Mini-Reviews in Medicinal Chemistry

Author(s): Arif Mermer*

DOI: 10.2174/1389557521666201217144954

The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview

Page: [738 - 789] Pages: 52

  • * (Excluding Mailing and Handling)

Abstract

After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.

Keywords: Rhodanine, biological activity, structure-activity relationship, staffold, medicinal chemistry.

Graphical Abstract

[1]
Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Babapoor, A.; Amani, A.M. A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1132-1148.
[http://dx.doi.org/10.1080/21691401.2019.1573824] [PMID: 30942110]
[2]
Nencki, M. Ueber die Einwirkung der Monochloressigsäure auf Sulfocyansäure und ihre Salze. J. Prakt. Chem., 1877, 16, 1-17.
[http://dx.doi.org/10.1002/prac.18770160101]
[3]
Yarovenko, V.N.; Nikitina, A.S.; Zavarzin, I.V.; Krayushkina, M.M.; Kovalenkob, L.V. A convenient synthesis of N-substituted 2-thioxo-1,3-thiazolidin-4-ones. Synthesis, 2006, 8, 1246-1248.
[http://dx.doi.org/10.1055/s-2006-926409]
[4]
Momose, Y.; Meguro, K.; Ikeda, H.; Hatanaka, C.; Oi, S.; Sohda, T. Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem. Pharm. Bull. (Tokyo), 1991, 39(6), 1440-1445.
[http://dx.doi.org/10.1248/cpb.39.1440] [PMID: 1934164]
[5]
Khodair, A.I.; Awad, M.K.; Gesson, J.P.; Elshaier, Y.A.M.M. New N-ribosides and N-mannosides of rhodanine derivatives with anticancer activity on leukemia cell line: Design, synthesis, DFT and molecular modelling studies. Carbohydr. Res., 2020.487107894
[http://dx.doi.org/10.1016/j.carres.2019.107894] [PMID: 31865252]
[6]
Liu, H.; Sun, D.; Du, H.; Zheng, C.; Li, J.; Piao, H.; Li, J.; Sun, L. Synthesis and biological evaluation of tryptophan-derived rhodanine derivatives as PTP1B inhibitors and anti-bacterial agents. Eur. J. Med. Chem., 2019, 172, 163-173.
[http://dx.doi.org/10.1016/j.ejmech.2019.03.059] [PMID: 30978561]
[7]
Sing, W.T.; Lee, C.L.; Yeo, S.L.; Lim, S.P.; Sim, M.M. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg. Med. Chem. Lett., 2001, 11(2), 91-94.
[http://dx.doi.org/10.1016/S0960-894X(00)00610-7] [PMID: 11206478]
[8]
Maccari, R.; Vitale, R.M.; Ottanà, R.; Rocchiccioli, M.; Marrazzo, A.; Cardile, V.; Graziano, A.C.E.; Amodeo, P.; Mura, U.; Del Corso, A. Structure-activity relationships and molecular modelling of new 5-arylidene-4-thiazolidinone derivatives as aldose reductase inhibitors and potential anti-inflammatory agents. Eur. J. Med. Chem., 2014, 81, 1-14.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.003] [PMID: 24819954]
[9]
Fujishima, H.; Tsubota, K. Improvement of corneal fluorescein staining in post cataract surgery of diabetic patients by an oral aldose reductase inhibitor, ONO-2235. Br. J. Ophthalmol., 2002, 86(8), 860-863.
[http://dx.doi.org/10.1136/bjo.86.8.860] [PMID: 12140204]
[10]
Grant, E.B.; Guiadeen, D.; Baum, E.Z.; Foleno, B.D.; Jin, H.; Montenegro, D.A.; Nelson, E.A.; Bush, K.; Hlasta, D.J. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(19), 2179-2182.
[http://dx.doi.org/10.1016/S0960-894X(00)00444-3] [PMID: 11012024]
[11]
Sim, M.M.; Ng, S.B.; Buss, A.D.; Crasta, S.C.; Goh, K.L.; Lee, S.K. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase. Bioorg. Med. Chem. Lett., 2002, 12(4), 697-699.
[http://dx.doi.org/10.1016/S0960-894X(01)00832-0] [PMID: 11844704]
[12]
Cutshall, N.S.; O’Day, C.; Prezhdo, M. Rhodanine derivatives as inhibitors of JSP-1. Bioorg. Med. Chem. Lett., 2005, 15(14), 3374-3379.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.034] [PMID: 15961311]
[13]
Whitesitt, C.A.; Simon, R.L.; Reel Jon, K.; Sigmund, S.K.; Phillips, M.L.; Shadle, J.K.; Heinz, L.J.; Koppel, G.A.; Hundel, D.C.; Lifer, S.L.; Berry, D.; Ray, J.; Little, S.P.; Liu, X.; Marshall, W.S.; Panetta, J.A. Synthesis and structure-activity relationships of benzophenones as inhibitors of cathepsin D. Bioorg. Med. Chem. Lett., 1996, 6, 2157-2162.
[http://dx.doi.org/10.1016/0960-894X(96)00393-9]
[14]
Free, C.A.; Majchrowicz, E.; Hess, S.M. Mechanism of inhibition of histidine decarboxylase by rhodanines. Biochem. Pharmacol., 1971, 20(7), 1421-1428.
[http://dx.doi.org/10.1016/0006-2952(71)90269-3] [PMID: 5163082]
[15]
Hvistendahl, M. China takes aim at rampant antibiotic resistance; American Association for the Advancement of Science: PA, USA, 2012.
[http://dx.doi.org/10.1126/science.336.6083.795]
[16]
Yezli, S.; Li, H. Antibiotic resistance amongst healthcare-associated pathogens in China. Int. J. Antimicrob. Agents, 2012, 40(5), 389-397.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.07.009] [PMID: 22999767]
[17]
Carrel, M.; Perencevich, E.N.; David, M.Z. USA300 methicillin-resistant Staphylococcus aureus, United States, 2000–2013. Emerg. Infect. Dis., 2015, 21(11), 1973-1980.
[http://dx.doi.org/10.3201/eid2111.150452] [PMID: 26484389]
[18]
Brown, F.C. 4-Thiazolidinones. Chem. Rev., 1961, 61, 463-521.
[http://dx.doi.org/10.1021/cr60213a002]
[19]
Lesyk, R.B.; Zimenkovsky, B.S. 4-Thiazolidones: Centenarian history, current status and perspectives for modern organic and medicinal chemistry. Curr. Org. Chem., 2004, 8, 1547-1577.
[http://dx.doi.org/10.2174/1385272043369773]
[20]
Chen, Z.H.; Zheng, C.J.; Sun, L.P.; Piao, H.R. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur. J. Med. Chem., 2010, 45(12), 5739-5743.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.031] [PMID: 20889240]
[21]
Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard M7eA6; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2003.
[22]
Xu, L.L.; Zheng, C.J.; Sun, L.P.; Miao, J.; Piao, H.R. Synthesis of novel 1,3-diaryl pyrazole derivatives bearing rhodanine-3-fatty acid moieties as potential antibacterial agents. Eur. J. Med. Chem., 2012, 48, 174-178.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.011] [PMID: 22192483]
[23]
Ungoren, S.H.; Albayrak, S.; Gunay, A.; Yurtseven, L.; Yurttas, N. A new method for the preparation of 5-acylidene and 5-imino substituted rhodanine derivatives and their antioxidant and antimicrobial activities. Tetrahedron, 2015, 71, 4312-4323.
[http://dx.doi.org/10.1016/j.tet.2015.04.069]
[24]
Tejchman, W.; Korona-Glowniak, I.; Malm, A.; Zylewski, M.; Suder, P. Antibacterial properties of 5-substituted derivatives of rhodanine-3-carboxyalkyl acids. Med. Chem. Res., 2017, 26(6), 1316-1324.
[http://dx.doi.org/10.1007/s00044-017-1852-7] [PMID: 28515623]
[25]
Trotsko, N.; Kosikowska, U.; Paneth, A.; Wujec, M.; Malm, A. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moieties. Saudi Pharm. J., 2018, 26(4), 568-577.
[http://dx.doi.org/10.1016/j.jsps.2018.01.016] [PMID: 29844729]
[26]
Miao, J.; Zheng, C.J.; Sun, L.P.; Song, M.X.; Xu, L.L.; Piao, H.R. Synthesis and potential antibacterial activity of new rhodanine-3-acetic acid derivatives. Med. Chem. Res., 2013, 22, 4125-4132.
[http://dx.doi.org/10.1007/s00044-012-0417-z]
[27]
Siddiqui, I.R.; Singh, P.K.; Sing, J.; Sing, J. Facile synthesis and fungicidal activity of novel 4,4′-bis[2”-(5”’-substituted rhodanine-3”’-yl)thiazole-4”-yl]bibenzyls. Indian J. Chem., 2005, 44B, 2102-2106.
[28]
Horsfall, J.G. Quantitative bioassay of fungicides in the laboratory. Bot. Rev., 1945, 11, 357-397.
[http://dx.doi.org/10.1007/BF02861319]
[29]
Sortino, M.; Delgado, P.; Juárez, S.; Quiroga, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Rodero, L.; Garibotto, F.M.; Enriz, R.D.; Zacchino, S.A. Synthesis and antifungal activity of (Z)-5-arylidenerhodanines. Bioorg. Med. Chem., 2007, 15(1), 484-494.
[http://dx.doi.org/10.1016/j.bmc.2006.09.038] [PMID: 17049255]
[30]
Insuasty, B.; Insuasty, A.; Tigreros, A.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J.; Derita, M.; Zacchino, S. Synthesis and antifungal evaluation of novel dicyanoderivatives of rhodanine. J. Heterocycl. Chem., 2011, 48, 347-350.
[http://dx.doi.org/10.1002/jhet.565]
[31]
Chauhan, K.; Singh, M.S.P.; Kumar, V.; Shukla, P.K.; Siddiqic, M.I.; Chauhan, P.M.S. Discovery of a new class of dithiocarbamates and rhodanine scaffolds as potent antifungal agents: Synthesis, biology and molecular docking. MedChemComm, 2012, 3, 1104.
[http://dx.doi.org/10.1039/c2md20109g]
[32]
Filler, R.; Saha, R. Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med. Chem., 2009, 1(5), 777-791.
[http://dx.doi.org/10.4155/fmc.09.65] [PMID: 21426080]
[33]
Rana, A.M.; Desai, K.R.; Jauhari, S. Rhodanine-based biologically active molecules: Synthesis, characterization, and biological evaluation. Res. Chem. Intermed., 2014, 40, 761-777.
[http://dx.doi.org/10.1007/s11164-012-1001-3]
[34]
Subhedar, D.D.; Shaikh, M.H.; Shingate, B.B.; Nawale, L.; Sarkar, D.; Khedkar, V.M.; Kalam Khan, F.A.; Sangshetti, J.N. Quinolidene-rhodanine conjugates: Facile synthesis and biological evaluation. Eur. J. Med. Chem., 2017, 125, 385-399.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.059] [PMID: 27688192]
[35]
Alter, M.J.; Margolis, H.S.; Krawczynski, K.; Judson, F.N.; Mares, A.; Alexander, W.J.; Hu, P.Y.; Miller, J.K.; Gerber, M.A.; Sampliner, R.E. The natural history of community-acquired hepatitis C in the United States. The sentinel counties chronic non-A, non-B hepatitis study team. N. Engl. J. Med., 1992, 327(27), 1899-1905.
[http://dx.doi.org/10.1056/NEJM199212313272702] [PMID: 1280771]
[36]
Alter, M.J. The detection, transmission, and outcome of hepatitis C virus infection. Infect. Agents Dis., 1993, 2(3), 155-166.
[PMID: 8173786]
[37]
Huang, Z.; Murray, M.G.; Secrist, J.A. III Recent development of therapeutics for chronic HCV infection. Antiviral Res., 2006, 71(2-3), 351-362.
[http://dx.doi.org/10.1016/j.antiviral.2006.06.001] [PMID: 16828888]
[38]
Wang, Q.M.; Heinz, B.A. Recent advances in prevention and treatment of hepatitis C virus infections. Prog. Drug Res., 2000, 55, 1-32.
[http://dx.doi.org/10.1007/978-3-0348-8385-6_1] [PMID: 11127961]
[39]
De Clercq, E. Antiviral drugs in current clinical use. J. Clin. Virol., 2004, 30(2), 115-133.
[http://dx.doi.org/10.1016/j.jcv.2004.02.009] [PMID: 15125867]
[40]
Richman, D.D.; Morton, S.C.; Wrin, T.; Hellmann, N.; Berry, S.; Shapiro, M.F.; Bozzette, S.A. The prevalence of antiretroviral drug resistance in the United States. AIDS, 2004, 18(10), 1393-1401.
[http://dx.doi.org/10.1097/01.aids.0000131310.52526.c7] [PMID: 15199315]
[41]
Talele, T.T.; Arora, P.; Kulkarni, S.S.; Patel, M.R.; Singh, S.; Chudayeu, M.; Kaushik-Basu, N. Structure-based virtual screening, synthesis and SAR of novel inhibitors of hepatitis C virus NS5B polymerase. Bioorg. Med. Chem., 2010, 18(13), 4630-4638.
[http://dx.doi.org/10.1016/j.bmc.2010.05.030] [PMID: 20627595]
[42]
Kaushik-Basu, N.; Bopda-Waffo, A.; Talele, T.T.; Basu, A.; Costa, P.R.; da Silva, A.J.; Sarafianos, S.G.; Noël, F. Identification and characterization of coumestans as novel HCV NS5B polymerase inhibitors. Nucleic Acids Res., 2008, 36(5), 1482-1496.
[http://dx.doi.org/10.1093/nar/gkm1178] [PMID: 18203743]
[43]
Li, H.; Tatlock, J.; Linton, A.; Gonzalez, J.; Borchardt, A.; Dragovich, P.; Jewell, T.; Prins, T.; Zhou, R.; Blazel, J.; Parge, H.; Love, R.; Hickey, M.; Doan, C.; Shi, S.; Duggal, R.; Lewis, C.; Fuhrman, S. Identification and structure-based optimization of novel dihydropyrones as potent HCV RNA polymerase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(18), 4834-4838.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.065] [PMID: 16824756]
[44]
Ramkumar, K.; Yarovenko, V.N.; Nikitina, A.S.; Zavarzin, I.V.; Krayushkin, M.M.; Kovalenko, L.V.; Esqueda, A.; Odde, S.; Neamati, N. Design, synthesis and structure-activity studies of rhodanine derivatives as HIV-1 integrase inhibitors. Molecules, 2010, 15(6), 3958-3992.
[http://dx.doi.org/10.3390/molecules15063958] [PMID: 20657419]
[45]
Patel, B.A.; Krishnan, R.; Khadtare, N.; Gurukumar, K.R.; Basu, A.; Arora, P.; Bhatt, A.; Patel, M.R.; Dana, D.; Kumar, S.; Kaushik-Basu, N.; Talele, T.T. Design and synthesis of L- and D-phenylalanine derived rhodanines with novel C5-arylidenes as inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem., 2013, 21(11), 3262-3271.
[http://dx.doi.org/10.1016/j.bmc.2013.03.041] [PMID: 23598249]
[46]
Chen, Y.; Bopda-Waffo, A.; Basu, A.; Krishnan, R.; Silberstein, E.; Taylor, D.R.; Talele, T.T.; Arora, P.; Kaushik-Basu, N. Characterization of aurintricarboxylic acid as a potent hepatitis C virus replicase inhibitor. Antivir. Chem. Chemother., 2009, 20(1), 19-36.
[http://dx.doi.org/10.3851/IMP1286] [PMID: 19794229]
[47]
Kurbatov, S.V.; Zarubaev, V.V.; Karpinskaya, L.A.; Shvets, A.A.; Kletsky, M.E.; Burov, O.N.; Morozov, P.G.; Kiselev, O.I.; Minkin, V.I. Synthesis and antiviral activity of bisspirocyclic derivatives of rhodanine. Russ. Chem. Bull., 2014, 63, 1130-1136.
[http://dx.doi.org/10.1007/s11172-014-0560-4]
[48]
Botta, L.; Maccari, G.; Calandro, P.; Tiberi, M.; Brai, A.; Zamperini, C.; Canducci, F.; Chiariello, M.; Martí-Centelles, R.; Falomir, E.; Carda, M. One drug for two targets: Biological evaluation of antiretroviral agents endowed with antiproliferative activity. Bioorg. Med. Chem. Lett., 2017, 27(11), 2502-2505.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.097] [PMID: 28408224]
[49]
Tintori, C.; Iovenitti, G.; Ceresola, E.R.; Ferrarese, R.; Zamperini, C.A. Brai1, G. Poli, E. Dreassi, V. Cagno, D. Lembo, F. Canducci, M. Botta, Rhodanine derivatives as potent anti-HIV and anti-HSV microbicides. PLoS One, 2018, 13(6)e0198478
[50]
Tintori, C.; Corradi, V.; Magnani, M.; Manetti, F.; Botta, M. Targets looking for drugs: a multistep computational protocol for the development of structure-based pharmacophores and their applications for hit discovery. J. Chem. Inf. Model., 2008, 48(11), 2166-2179.
[http://dx.doi.org/10.1021/ci800105p] [PMID: 18942779]
[51]
Rinaldi, M.; Tintori, C.; Franchi, L.; Vignaroli, G.; Innitzer, A.; Massa, S.; Esté, J.A.; Gonzalo, E.; Christ, F.; Debyser, Z.; Botta, M. A versatile and practical synthesis toward the development of novel HIV-1 integrase inhibitors. ChemMedChem, 2011, 6(2), 343-352.
[http://dx.doi.org/10.1002/cmdc.201000510] [PMID: 21246739]
[52]
Mendgen, T.; Steuer, C.; Klein, C.D. Privileged scaffolds or promiscuous binders: A comparative study on rhodanines and related heterocycles in medicinal chemistry. J. Med. Chem., 2012, 55(2), 743-753.
[http://dx.doi.org/10.1021/jm201243p] [PMID: 22077389]
[53]
Ramirez, M.A.; Borja, N.L. Epalrestat: An aldose reductase inhibitor for the treatment of diabetic neuropathy. Pharmacotherapy, 2008, 28(5), 646-655.
[http://dx.doi.org/10.1592/phco.28.5.646] [PMID: 18447661]
[54]
Hotta, N.; Kawamori, R.; Fukuda, M.; Shigeta, Y. Aldose Reductase Inhibitor-Diabetes Complications Trial Study Group. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: Multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet. Med., 2012, 29(12), 1529-1533.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03684.x] [PMID: 22507139]
[55]
Ikeda, T.; Iwata, K.; Tanaka, Y. Long-term effect of epalrestat on cardiac autonomic neuropathy in subjects with non-insulin dependent diabetes mellitus. Diabetes Res. Clin. Pract., 1999, 43(3), 193-198.
[http://dx.doi.org/10.1016/S0168-8227(99)00015-7] [PMID: 10369429]
[56]
Muhammad, S.A.; Ravi, S.; Thangamani, A. Synthesis and evaluation of some novel N-substituted rhodanines for their anticancer activity. Med. Chem. Res., 2016, 25, 994-1004.
[http://dx.doi.org/10.1007/s00044-016-1545-7]
[57]
Strober, W. Trypan blue exclusion test of cell viability. Curr. Protocols Immunol.,, 1997, 21(1), 3A-3B.
[58]
El-Sayed, S.; Metwally, K.; El-Shanawani, A.A.; Abdel-Aziz, L.M.; Pratsinis, H.; Kletsas, D. Synthesis and anticancer activity of novel quinazolinone-based rhodanines. Chem. Cent. J., 2017, 11(1), 102.
[http://dx.doi.org/10.1186/s13065-017-0333-x] [PMID: 29086906]
[59]
Li, P.H.; Jiang, H.; Zhang, W.J.; Li, Y.L.; Zhao, M.C.; Zhou, W.; Zhang, L.Y.; Tang, Y.D.; Dong, C.Z.; Huang, Z.S.; Chen, H.X.; Du, Z.Y. Synthesis of carbazole derivatives containing chalcone analogs as non-intercalative topoisomerase II catalytic inhibitors and apoptosis inducers. Eur. J. Med. Chem., 2018, 145, 498-510.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.010] [PMID: 29335211]
[60]
Jiang, H.; Zhang, W.J.; Li, P.H.; Wang, J.; Dong, C.Z.; Zhang, K.; Chen, H.X.; Du, Z.Y. Synthesis and biological evaluation of novel carbazole-rhodanine conjugates as topoisomerase II inhibitors. Bioorg. Med. Chem. Lett., 2018, 28(8), 1320-1323.
[http://dx.doi.org/10.1016/j.bmcl.2018.03.017] [PMID: 29545100]
[61]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[62]
Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer, 2009, 9(5), 338-350.
[http://dx.doi.org/10.1038/nrc2607] [PMID: 19377506]
[63]
Huang, Z.H.; Zhuo, S.T.; Li, C.Y.; Xie, H.T.; Li, D.; Tan, J.H.; Ou, T.M.; Huang, Z.S.; Gu, L.Q.; Huang, S.L. Design, synthesis and biological evaluation of novel mansonone E derivatives prepared via CuAAC click chemistry as topoisomerase II inhibitors. Eur. J. Med. Chem., 2013, 68, 58-71.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.011] [PMID: 23968711]
[64]
Yao, B.L.; Mai, Y.W.; Chen, S.B.; Xie, H.T.; Yao, P.F.; Ou, T.M.; Tan, J.H.; Wang, H.G.; Li, D.; Huang, S.L.; Gu, L.Q.; Huang, Z.S. Design, synthesis and biological evaluation of novel 7-alkylamino substituted benzo[a]phenazin derivatives as dual topoisomerase I/II inhibitors. Eur. J. Med. Chem., 2015, 92, 540-553.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.024] [PMID: 25599951]
[65]
Zhuo, S.T.; Li, C.Y.; Hu, M.H.; Chen, S.B.; Yao, P.F.; Huang, S.L.; Ou, T.M.; Tan, J.H.; An, L.K.; Li, D.; Gu, L.Q.; Huang, Z.S. Synthesis and biological evaluation of benzo[a]phenazine derivatives as a dual inhibitor of topoisomerase I and II. Org. Biomol. Chem., 2013, 11(24), 3989-4005.
[http://dx.doi.org/10.1039/c3ob40325d] [PMID: 23657605]
[66]
Afifi, O.S.; Shaaban, O.G.; Abd El Razik, H.A.; Shams El-Dine, S.E.A.; Ashour, F.A.; El-Tombary, A.A.; Abu-Serie, M.M. Synthesis and biological evaluation of purine-pyrazole hybrids incorporating thiazole, thiazolidinone or rhodanine moiety as 15-LOX inhibitors endowed with anticancer and antioxidant potential. Bioorg. Chem., 2019, 87, 821-837.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.076] [PMID: 30999135]
[67]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrish, M.; Compell, H.; Boyd, M.J. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[68]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[69]
Ibrar, A.; Tehseen, Y.; Khan, I.; Hameed, A.; Saeed, A.; Furtmann, N.; Bajorath, J.; Iqbal, J. Coumarin-thiazole and -oxadiazole derivatives: Synthesis, bioactivity and docking studies for aldose/aldehyde reductase inhibitors. Bioorg. Chem., 2016, 68, 177-186.
[http://dx.doi.org/10.1016/j.bioorg.2016.08.005] [PMID: 27544072]
[70]
Alexiou, P.; Pegklidou, K.; Chatzopoulou, M.; Nicolaou, I.; Demopoulos, V.J. Aldose reductase enzyme and its implication to major health problems of the 21(st) century. Curr. Med. Chem., 2009, 16(6), 734-752.
[http://dx.doi.org/10.2174/092986709787458362] [PMID: 19199934]
[71]
Lee, A.Y.; Chung, S.S. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J., 1999, 13(1), 23-30.
[http://dx.doi.org/10.1096/fasebj.13.1.23] [PMID: 9872926]
[72]
Pfeifer, M.A.; Schumer, M.P.; Gelber, D.A. Aldose reductase inhibitors: The end of an era or the need for different trial designs? Diabetes, 1997, 46(Suppl. 2), S82-S89.
[http://dx.doi.org/10.2337/diab.46.2.S82] [PMID: 9285505]
[73]
Taketomi, S.; Fujita, T.; Yokono, K. Insulin receptor and postbinding defects in KK mouse adipocytes and improvement by ciglitazone. Diabetes Res. Clin. Pract., 1988, 5(2), 125-134.
[http://dx.doi.org/10.1016/S0168-8227(88)80051-2] [PMID: 3416709]
[74]
Kawamori, R.; Kadowaki, T.; Onji, M.; Seino, Y.; Akanuma, Y. PRACTICAL Study Group. Hepatic safety profile and glycemic control of pioglitazone in more than 20,000 patients with type 2 diabetes mellitus: Postmarketing surveillance study in Japan. Diabetes Res. Clin. Pract., 2007, 76(2), 229-235.
[http://dx.doi.org/10.1016/j.diabres.2006.08.017] [PMID: 17109986]
[75]
Kahn, S.E.; Haffner, S.M.; Heise, M.A.; Herman, W.H.; Holman, R.R.; Jones, N.P.; Kravitz, B.G.; Lachin, J.M.; O’Neill, M.C.; Zinman, B.; Viberti, G. ADOPT Study Group. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med., 2006, 355(23), 2427-2443.
[http://dx.doi.org/10.1056/NEJMoa066224] [PMID: 17145742]
[76]
Schemmel, K.E.; Padiyara, R.S.; D’Souza, J.J. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: A review. J. Diabetes Complicat, 2010, 24(5), 354-360.
[http://dx.doi.org/10.1016/j.jdiacomp.2009.07.005] [PMID: 19748287]
[77]
Maccari, R.; Del Corso, A.; Giglio, M.; Moschini, R.; Mura, U.; Ottanà, R. In vitro evaluation of 5-arylidene-2-thioxo-4-thiazolidinones active as aldose reductase inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(1), 200-203.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.041] [PMID: 21129963]
[78]
Maccari, R.; Ottanà, R.; Curinga, C.; Vigorita, M.G.; Rakowitz, D.; Steindl, T.; Langer, T. Structure-activity relationships and molecular modelling of 5-arylidene-2,4-thiazolidinediones active as aldose reductase inhibitors. Bioorg. Med. Chem., 2005, 13(8), 2809-2823.
[http://dx.doi.org/10.1016/j.bmc.2005.02.026] [PMID: 15781392]
[79]
Maccari, R.; Ottanà, R.; Ciurleo, R.; Vigorita, M.G.; Rakowitz, D.; Steindl, T.; Langer, T. Evaluation of in vitro aldose redutase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg. Med. Chem. Lett., 2007, 17(14), 3886-3893.
[http://dx.doi.org/10.1016/j.bmcl.2007.04.109] [PMID: 17512196]
[80]
Maccari, R.; Ottanà, R.; Ciurleo, R.; Rakowitz, D.; Matuszczak, B.; Laggner, C.; Langer, T. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives. Bioorg. Med. Chem., 2008, 16(11), 5840-5852.
[http://dx.doi.org/10.1016/j.bmc.2008.04.072] [PMID: 18492610]
[81]
Bruno, G.; Costantino, L.; Curinga, C.; Maccari, R.; Monforte, F.; Nicoló, F.; Ottanà, R.; Vigorita, M.G. Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones. Bioorg. Med. Chem., 2002, 10(4), 1077-1084.
[http://dx.doi.org/10.1016/S0968-0896(01)00366-2] [PMID: 11836118]
[82]
Maccari, R.; Ciurleo, R.; Giglio, M.; Cappiello, M.; Moschini, R.; Corso, A.D.; Mura, U.; Ottanà, R. Identification of new non-carboxylic acid containing inhibitors of aldose reductase. Bioorg. Med. Chem., 2010, 18(11), 4049-4055.
[http://dx.doi.org/10.1016/j.bmc.2010.04.016] [PMID: 20452228]
[83]
Ahmadian, M.; Suh, J.M.; Hah, N.; Liddle, C.; Atkins, A.R.; Downes, M.; Evans, R.M. PPARγ signaling and metabolism: The good, the bad and the future. Nat. Med., 2013, 19(5), 557-566.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[84]
Evans, R.M.; Barish, G.D.; Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med., 2004, 10(4), 355-361.
[http://dx.doi.org/10.1038/nm1025] [PMID: 15057233]
[85]
Forman, B.M.; Tontonoz, P.; Chen, J. 15-Deoxy-d 12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARgamma. Cell, 1995.
[86]
Neuschwander-Tetri, B.A.; Isley, W.L.; Oki, J.C.; Ramrakhiani, S.; Quiason, S.G.; Phillips, N.J.; Brunt, E.M. Troglitazone-induced hepatic failure leading to liver transplantation. A case report. Ann. Intern. Med., 1998, 129(1), 38-41.
[http://dx.doi.org/10.7326/0003-4819-129-1-199807010-00009] [PMID: 9652998]
[87]
Cohen, J.S. Risks of troglitazone apparent before approval in USA. Diabetologia, 2006, 49(6), 1454-1455.
[http://dx.doi.org/10.1007/s00125-006-0245-0] [PMID: 16601971]
[88]
Azoulay, L.; Yin, H.; Filion, K.B.; Assayag, J.; Majdan, A.; Pollak, M.N.; Suissa, S. The use of pioglitazone and the risk of bladder cancer in people with type 2 diabetes: Nested case-control study. BMJ, 2012, 344e3645
[http://dx.doi.org/10.1136/bmj.e3645] [PMID: 22653981]
[89]
Lewis, J.D.; Ferrara, A.; Peng, T.; Hedderson, M.; Bilker, W.B.; Quesenberry, C.P., Jr; Vaughn, D.J.; Nessel, L.; Selby, J.; Strom, B.L. Risk of bladder cancer among diabetic patients treated with pioglitazone: Interim report of a longitudinal cohort study. Diabetes Care, 2011, 34(4), 916-922.
[http://dx.doi.org/10.2337/dc10-1068] [PMID: 21447663]
[90]
Lincoff, A.M.; Wolski, K.; Nicholls, S.J.; Nissen, S.E. Pioglitazone and risk of cardio-vascular events in patients with type 2 diabetes mellitus. JAMA, 2007, 298, 1180-1188.
[http://dx.doi.org/10.1001/jama.298.10.1180] [PMID: 17848652]
[91]
Zhou, L.; Zhong, Y.; Xue, M.Z.; Kuang, D.; Cao, X.W.; Zhao, Z.J.; Li, H.L.; Xu, Y.F.; Wang, R. Design, synthesis and evaluation of PPAR gamma binding activity of 2-thioxo-4-thiazolidinone derivatives. Chin. Chem. Lett., 2015, 26, 63-68.
[http://dx.doi.org/10.1016/j.cclet.2014.10.008]
[92]
Schopfer, F.J.; Cole, M.P.; Groeger, A.L.; Chen, C.S.; Khoo, N.K.; Woodcock, S.R.; Golin-Bisello, F.; Motanya, U.N.; Li, Y.; Zhang, J.; Garcia-Barrio, M.T.; Rudolph, T.K.; Rudolph, V.; Bonacci, G.; Baker, P.R.; Xu, H.E.; Batthyany, C.I.; Chen, Y.E.; Hallis, T.M.; Freeman, B.A. Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: Selective ligand activity and anti-diabetic signaling actions. J. Biol. Chem., 2010, 285(16), 12321-12333.
[http://dx.doi.org/10.1074/jbc.M109.091512] [PMID: 20097754]
[93]
El-Sayed, S.; Metwally, K.; El-Shanawani, A.A.; Abdel-Aziz, L.M.; El-Rashedy, A.A.; Soliman, M.E.S.; Quattrini, L.; Coviello, V.; la Motta, C. Quinazolinone-based rhodanine-3-acetic acids as potent aldose reductase inhibitors: Synthesis, functional evaluation and molecular modeling study. Bioorg. Med. Chem. Lett., 2017, 27(20), 4760-4764.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.050] [PMID: 28935265]
[94]
Sartini, S.; Cosconati, S.; Marinelli, L.; Barresi, E.; Di Maro, S.; Simorini, F.; Taliani, S.; Salerno, S.; Marini, A.M.; Da Settimo, F.; Novellino, E.; La Motta, C. Benzofuroxane derivatives as multi-effective agents for the treatment of cardiovascular diabetic complications. Synthesis, functional evaluation, and molecular modeling studies. J. Med. Chem., 2012, 55(23), 10523-10531.
[http://dx.doi.org/10.1021/jm301124s] [PMID: 23134227]
[95]
Ramunno, A.; Cosconati, S.; Sartini, S.; Maglio, V.; Angiuoli, S.; La Pietra, V.; Di Maro, S.; Giustiniano, M.; La Motta, C.; Da Settimo, F.; Marinelli, L.; Novellino, E. Progresses in the pursuit of aldose reductase inhibitors: The structure-based lead optimization step. Eur. J. Med. Chem., 2012, 51, 216-226.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.045] [PMID: 22436396]
[96]
Celestina, S.K.; Sundaram, K.; Ravi, S. In vitro studies of potent aldose reductase inhibitors: Synthesis, characterization, biological evaluation and docking analysis of rhodanine-3-hippuric acid derivatives. Bioorg. Chem., 2020, 97103640
[http://dx.doi.org/10.1016/j.bioorg.2020.103640] [PMID: 32086051]
[97]
Headland, S.E.; Norling, L.V. The resolution of inflammation: Principles and challenges. Semin. Immunol., 2015, 27(3), 149-160.
[http://dx.doi.org/10.1016/j.smim.2015.03.014] [PMID: 25911383]
[98]
Serhan, C.N. Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms. FASEB J., 2017, 31(4), 1273-1288.
[http://dx.doi.org/10.1096/fj.201601222R] [PMID: 28087575]
[99]
Klose, C.S.N.; Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol., 2016, 17(7), 765-774.
[http://dx.doi.org/10.1038/ni.3489] [PMID: 27328006]
[100]
Schauberger, E.; Peinhaupt, M.; Cazares, T.; Lindsley, A.W. Lipid mediators of allergic disease: Pathways, treatments, and emerging therapeutic targets. Curr. Allergy Asthma Rep., 2016, 16(7), 48-57.
[http://dx.doi.org/10.1007/s11882-016-0628-3] [PMID: 27333777]
[101]
Tessaro, F.H.G.; Ayala, T.S.; Martins, J.O. Lipid mediators are critical in resolving inflammation: A review of the emerging roles of eicosanoids in diabetes mellitus. BioMed Res. Int., 2015.2015568408
[http://dx.doi.org/10.1155/2015/568408] [PMID: 25866794]
[102]
Mashima, R.; Okuyama, T. The role of lipoxygenases in pathophysiology: New insights and future perspectives. Redox Biol., 2015, 6, 297-310.
[http://dx.doi.org/10.1016/j.redox.2015.08.006] [PMID: 26298204]
[103]
Abdelall, E.K.A.; Kamel, G.M. Synthesis of new thiazolo-celecoxib analogues as dual cyclooxygenase-2/15-lipoxygenase inhibitors: Determination of regio-specific different pyrazole cyclization by 2D NMR. Eur. J. Med. Chem., 2016, 118, 250-258.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.049] [PMID: 27131067]
[104]
Yoshimura, H.; Sekine, S.; Adachi, H.; Uematsu, Y.; Mitani, A.; Futaki, N.; Shimizu, N. High levels of human recombinant cyclooxygenase-1 expression in mammalian cells using a novel gene amplification method. Protein Expr. Purif., 2011, 80(1), 41-46.
[http://dx.doi.org/10.1016/j.pep.2011.05.009] [PMID: 21645621]
[105]
Lamie, P.F.; Ali, W.A.M.; Bazgier, V.; Rárová, L. Novel N-substituted indole Schiff bases as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase enzymes: Synthesis, biological activities in vitro and docking study. Eur. J. Med. Chem., 2016, 123, 803-813.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.013] [PMID: 27541263]
[106]
Alvaro-Gracia, J.M. Licofelone--clinical update on a novel LOX/COX inhibitor for the treatment of osteoarthritis. Rheumatology (Oxford), 2004, 43(Suppl. 1), i21-i25.
[http://dx.doi.org/10.1093/rheumatology/keh105] [PMID: 14752172]
[107]
El-Miligy, M.M.M.; Hazzaa, A.A.; El-Messmary, H.; Nassra, R.A.; El-Hawash, S.A.M. New hybrid molecules combining benzothiophene or benzofuran with rhodanine as dual COX-1/2 and 5-LOX inhibitors: Synthesis, biological evaluation and docking study. Bioorg. Chem., 2017, 72, 102-115.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.012] [PMID: 28390993]
[108]
Tageldin, G.N.; Fahmy, S.M.; Ashour, H.M.; Khalil, M.A.; Nassra, R.A.; Labouta, I.M. Design, synthesis and evaluation of some pyrazolo [3,4-d] pyrimidine derivatives bearing thiazolidinone moiety as anti-inflammatory agents. Bioorg. Chem., 2018, 80, 164-173.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.013] [PMID: 29929077]
[109]
Elzahhar, P.A.; Alaaeddine, R.; Ibrahim, T.M.; Nassra, R.; Ismail, A.; Chua, B.S.K.; Frkic, R.L.; Bruning, J.B.; Wallner, N.; Knape, T.; von Knethen, A.; Labib, H.; El-Yazbi, A.F.; Belal, A.S.F. Shooting three inflammatory targets with a single bullet: Novel multi-targeting anti-inflammatory glitazones. Eur. J. Med. Chem., 2019, 167, 562-582.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.034] [PMID: 30818268]
[110]
Bursal, E.; Aras, A.; Kılıç, Ö.; Taslimi, P.; Gören, A.C.; Gülçin, İ. Phytochemical content, antioxidant activity, and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase, and α-glycosidase enzymes. J. Food Biochem., 2019, 43(3)e12776
[http://dx.doi.org/10.1111/jfbc.12776] [PMID: 31353544]
[111]
Türkan, F.; Huyut, Z.; Taslimi, P.; Gülçin, İ. The effects of some antibiotics from cephalosporin groups on the acetylcholinesterase and butyrylcholinesterase enzymes activities in different tissues of rats. Arch. Physiol. Biochem., 2019, 125(1), 12-18.
[http://dx.doi.org/10.1080/13813455.2018.1427766] [PMID: 29364753]
[112]
Kuzu, M.; Kandemir, F.M.; Yildirim, S.; Kucukler, S.; Caglayan, C.; Turk, E. Morin attenuates doxorubicin-induced heart and brain damage by reducing oxidative stress, inflammation and apoptosis. Biomed. Pharmacother., 2018, 106, 443-453.
[http://dx.doi.org/10.1016/j.biopha.2018.06.161] [PMID: 29990832]
[113]
Taslimi, P.; Sujayev, A.; Turkan, F.; Garibov, E.; Huyut, Z.; Farzaliyev, V.; Mamedova, S.; Gulçin, İ. Synthesis and investigation of the conversion reactions of pyrimidinethiones with nucleophilic reagent and evaluation of their acetylcholinesterase, carbonic anhydrase inhibition, and antioxidant activities. J. Biochem. Mol. Toxicol., 2018, 32e22019
[http://dx.doi.org/10.1002/jbt.22019]
[114]
Zengin, M.; Genc, H.; Taslimi, P.; Kestane, A.; Guclu, E.; Ogutlu, A.; Karabay, O.; Gulçin, İ. Novel thymol bearing oxypropanolamine derivatives as potent some metabolic enzyme inhibitors - Their antidiabetic, anticholinergic and antibacterial potentials. Bioorg. Chem., 2018, 81, 119-126.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.003] [PMID: 30118983]
[115]
Kocyigit, U.M.; Taslimi, P.; Gezegen, H.; Gulçin, İ.; Ceylan, M. Evaluation of acetylcholinesterase and carbonic anhydrase inhibition profiles of 1,2,3,4,6-pentasubstituted-4-hydroxy-cyclohexanes. J. Biochem. Mol. Toxicol., 2017, 31(9)e21938
[http://dx.doi.org/10.1002/jbt.21938] [PMID: 28613396]
[116]
Özbey, F.; Taslimi, P.; Gülçin, İ.; Maraş, A.; Göksu, S.; Supuran, C.T. Synthesis of diaryl ethers with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. J. Enzyme Inhib. Med. Chem., 2016, 79-85.
[117]
Gülçin, İ.; Scozzafava, A.; Supuran, C.T.; Koksal, Z.; Turkan, F.; Çetinkaya, S.; Bingöl, Z.; Huyut, Z.; Alwasel, S.H. Rosmarinic acid inhibits some metabolic enzymes including glutathione S-transferase, lactoperoxidase, acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase isoenzymes. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1698-1702.
[http://dx.doi.org/10.3109/14756366.2015.1135914] [PMID: 26864149]
[118]
Öztaskın, N.; Taslimi, P.; Maraş, A.; Gülcin, İ.; Göksu, S. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg. Chem., 2017, 74, 104-114.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.010] [PMID: 28772158]
[119]
Krátký, M.; Štěpánková, Š.; Vorčáková, K.; Vinšová, J. Synthesis and in vitro evaluation of novel rhodanine derivatives as potential cholinesterase inhibitors. Bioorg. Chem., 2016, 68, 23-29.
[http://dx.doi.org/10.1016/j.bioorg.2016.07.004] [PMID: 27428597]
[120]
Zdrazilová, P.; Stepánková, S.; Komers, K.; Ventura, K.; Cegan, A. Half-inhibition concentrations of new cholinesterase inhibitors. Z. Natforsch. C J. Biosci., 2004, 59(3-4), 293-296.
[http://dx.doi.org/10.1515/znc-2004-3-430] [PMID: 15241943]
[121]
Bayindir, S.; Caglayan, C.; Karaman, M.; Gülcin, İ. The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzymes. Bioorg. Chem., 2019, 90103096
[http://dx.doi.org/10.1016/j.bioorg.2019.103096] [PMID: 31284100]
[123]
[124]
Suarez, J.; Ranguelova, K.; Jarzecki, A.A.; Manzerova, J.; Krymov, V.; Zhao, X.; Yu, S.; Metlitsky, L.; Gerfen, G.J.; Magliozzo, R.S. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG). J. Biol. Chem., 2009, 284(11), 7017-7029.
[http://dx.doi.org/10.1074/jbc.M808106200] [PMID: 19139099]
[125]
Subhedar, D.D.; Shaikh, M.H.; Nawale, L.; Yeware, A.; Sarkar, D.; Khan, F.A.K.; Sangshetti, J.N.; Shingate, B.B. Novel tetrazoloquinoline-rhodanine conjugates: Highly efficient synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2016, 26(9), 2278-2283.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.045] [PMID: 27013391]
[126]
Singh, U.; Akhtar, S.; Mishra, A.; Sarkar, D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J. Microbiol. Methods, 2011, 84(2), 202-207.
[http://dx.doi.org/10.1016/j.mimet.2010.11.013] [PMID: 21129420]
[127]
Shaikh, M.S.; Kanhed, A.M.; Chandrasekaran, B.; Palkar, M.B.; Agrawal, N.; Lherbet, C.; Hampannavar, G.A.; Karpoormath, R. Discovery of novel N-methyl carbazole tethered rhodanine derivatives as direct inhibitors of Mycobacterium tuberculosis InhA. Bioorg. Med. Chem. Lett., 2019, 29(16), 2338-2344.
[http://dx.doi.org/10.1016/j.bmcl.2019.06.015] [PMID: 31227345]
[128]
Vats, L.; Sharma, V.; Angeli, A.; Kumar, R.; Supuran, C.T.; Sharma, P.K. Synthesis of novel 4-functionalized 1,5-diaryl-1,2,3-triazoles containing benzenesulfonamide moiety as carbonic anhydrase I, II, IV and IX inhibitors. Eur. J. Med. Chem., 2018, 150, 678-686.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.030] [PMID: 29571155]
[129]
Chiaramonte, N.; Bua, S.; Ferraroni, M.; Nocentini, A.; Bonardi, A.; Bartolucci, G.; Durante, M.; Lucarini, L.; Chiapponi, D.; Dei, S.; Manetti, D.; Teodori, E.; Gratteri, P.; Masini, E.; Supuran, C.T.; Romanelli, M.N. 2-Benzylpiperazine: A new scaffold for potent human carbonic anhydrase inhibitors. Synthesis, enzyme inhibition, enantioselectivity, computational and crystallographic studies and in vivo activity for a new class of intraocular pressure lowering agents. Eur. J. Med. Chem., 2018, 151, 363-375.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.002] [PMID: 29635168]
[130]
Taslimi, P.; Caglayan, C.; Farzaliyev, V.; Nabiyev, O.; Sujayev, A.; Turkan, F.; Kaya, R.; Gulçin, İ. Synthesis and discovery of potent carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase, and α-glycosidase enzymes inhibitors: The novel N,N′-bis-cyanomethylamine and alkoxymethylamine derivatives. J. Biochem. Mol. Toxicol., 2018, 32(4)e22042
[http://dx.doi.org/10.1002/jbt.22042] [PMID: 29457667]
[131]
Tugrak, M.; Inci Gul, H.; Sakagami, H.; Gulcin, I.; Supuran, C.T. New azafluorenones with cytotoxic and carbonic anhydrase inhibitory properties: 2-Aryl-4-(4-hydroxyphenyl)-5H-indeno[1,2-b]pyridin-5-ones. Bioorg. Chem., 2018, 81, 433-439.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.013] [PMID: 30223148]
[132]
Mermer, A.; Demirbas, N.; Cakmak, U.; Colak, A.; Demirbas, A.; Alagumuthu, M.; Arumugam, S. Discovery of novel sulfonamide-based 5-arylidenerhodanines as effective carbonic anhydrase (II) ınhibitors: Microwave-assisted and ultrasound-assisted one-pot four-component synthesis, molecular docking, and anti-CA II screening studies. J. Heterocycl. Chem., 2019, 56, 2460-2468.
[http://dx.doi.org/10.1002/jhet.3635]
[133]
Xu, J.F.; Wang, T.T.; Yuan, Q.; Duan, Y.T.; Xu, Y.J.; Lv, P.C.; Wang, X.M.; Yang, Y.S.; Zhu, H.L. Discovery and development of novel rhodanine derivatives targeting enoyl-acyl carrier protein reductase. Bioorg. Med. Chem., 2019, 27(8), 1509-1516.
[http://dx.doi.org/10.1016/j.bmc.2019.02.043] [PMID: 30846404]
[134]
Suresh, A.; Srinivasarao, S.; Agnieszka, N.; Ewa, A.K.; Alvala, M.; Lherbet, C.; Chandra Sekhar, K.V.G. Design and synthesis of 9H-fluorenone based 1,2,3-triazole analogues as Mycobacterium tuberculosis InhA inhibitors. Chem. Biol. Drug Des., 2018, 91(6), 1078-1086.
[http://dx.doi.org/10.1111/cbdd.13127] [PMID: 29063733]
[135]
Slepikas, L.; Chiriano, G.; Perozzo, R.; Tardy, S.; Kranjc, A.; Patthey-Vuadens, O.; Ouertatani-Sakouhi, H.; Kicka, S.; Harrison, C.F.; Scrignari, T.; Perron, K.; Hilbi, H.; Soldati, T.; Cosson, P.; Tarasevicius, E.; Scapozza, L. In silico driven design and synthesis of rhodanine derivatives as novel antibacterials targeting the enoyl reductase InhA. J. Med. Chem., 2016, 59(24), 10917-10928.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01620] [PMID: 26730986]
[136]
Khaldoun, K.; Safer, A.; Boukabcha, N.; Dege, N.; Ruchaud, S.; Souab, M.; Bach, S.; Chouaih, A.; Saidi-Besbes, S. Synthesis and evaluation of new isatin-aminorhodanine hybrids as PIM1 and CLK1 kinase inhibitors. J. Mol. Struct., 2019, 1192, 82-90.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.122]
[137]
Tonks, N.K. Redox redux: Revisiting PTPs and the control of cell signaling. Cell, 2005, 121(5), 667-670.
[http://dx.doi.org/10.1016/j.cell.2005.05.016] [PMID: 15935753]
[138]
Julien, S.G.; Dubé, N.; Hardy, S.; Tremblay, M.L. Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer, 2011, 11(1), 35-49.
[http://dx.doi.org/10.1038/nrc2980] [PMID: 21179176]
[139]
Wälchli, S.; Curchod, M.L.; Gobert, R.P.; Arkinstall, S.; Hooft van Huijsduijnen, R. Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on “substrate-trapping” mutants. J. Biol. Chem., 2000, 275(13), 9792-9796.
[http://dx.doi.org/10.1074/jbc.275.13.9792] [PMID: 10734133]
[140]
Sun, L.; Wang, P.; Xu, L.; Gao, L.; Li, J.; Piao, H. Discovery of 1,3-diphenyl-1H-pyrazole derivatives containing rhodanine-3-alkanoic acid groups as potential PTP1B inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(10), 1187-1193.
[http://dx.doi.org/10.1016/j.bmcl.2019.03.023] [PMID: 30910462]
[141]
Mermer, A.; Demirci, S.; Ozdemir, S.B.; Demirbas, A.; Ulker, S.; Ayaz, F.A.; Aksakal, F.; Demirbas, N. Conventional and microwave irradiated synthesis, biological activity evaluation and molecular docking studies of highly substituted piperazine-azole hybrids. Chin. Chem. Lett., 2017, 28, 995-1005.
[http://dx.doi.org/10.1016/j.cclet.2016.12.012]
[142]
Wang, G.C.; Peng, Y.P.; Xie, Z.Z.; Wang, J.; Chen, M. Synthesis, α-glucosidase inhibition and molecular docking studies of novel thiazolidine-2,4-dione or rhodanine derivatives. MedChemComm, 2017, 8(7), 1477-1484.
[http://dx.doi.org/10.1039/C7MD00173H] [PMID: 30108859]
[143]
Kazeem, M.I.; Adamson, J.O.; Ogunwande, I.A. Modes of inhibition of α -amylase and α -glucosidase by aqueous extract of Morinda lucida Benth leaf. BioMed Res. Int., 2013.2013527570
[http://dx.doi.org/10.1155/2013/527570] [PMID: 24455701]
[144]
Singh, P.; Mothilal, S.; Kerru, N.; Singh-Pillay, A.; Gummidi, L.; Erukainure, O.L. Md. S. Islam, Comparative α-glucosidase and α-amylase inhibition studies of rhodanine–pyrazole conjugates and their simple rhodanine analogues. Med. Chem. Res., 2019, 28, 143-159.
[http://dx.doi.org/10.1007/s00044-018-2272-z]
[145]
Shai, L.J.; Masoko, P.; Mokgotho, M.P.; Magano, S.P.; Mogale, A.M.; Boaduo, N.; Eloff, J.N. Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. S. Afr. J. Bot., 2010, 76, 465-470.
[http://dx.doi.org/10.1016/j.sajb.2010.03.002]
[146]
Jain, A.K.; Vaidya, A.; Ravichandran, V.; Kashaw, S.K.; Agrawal, R.K. Recent developments and biological activities of thiazolidinone derivatives: A review. Bioorg. Med. Chem., 2012, 20(11), 3378-3395.
[http://dx.doi.org/10.1016/j.bmc.2012.03.069] [PMID: 22546204]
[147]
Kaminskyy, D.; Kryshchyshyn, A.; Lesyk, R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur. J. Med. Chem., 2017, 140, 542-594.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.031] [PMID: 28987611]
[148]
Lesyk, R.B.; Zimenkovsky, B.S.; Kaminskyy, D.V. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group. Biopolymers Cell, 2011, 27, 107-117.
[http://dx.doi.org/10.7124/bc.000089]
[149]
Morphy, R.; Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem., 2005, 48(21), 6523-6543.
[http://dx.doi.org/10.1021/jm058225d] [PMID: 16220969]
[150]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[151]
Andleeb, H.; Tehseen, Y.; Ali Shah, S.J. Identification of novel pyrazole–rhodanine hybrid scaffolds as potent inhibitors of aldose reductase: Design, synthesis, biological evaluation and molecular docking analysis. RSC Adv, 2016, 6, 77688-77700.
[http://dx.doi.org/10.1039/C6RA14531K]
[152]
Hughes, S.J.; Millan, D.S.; Kilty, I.C.; Lewthwaite, R.A.; Mathias, J.P.; O’Reilly, M.A.; Pannifer, A.; Phelan, A.; Stühmeier, F.; Baldock, D.A.; Brown, D.G. Fragment based discovery of a novel and selective PI3 kinase inhibitor. Bioorg. Med. Chem. Lett., 2011, 21(21), 6586-6590.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.117] [PMID: 21925880]