of two different drug combinations for the treatment of canine leishmaniasis. Vet Res Commun 2008; 32(Suppl. 1): S303-5.
[http://dx.doi.org/10.1007/s11259-008-9134-y] [PMID: 18683068]
[83]
Paradies P, Sasanelli M, Amato ME, Greco B, De Palo P, Lubas G. Monitoring the reverse to normal of clinico-pathological findings and the disease free interval time using four different treatment protocols for canine leishmaniosis in an endemic area. Res Vet Sci 2012; 93(2): 843-7.
[http://dx.doi.org/10.1016/j.rvsc.2012.01.005] [PMID: 22296941]
[84]
da Silva SM, Amorim IF, Ribeiro RR, et al. Efficacy of combined therapy with liposome-encapsulated meglumine antimoniate and allopurinol in treatment of canine visceral leishmaniasis. Antimicrob Agents Chemother 2012; 56(6): 2858-67.
[http://dx.doi.org/10.1128/AAC.00208-12] [PMID: 22411610]
[85]
Dos Santos CCP, Ramos GS, De Paula RC, et al. Therapeutic efficacy of a mixed formulation of conventional and PEGylated liposomes containing meglumine antimoniate, combined with allopurinol, in dogs naturally infected with Leishmania infantum. Antimicrob Agents Chemother 2020.
[http://dx.doi.org/10.1128/AAC.00234-20]
[86]
Unger C, Damenz W, Fleer EA, et al. Hexadecylphosphocholine, a new ether lipid analogue. Studies on the antineoplastic activity in vitro and in vivo. Acta Oncol 1989; 28(2): 213-7.
[http://dx.doi.org/10.3109/02841868909111249] [PMID: 2736110]
[87]
Woerly V, Maynard L, Sanquer A, Eun HM. Clinical efficacy and tolerance of miltefosine in the treatment of canine leishmaniosis. Parasitol Res 2009; 105(2): 463-9.
[http://dx.doi.org/10.1007/s00436-009-1404-2] [PMID: 19322588]
[88]
Dos Santos Nogueira F, Avino VC, Galvis-Ovallos F, et al. Use of miltefosine to treat canine visceral leishmaniasis caused by Leishmania infantum in Brazil. Parasit Vectors 2019.
[http://dx.doi.org/10.1186/s13071-019-3323-0]
[89]
Andrade HM, Toledo VP, Pinheiro MB, et al. Evaluation of miltefosine for the treatment of dogs naturally infected with L. infantum (=L. chagasi) in Brazil. Vet Parasitol 2011; 181(2-4): 83-90.
[http://dx.doi.org/10.1016/j.vetpar.2011.05.009] [PMID: 21641721]
[90]
Manna L, Corso R, Galiero G, Cerrone A, Muzj P, Gravino AE. Long-term follow-up of dogs with leishmaniosis treated with meglumine antimoniate plus allopurinol versus miltefosine plus allopurinol. Parasit Vectors 2015.
[http://dx.doi.org/10.1186/s13071-015-0896-0]
[91]
Miró G, Oliva G, Cruz I, et al. Multicentric, controlled clinical study to evaluate effectiveness and safety of miltefosine and allopurinol for canine leishmaniosis. Vet Dermatol 2009; 20(5-6): 397-404.
[http://dx.doi.org/10.1111/j.1365-3164.2009.00824.x] [PMID: 20178476]
[92]
Pineda C, Aguilera-Tejero E, Morales MC, et al. Treatment of canine leishmaniasis with marbofloxacin in dogs with renal disease. PLoS One 2017; 12(10), e0185981.
[http://dx.doi.org/10.1371/journal.pone.0185981] [PMID: 28982165]
[93]
Barone JA. Domperidone: a peripherally acting dopamine2-receptor antagonist. Ann Pharmacother 1999; 33(4): 429-40.
[http://dx.doi.org/10.1345/aph.18003] [PMID: 10332535]
[94]
Sabaté D, Llinás J, Homedes J, Sust M, Ferrer L. A single-centre, open-label, controlled, randomized clinical trial to assess the preventive efficacy of a domperidone-based treatment programme against clinical canine leishmaniasis in a high prevalence area. Prev Vet Med 2014; 115(1-2): 56-63.
[http://dx.doi.org/10.1016/j.prevetmed.2014.03.010] [PMID: 24698328]
[95]
Vexenat JA, Olliaro PL, Fonseca de Castro JA, et al. Clinical recovery and limited cure in canine visceral leishmaniasis treated with aminosidine (paromomycin). Am J Trop Med Hyg 1998; 58: 448-53.
[96]
Passos SR, Rodrigues Tde A, Madureira AP, Giunchetti RC, Zanini MS. Clinical treatment of cutaneous leishmaniasis in dogs with furazolidone and domperidone. Int J Antimicrob Agents 2014; 44(5): 463-5.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.07.011] [PMID: 25219877]
[97]
Athanasiou LV, Saridomichelakis MN, Kontos VI, Spanakos G, Rallis TS. Treatment of canine leishmaniosis with aminosidine at an optimized dosage regimen: a pilot open clinical trial. Vet Parasitol 2013; 192(1-3): 91-7.
[http://dx.doi.org/10.1016/j.vetpar.2012.10.011] [PMID: 23140991]
[98]
Rhalem A, Sahibi H, Lasri S, Jaffe CL. Analysis of immune responses in dogs with canine visceral leishmaniasis before, and after, drug treatment. Vet Immunol Immunopathol 1999; 71(1): 69-76.
[http://dx.doi.org/10.1016/S0165-2427(99)00088-4] [PMID: 10522787]
[99]
Marques C, Carvalheiro M, Pereira MA, Jorge J, Cruz ME, Santos-Gomes GM. Efficacy of the liposome trifluralin in the treatment of experimental canine leishmaniosis. Vet J 2008; 178(1): 133-7.
[http://dx.doi.org/10.1016/j.tvjl.2007.07.016] [PMID: 17855131]
[100]
Tassi P, Ormas P, Madonna M, et al. Pharmacokinetics of N-methylglucamine antimoniate after intravenous, intramuscular and subcutaneous administration in the dog. Res Vet Sci 1994; 56(2): 144-50.
[http://dx.doi.org/10.1016/0034-5288(94)90096-5] [PMID: 8191002]
[101]
Valladares JE, Alberola J, Esteban M, Arboix M. Disposition of antimony after the administration of N-methylglucamine antimoniate to dogs. Vet Rec 1996; 138(8): 181-3.
[http://dx.doi.org/10.1136/vr.138.8.181] [PMID: 8677619]
[102]
Neff-Davis CA, Davis LE, Gillette EL. Metronidazole: a method for its determination in biological fluids and its disposition kinetics in the dog. J Vet Pharmacol Ther 1981; 4(2): 121-7.
[http://dx.doi.org/10.1111/j.1365-2885.1981.tb00720.x] [PMID: 7349324]
[103]
Athanasiou LV, Batzias GC, Saridomichelakis MN, et al. Pharmacokinetics and tolerability of aminosidine after repeated administrations using an optimal dose regimen in healthy dogs and in dogs with leishmaniosis. Vet Parasitol 2014; 205(1-2): 365-70.
[http://dx.doi.org/10.1016/j.vetpar.2014.06.019] [PMID: 24998095]