Multi-Component One-Pot Assisted Synthesis, Anti-bacterial Capabilities, and Scanning Electron Microscopy of Novel Corticosteroid Thiopyran

Page: [411 - 417] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Background: Corticosteroids are an important group of polycyclic compounds having a wide range of pharmacological and physiological properties. Thiopyran derivatives are important building blocks of many biologically active compounds.

Objective: Keeping in mind the wide range of applications of corticosteroids and thiopyran, herein we intend to develop a simple and efficient strategy to synthesize steroidal thiopyran derivatives starting with different commercially available corticosteroids and study their biological properties.

Materials and Methods: To achieve our aim, we employed a one-pot multi-component synthesis of steroidal thiopyran derivatives by the reaction of corticosteroids, malononitrile, and carbon disulphide in the presence of triethylamine as a catalyst.

Results and Discussion: An array of novel thiopyran compounds was obtained with the highest product yield using Et3N. Scanning electron microscopy analysis manifested agglomeration pertaining to brick-shaped crystals of corticosteroid thiopyran. Synthesized compounds were also found to be active as anti-bacterial agents.

Conclusion: We describe a facile one-pot multi-component synthesis of corticosteroid thiopyran derivatives, which are found to possess anti-bacterial activity. Excellent yields of the products, simple work-up, easily available starting materials, and non-chromatographic purification are some of the main advantages of this protocol.

Keywords: Corticosteroid, thiopyran, anti-bacterial, malononitrile, carbon disulphide, Et3N.

Graphical Abstract

[1]
Singh, R.; Panda, G. An overview of synthetic approaches for heterocyclic steroids. Tetrahedron, 2013, 69, 2853-2884.
[http://dx.doi.org/10.1016/j.tet.2013.02.018]
[2]
Kakati, D.; Sarma, R.K.; Saikia, R.; Barua, N.C.; Sarma, J.C. Rapid microwave assisted synthesis and antimicrobial bioevaluation of novel steroidal chalcones. Steroids, 2013, 78(3), 321-326.
[http://dx.doi.org/10.1016/j.steroids.2012.12.003] [PMID: 23287649]
[3]
Shahidi, N.T. A review of the chemistry, biological action, and clinical applications of anabolic-androgenic steroids. Clin. Ther., 2001, 23(9), 1355-1390.
[http://dx.doi.org/10.1016/S0149-2918(01)80114-4] [PMID: 11589254]
[4]
Becker, D.E. Basic and clinical pharmacology of glucocorticosteroids. Anesth. Prog., 2013, 60(1), 25-31.
[http://dx.doi.org/10.2344/0003-3006-60.1.25] [PMID: 23506281]
[5]
Huang, L.H.; Zheng, Y.F.; Lu, Y.Z.; Song, C.J.; Wang, Y.G.; Yu, B.; Liu, H.M. Synthesis and biological evaluation of novel steroidal[17,16-d][1,2,4]triazolo[1,5-a]pyrimidines. Steroids, 2012, 77(6), 710-715.
[http://dx.doi.org/10.1016/j.steroids.2012.03.002] [PMID: 22445685]
[6]
Zhang, B.L.; Zhang, E.; Pang, L.P.; Song, L.X.; Li, Y.F.; Yu, B.; Liu, H.M. Design and synthesis of novel D-ring fused steroidal heterocycles. Steroids, 2013, 78(12-13), 1200-1208.
[http://dx.doi.org/10.1016/j.steroids.2013.07.006] [PMID: 23911850]
[7]
Poirier, D. Synthesis and biological testing of steroid derivatives as inhibitors. J. Steroid Biochem. Mol. Biol., 2013, 137, 174-175.
[http://dx.doi.org/10.1016/j.jsbmb.2013.07.003] [PMID: 23851217]
[8]
Gupta, A.; Kumar, B.S.; Negi, A.S. Current status on development of steroids as anticancer agents. J. Steroid Biochem. Mol. Biol., 2013, 137, 242-270.
[http://dx.doi.org/10.1016/j.jsbmb.2013.05.011] [PMID: 23727548]
[9]
Briassoulis, G.; Damjanovic, S.; Xekouki, P.; Lefebvre, H.; Stratakis, C.A. The glucocorticoid receptor and its expression in the anterior pituitary and the adrenal cortex: A source of variation in hypothalamic-pituitary-adrenal axis function; implications for pituitary and adrenal tumors. Endocr. Pract., 2011, 17(6), 941-948.
[http://dx.doi.org/10.4158/EP11061.RA] [PMID: 21742609]
[10]
Nicolaides, N.C.; Charmandari, E. Novel insights into the molecular mechanisms underlying generalized glucocorticoid resistance and hypersensitivity syndromes. Hormones (Athens), 2017, 16(2), 124-138.
[PMID: 28742501]
[11]
Stratakis, C.A.; Karl, M.; Schulte, H.M.; Chrousos, G.P. Glucocorticosteroid resistance in humans. Elucidation of the molecular mechanisms and implications for pathophysiology. Ann. N. Y. Acad. Sci., 1994, 746, 362-374.
[http://dx.doi.org/10.1111/j.1749-6632.1994.tb39257.x] [PMID: 7825890]
[12]
Buttgereit, F. Current issues of basic and clinical glucocorticoid research. Clin. Exp. Rheumatol., 2003, 21(2), 145-147.
[PMID: 12747266]
[13]
Buttgereit, F.; Bijlsma, J.W.J.; Strehl, C. Will we ever have better glucocorticoids? Clin. Immunol., 2018, 186, 64-66.
[http://dx.doi.org/10.1016/j.clim.2017.07.023] [PMID: 28757452]
[14]
Schäcke, H.; Döcke, W.D.; Asadullah, K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther., 2002, 96(1), 23-43.
[http://dx.doi.org/10.1016/S0163-7258(02)00297-8] [PMID: 12441176]
[15]
Amr, A.E.; Abdalla, M.M.; Hussein, M.M.M.; Safwat, H.M.; Elgamal, M.H. Synthesis and biological activity of some amino-4′-substituted phenyl (pyridine) androst- 4-en- 3- one candidates. Russ. J. Gen. Chem., 2017, 87, 305-310.
[http://dx.doi.org/10.1134/S1070363217020256]
[16]
Bin, Y.; Zuyun, C.; Shuai, W.; Hongmin, L. Recent advances on the synthesis and antitumor evaluation of exonuclear heterosteroids. Youji Huaxue, 2017, 37, 1952-1963.
[http://dx.doi.org/10.6023/cjoc201704004]
[17]
Maklad, Y.A.; Nosseir, M.M. Androgenic and anabolic activities of some newly synthesized epiandrosterone and progesterone derivatives. Sci. Pharm., 2000, 68, 141-157.
[http://dx.doi.org/10.3797/scipharm.aut-00-13]
[18]
Zhang, Y.L.; Li, Y.F.; Shi, X.L.; Yu, B.; Shi, Y.K.; Liu, H.M. Solvent-free synthesis of novel steroidal 2-aminopyridines. Steroids, 2016, 115, 147-153.
[http://dx.doi.org/10.1016/j.steroids.2016.09.005] [PMID: 27639101]
[19]
Tavakolinia, F.; Baghipour, T.; Hossaini, Z.; Zareyee, D.; Khalilzadeh, M.A.; Rajabi, M. Antiproliferative activity of novel thiopyran analogs on MCF-7 breast and HCT-15 colon cancer cells: synthesis, cytotoxicity, cell cycle analysis, and DNA-binding. Nucleic Acid Ther., 2012, 22(4), 265-270.
[http://dx.doi.org/10.1089/nat.2012.0346] [PMID: 22897207]
[20]
Schneller, S.W. Thiochromanones and related compounds. Adv. Heterocycl. Chem., 1975, 18, 59-97.
[http://dx.doi.org/10.1016/S0065-2725(08)60128-2]
[21]
Vedeje, E.; Krafft, G.A. Cyclic sulphides in organic synthesis. Tetrahedron, 1982, 38, 2857-2881.
[http://dx.doi.org/10.1016/0040-4020(82)85013-8]
[22]
Brown, M.J.; Carter, P.S.; Fenwick, A.S.; Fosberry, A.P.; Hamprecht, D.W.; Hibbs, M.J.; Jarvest, R.L.; Mensah, L.; Milner, P.H.; O’Hanlon, P.J.; Pope, A.J.; Richardson, C.M.; West, A.; Witty, D.R. The antimicrobial natural product chuangxinmycin and some synthetic analogues are potent and selective inhibitors of bacterial tryptophanyl tRNA synthetase. Bioorg. Med. Chem. Lett., 2002, 12(21), 3171-3174.
[http://dx.doi.org/10.1016/S0960-894X(02)00604-2] [PMID: 12372526]
[23]
Quaglia, W.; Pigini, M.; Piergentili, A.; Giannella, M.; Gentili, F.; Marucci, G.; Carrieri, A.; Carotti, A.; Poggesi, E.; Leonardi, A.; Melchiorre, C. Structure-activity relationships in 1,4-benzodioxan-related compounds. 7. Selectivity of 4-phenylchroman analogues for α(1)-adrenoreceptor subtypes. J. Med. Chem., 2002, 45(8), 1633-1643.
[http://dx.doi.org/10.1021/jm011066n] [PMID: 11931617]
[24]
van Vliet, L.A.; Rodenhuis, N.; Dijkstra, D.; Wikström, H.; Pugsley, T.A.; Serpa, K.A.; Meltzer, L.T.; Heffner, T.G.; Wise, L.D.; Lajiness, M.E.; Huff, R.M.; Svensson, K.; Sundell, S.; Lundmark, M. Synthesis and pharmacological evaluation of thiopyran analogues of the dopamine D3 receptor-selective agonist (4aR,10bR)-(+)-trans-3,4,4a,10b-tetrahydro-4-n-propyl-2H,5H [1]b enzopyrano[4,3-b]-1,4-oxazin-9-ol (PD 128907). J. Med. Chem., 2000, 43(15), 2871-2882.
[http://dx.doi.org/10.1021/jm0000113] [PMID: 10956195]
[25]
Wang, W.; Li, H.; Wang, J.; Zu, L. Enantioselective organocatalytic tandem Michael-Aldol reactions: one-pot synthesis of chiral thiochromenes. J. Am. Chem. Soc., 2006, 128(32), 10354-10355.
[http://dx.doi.org/10.1021/ja063328m] [PMID: 16895386]
[26]
Sugita, Y.; Hosoya, H.; Terasawa, K.; Yokoe, I.; Fujisawa, S.; Sakagami, H. Cytotoxic activity of benzothiepins against human oral tumor cell lines. Anticancer Res., 2001, 21(4A), 2629-2632.
[PMID: 11724331]
[27]
Hollick, J.J.; Golding, B.T.; Hardcastle, I.R.; Martin, N.; Richardson, C.; Rigoreau, L.J.; Smith, G.C.; Griffin, R.J. 2,6-disubstituted pyran-4-one and thiopyran-4-one inhibitors of DNA-Dependent protein kinase (DNA-PK). Bioorg. Med. Chem. Lett., 2003, 13(18), 3083-3086.
[http://dx.doi.org/10.1016/S0960-894X(03)00652-8] [PMID: 12941339]
[28]
Sultanat, A. A; Asif, M; Rizvi, A.; Farhan, M. Shamsuzzaman. Discovery of a novel oxadiazine derivative of glucocorticoids endowed with DNA binding activities and molecular docking studies. J. Taibah Univ. Sci, 2019, 13, 536-546.
[http://dx.doi.org/10.1080/16583655.2019.1603575]
[29]
Ansari, A.; Ali, A.; Asif, M. Shamsuzzaman, Steroidal thiazolidinone derivatives: Design, synthesis and their molecular interaction with human serum albumin. Steroids, 2019, 148, 99-113.
[http://dx.doi.org/10.1016/j.steroids.2019.02.015] [PMID: 31082411]
[30]
Ahmad, I.; Beg, A.Z. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol., 2001, 74(2), 113-123.
[http://dx.doi.org/10.1016/S0378-8741(00)00335-4] [PMID: 11167029]
[31]
Wen, Y.; Huang, W.; Wang, B.; Fan, J.; Gao, Z.; Yin, L. Synthesis of Cu nanoparticles for large - scale preparation. Mater. Sci. Eng. B, 2012, 177, 619-624.
[http://dx.doi.org/10.1016/j.mseb.2012.02.026]
[32]
Shrivastava, S.; Bera, T.; Roy, A.; Singh, G.; Ramachandrarao, P.; Dash, D. Characterization of enhanced anti-bacterial effects of novel silver nanoparticles. Nanotechnology, 2007, 18, 103-225.
[http://dx.doi.org/10.1088/0957-4484/18/22/225103]