Garcinia mangostana Shell and Tradescantia spathacea Leaf Extract- Mediated One-pot Synthesis of Silver Nanoparticles with Effective Antifungal Properties

Page: [762 - 771] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The feasibility of plant extracts for metallic nanoparticle fabrication has been demonstrated. Each plant species impacts differently on formed nanoparticles, thus specific plants need to be explored in detail.

Objective: Continuing the fabrication of nanoparticles using green method, Garcinia mangostana shell and Tradescantia spathacea leaf extract are exploited as reducing sources to form two types of silver nanoparticles (GMS-AgNPs and TSL-AgNPs) less than 50 nm.

Methods: Structural characterization of GMS-AgNPs and TSL-AgNPs was performed by ultravioletvisible spectrophotometry (UV-vis), Fourier transform infrared spectroscopy (FTIR), X-ray energy dispersive spectrometer (EDAX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Antifungal tests of GMS-AgNPs and TSL-AgNPs were performed with Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum.

Results: UV-vis spectra with the 440-nm peak demonstrate the silver nanoparticle formation. FTIR analysis shows the GMS-AgNPs and TSL-AgNPs modified by organic functional groups. The SEM and TEM images indicate that the GMS-AgNPs are spherical shaped with rough edged, while the TSL-AgNPs are spherical shape with smooth surface. The GMS-AgNP average size (15.8 nm) is smaller than TSL-AgNP (22.4 nm). In addition, antifungal tests using Aspergillus niger, Aspergillus flavus, and Fusarium oxysporum reveal that GMS-AgNPs and TSL-AgNPs can significantly inhibit the proliferation of these fungal strains.

Conclusion: Garcinia mangostana shell and Tradescantia spathacea leaf extract as renewable and eco-friendly resources playing a dual role for nanoparticle biosynthesis create GMS-AgNPs and TSL-AgNPs with high antifungal efficiency for biomedical or agricultural applications.

Keywords: Silver nanoparticle, antifungi, phytoconstituent, green chemistry, Garcinia mangostana, Tradescantia spathacea.

Graphical Abstract

[1]
Chandra, H.; Kumari, P.; Bontempi, E.; Yadav, S. Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatal. Agric. Biotechnol., 2020, 24, 101518.
[http://dx.doi.org/10.1016/j.bcab.2020.101518]
[2]
Jorge de Souza, T.A.; Rosa Souza, L.R.; Franchi, L.P. Silver nanoparticles: An integrated view of green synthesis methods, transformation in the environment, and toxicity. Ecotoxicol. Environ. Saf., 2019, 171, 691-700.
[http://dx.doi.org/10.1016/j.ecoenv.2018.12.095] [PMID: 30658305]
[3]
Hoseinpour, V.; Ghaemi, N. Green synthesis of manganese nanoparticles: Applications and future perspective-A review. J. Photochem. Photobiol. B, 2018, 189, 234-243.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.10.022] [PMID: 30412855]
[4]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[5]
Roy, A.; Bulut, O.; Some, S.; Mandal, A.K.; Yilmaz, M.D. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances, 2019, 9(5), 2673-2702.
[http://dx.doi.org/10.1039/C8RA08982E]
[6]
Akhtar, M.S.; Panwar, J.; Yun, Y-S. Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem.& Eng., 2013, 1(6), 591-602.
[http://dx.doi.org/10.1021/sc300118u]
[7]
Nguyen, D.H.; Lee, J.S.; Park, K.D.; Ching, Y.C.; Nguyen, X.T.; Phan, V.H.G.; Hoang Thi, T.T. Green silver nanoparticles formed by Phyllanthus urinaria, Pouzolzia zeylanica, and Scoparia dulcis leaf extracts and the antifungal activity. Nanomaterials (Basel), 2020, 10(3), 542.
[http://dx.doi.org/10.3390/nano10030542] [PMID: 32192177]
[8]
Le, N.T.T.; Nguyen, D.H.; Nguyen, N.H.; Ching, Y.C.; Pham Nguyen, D.Y.; Ngo, C.Q.; Nguyen Thi, N.H.; Hoang Thi, T.T. Silver nanoparticles ecofriendly synthesized by Achyranthes aspera and Scoparia dulcis leaf broth as an effective fungicide. Appl. Sci. (Basel), 2020, 10(7), 2505.
[http://dx.doi.org/10.3390/app10072505]
[9]
Wang, Z.; Sun, Q.; Wang, D.; Hong, Z.; Qu, Z.; Li, X. Hollow ZSM-5 zeolite encapsulated Ag nanoparticles for SO2-resistant selective catalytic oxidation of ammonia to nitrogen. Separ. Purif. Tech., 2019, 209, 1016-1026.
[http://dx.doi.org/10.1016/j.seppur.2018.09.045]
[10]
Zhang, X.; Yang, Y.; Song, L.; Wang, Y.; He, C.; Wang, Z.; Cui, L. High and stable catalytic activity of Ag/Fe2O3 catalysts derived from MOFs for CO oxidation. Mol. Catal., 2018, 447, 80-89.
[http://dx.doi.org/10.1016/j.mcat.2018.01.007]
[11]
Zhang, X.; Song, L.; Bi, F.; Zhang, D.; Wang, Y.; Cui, L. Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative. J. Colloid Interface Sci., 2020, 571, 38-47.
[http://dx.doi.org/10.1016/j.jcis.2020.03.031] [PMID: 32179307]
[12]
Zhou, M.; Wang, Z.; Sun, Q.; Wang, J.; Zhang, C.; Chen, D.; Li, X. High-performance Ag-Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Appl. Mater. Interfaces, 2019, 11(50), 46875-46885.
[http://dx.doi.org/10.1021/acsami.9b16349] [PMID: 31763815]
[13]
Zhang, X.; Wang, Y.; Hou, F.; Li, H.; Yang, Y.; Zhang, X.; Yang, Y.; Wang, Y. Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl. Surf. Sci., 2017, 391, 476-483.
[http://dx.doi.org/10.1016/j.apsusc.2016.06.109]
[14]
Yang, Y.; Hou, F.; Li, H.; Liu, N.; Wang, Y.; Zhang, X. Facile synthesis of Ag/KIT-6 catalyst via a simple one pot method and application in the CO oxidation. J. Porous Mater., 2017, 24(6), 1661-1665.
[http://dx.doi.org/10.1007/s10934-017-0406-1]
[15]
Nguyen, T.; Nguyen, T.T.; Ly, K.L.; Tran, A.H.; Nguyen, T.T.N.; Vo, M.T.; Ho, H.M.; Dang, N.T.N.; Vo, V.T.; Nguyen, D.H.; Nguyen, T.T.H.; Nguyen, T.H. In vivo study of the antibacterial chitosan/polyvinyl alcohol loaded with silver nanoparticle hydrogel for wound healing applications. Int. J. Polym. Sci., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/3623907]
[16]
Le, V.T.; Bach, L.G.; Pham, T.T.; Le, N.T.T.; Ngoc, U.T.P.; Tran, D.H.N.; Nguyen, D.H. Synthesis and antifungal activity of chitosan-silver nanocomposite synergize fungicide against Phytophthora capsici. J. Macromol. Sci. A, 2019, 56(6), 522-528.
[http://dx.doi.org/10.1080/10601325.2019.1586439]
[17]
Tra Thanh, N.; Ho Hieu, M.; Tran Minh Phuong, N.; Do Bui Thuan, T.; Nguyen Thi Thu, H.; Thai, V.P.; Do Minh, T.; Nguyen Dai, H.; Vo, V.T.; Nguyen Thi, H. Optimization and characterization of electrospun polycaprolactone coated with gelatin-silver nanoparticles for wound healing application. Mater. Sci. Eng. C, 2018, 91, 318-329.
[http://dx.doi.org/10.1016/j.msec.2018.05.039] [PMID: 30033261]
[18]
Phan, T.N.U.; Nguyen, D.H. Synergistic antifungal effect of fungicide and chitosan-silver nanoparticles on Neoscytalidium dimidiatum. Green Processing Synth., 2018, 7(2), 132-138.
[http://dx.doi.org/10.1515/gps-2016-0206]
[19]
Hoang Thi, T.T.; Lee, Y.; Le Thi, P.; Park, K.D. Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomater., 2018, 67, 66-78.
[http://dx.doi.org/10.1016/j.actbio.2017.12.005] [PMID: 29269330]
[20]
Yoshimura, M.; Ninomiya, K.; Tagashira, Y.; Maejima, K.; Yoshida, T.; Amakura, Y. Polyphenolic constituents of the pericarp of Mangosteen (Garcinia mangostana L.). J. Agric. Food Chem., 2015, 63(35), 7670-7674.
[http://dx.doi.org/10.1021/acs.jafc.5b01771] [PMID: 26023815]
[21]
Fu, Y.; Zhou, H.; Wang, M.; Cen, J.; Wei, Q. Immune regulation and anti-inflammatory effects of isogarcinol extracted from Garcinia mangostana L. against collagen-induced arthritis. J. Agric. Food Chem., 2014, 62(18), 4127-4134.
[http://dx.doi.org/10.1021/jf405790q] [PMID: 24738849]
[22]
Lim, Y.K.; Yoo, S.Y.; Jang, Y.Y.; Lee, B.C.; Lee, D.S.; Kook, J-K. Anti-inflammatory and in vitro bone formation effects of Garcinia mangostana L. and propolis extracts. Food Sci. Biotechnol., 2019, 29(4), 539-548.
[http://dx.doi.org/10.1007/s10068-019-00697-3] [PMID: 32296565]
[23]
Lin, S.; Sin, W.L.W.; Koh, J.J.; Lim, F.; Wang, L.; Cao, D.; Beuerman, R.W.; Ren, L.; Liu, S. Semisynthesis and biological evaluation of xanthone amphiphilics as selective, highly potent antifungal agents to combat fungal resistance. J. Med. Chem., 2017, 60(24), 10135-10150.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01348] [PMID: 29155590]
[24]
Li, P.; Yang, Z.; Tang, B.; Zhang, Q.; Chen, Z.; Zhang, J.; Wei, J.; Sun, L.; Yan, J. Identification of Xanthones from the Mangosteen Pericarp that inhibit the growth of Ralstonia solanacearum. ACS Omega, 2019, 5(1), 334-343.
[http://dx.doi.org/10.1021/acsomega.9b02746] [PMID: 31956780]
[25]
Ren, Y.; de Blanco, E.J.C.; Fuchs, J.R.; Soejarto, D.D.; Burdette, J.E.; Swanson, S.M.; Kinghorn, A.D. Potential anticancer agents characterized from selected tropical plants. J. Nat. Prod., 2019, 82(3), 657-679.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00018] [PMID: 30830783]
[26]
Kondo, M.; Zhang, L.; Ji, H.; Kou, Y.; Ou, B. Bioavailability and antioxidant effects of a xanthone-rich Mangosteen (Garcinia mangostana) product in humans. J. Agric. Food Chem., 2009, 57(19), 8788-8792.
[http://dx.doi.org/10.1021/jf901012f] [PMID: 19807152]
[27]
Jung, H.A.; Su, B.N.; Keller, W.J.; Mehta, R.G.; Kinghorn, A.D. Antioxidant xanthones from the pericarp of Garcinia mangostana (Mangosteen). J. Agric. Food Chem., 2006, 54(6), 2077-2082.
[http://dx.doi.org/10.1021/jf052649z] [PMID: 16536578]
[28]
Aminuzzaman, M.; Ying, L.P.; Goh, W-S.; Watanabe, A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull. Mater. Sci., 2018, 41(2), 50.
[http://dx.doi.org/10.1007/s12034-018-1568-4]
[29]
Rosales-Reyes, T.; de la Garza, M.; Arias-Castro, C.; Rodríguez-Mendiola, M.; Fattel-Fazenda, S.; Arce-Popoca, E.; Hernández-García, S.; Villa-Treviño, S. Aqueous crude extract of Rhoeo discolor, a Mexican medicinal plant, decreases the formation of liver preneoplastic foci in rats. J. Ethnopharmacol., 2008, 115(3), 381-386.
[http://dx.doi.org/10.1016/j.jep.2007.10.022] [PMID: 18063494]
[30]
Chan, Y.S.; Khoo, K.S.; Sit, N.W.W. Investigation of twenty selected medicinal plants from Malaysia for anti-Chikungunya virus activity. Int. Microbiol., 2016, 19(3), 175-182.
[PMID: 28494087]
[31]
Vo, Q.H.; Nguyen, P.H.; Zhao, B.T.; Ali, M.Y.; Choi, J.S.; Min, B.S.; Nguyen, T.H.; Woo, M.H. Protein tyrosine phosphatase 1B (PTP1B) inhibitory constituents from the aerial parts of Tradescantia spathacea Sw. Fitoterapia, 2015, 103, 113-121.
[http://dx.doi.org/10.1016/j.fitote.2015.03.017] [PMID: 25810314]
[32]
Jana Zantovska, S.; Jeffrey, B.H. Two distinctive anthocyanin patterns in the commelinaceae. Biochem. Syst. Ecol., 1980, 8(3), 285-287.
[http://dx.doi.org/10.1016/0305-1978(80)90061-7]
[33]
Gomathi, M.; Prakasam, A.; Rajkumar, P.V.; Rajeshkumar, S.; Chandrasekaran, R.; Anbarasan, P.M. Green synthesis of silver nanoparticles using Gymnema sylvestre leaf extract and evaluation of its antibacterial activity. S. Afr. J. Chem. Eng., 2020, 32, 1-4.
[http://dx.doi.org/10.1016/j.sajce.2019.11.005]
[34]
Liang, A.; Liu, Q.; Wen, G.; Jiang, Z. The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. TrAC-Trend. Anal. Chem., 2012, 37, 32-47.
[35]
Tan, J.B.; Yap, W.J.; Tan, S.Y.; Lim, Y.Y.; Lee, S.M. Antioxidant content, antioxidant activity, and antibacterial activity of five plants from the commelinaceae family. Antioxidants, 2014, 3(4), 758-769.
[http://dx.doi.org/10.3390/antiox3040758] [PMID: 26785239]
[36]
Ravichandran, V.; Vasanthi, S.; Shalini, S.; Shah, S.A.A.; Tripathy, M.; Paliwal, N. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys., 2019, 15, 102565.
[http://dx.doi.org/10.1016/j.rinp.2019.102565]
[37]
Arya, G.; Kumari, R.M.; Sharma, N.; Gupta, N.; Kumar, A.; Chatterjee, S.; Nimesh, S. Catalytic, antibacterial and antibiofilm efficacy of biosynthesised silver nanoparticles using Prosopis juliflora leaf extract along with their wound healing potential. J. Photochem. Photobiol. B, 2019, 190, 50-58.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.11.005] [PMID: 30472614]
[38]
David, S.A.; Ponvel, K.M.; Fathima, M.A.; Anita, S.; Ashli, J.; Athilakshmi, A. Biosynthesis of silver nanoparticles by Momordica charantia leaf extract: Characterization and their antimicrobial activities. J. Nat. Prod. Plant Resour., 2014, 4(6), 1-8.
[39]
Rashid, M.M.O.; Akhter, K.N.; Chowdhury, J.A.; Hossen, F.; Hussain, M.S.; Hossain, M.T. Characterization of phytoconstituents and evaluation of antimicrobial activity of silver-extract nanoparticles synthesized from Momordica charantia fruit extract. BMC Complement. Altern. Med., 2017, 17(1), 336.
[http://dx.doi.org/10.1186/s12906-017-1843-8] [PMID: 28651578]
[40]
Jemilugba, O.T.; Sakho, E.H.M.; Parani, S.; Mavumengwana, V.; Oluwafemi, O.S. Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloid Interfac. Sci., 2019, 31, 100191.
[http://dx.doi.org/10.1016/j.colcom.2019.100191]
[41]
Jagtap, U.B.; Bapat, V.A. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind. Crops Prod., 2013, 46, 132-137.
[http://dx.doi.org/10.1016/j.indcrop.2013.01.019]
[42]
Koduru, J.R.; Kailasa, S.K.; Bhamore, J.R.; Kim, K.H.; Dutta, T.; Vellingiri, K. Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Adv. Colloid Interface Sci., 2018, 256, 326-339.
[http://dx.doi.org/10.1016/j.cis.2018.03.001] [PMID: 29549999]